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Coulomb boundary conditions in high-energy theories for electron-capture processes
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We examine various high-energy approximation methods, with and without boundary corrections
for electron-capture processes. From the comparison of the calculated differential cross sections for
the proton plus hydrogen-atom system, we show that the boundary correction does not always im-

prove the results. The internuclear interaction must be fully taken into account to explain the ex-

perimental results.

I. INTRODUCTION

More than five decades have passed since Oppenhei-
mer' and, subsequently, Brinkmann and Kramers calcu-
lated electron-capture cross sections by means of the
first-order Born formula, neglecting the internuclear in-
teraction completely. This approximation (OBK) overes-
timates cross sections by as much as a factor of 5. Two
decades later, Bates and Dalgarno and Jackson and
Schiff (JS) calculated the first-order Born cross sections
for the proton —hydrogen-atom (p+H) collision, includ-
ing the internuclear interaction in the transition operator.
They found that this interaction affects cross sections
considerably and reduces them to experimental results.
However, a difficulty arose in the physical interpretation,
because the contribution of the internuclear interaction
was expected to be negligibly small at the energy region
studied. Moreover, it was found later that the JS approx-
imation predicts cross sections in violent disagreement
with experiments for K-shell capture in asymmetric sys-
tems such as protons on argon.

On the other hand, analyzing the two-state close-
coupling scheme, Bates pointed out that the nonortho-
gonality of the atomic wave functions of the initial and
the final states should be taken into account properly,
even for the first-order treatment. Soon after, Bassel and
Gerjuoy have shown that the distorted-wave Born ap-
proximation (DWBA), in which the distortion potential is
an interaction averaged over the electron distribution of
the initial or final state, is closely related to Bates's ver-
sion of the first-order formula. Both of them agree well
with experiments.

It is well known that the long-range nature of the
Coulomb interaction brings about mathematical
difficulties in treating collision processes and requires spe-
cial account for its proper application. Nevertheless, the
scattering formalism developed for short-range potentials
has been often applied without modification to systems
with Coulomb interactions. Dewangan and Eichler pro-
posed a new first-order theory referred to as the
boundary-corrected first-order Born (B1 B) approxima-
tion, which satisfies the Coulomb boundary conditions in
both entr:ance and exit channels. The B1B approxima-
tion coincides with the JS approximation accidentally for
the p+H system. This clarifies why the JS approxima-

tion gives good results only for this particular system.
The DWBA and the Bates formulas also satisfy the
Coulomb boundary conditions, and the difference from
the B1B approximation consists in the choice of the dis-
tortion potentials that are well defined only at the asymp-
totic region of infinite separation.

The eikonal approximation' '" has been applied widely
to electron-capture processes successfully. While it gives
good agreement with experiments in both integrated and
differential cross sections, it does not satisfy the Coulomb
boundary conditions in one of the channels. In this paper
we remedy this defect by introducing the boundary-
corrected eikonal approximation, which is derived from
the usual eikonal amplitude by a modification based on
the distorted-wave formalism. We calculate differential
cross sections and compare them with other theories
satisfying Coulomb boundary conditions. We show that
the boundary correction does not always improve the
differential cross sections. Atomic units are used
throughout unless otherwise stated.

II. THEORY

where parentheses denote a bound state. We adopt the
impact-parameter method and assume that the projectile
moves along a straight-line trajectory with a constant ve-
locity v. The internuclear distance vector measured from
the target nucleus T is expressed as R =1+vt, where b is
the impact parameter. The total Hamiltonian is given by

P'p

ZT ZPZT ZPZT+ =H+
R R

where rp and r~ are the electron positions referring to P
and T, respectively. Since R is a function of t only, the
internuclear interaction ZpZ&/R can be totally absorbed
into a phase factor which represents the distortion to
each channel wave function, P, and tb&. The transition
amplitude is then written as

Consider the electron-capture process between a bare
projectile ion P with a charge Zp and a target atom con-
sisting of a nucleus T with a charge Z~ and an electron e,

( T+e )+P~ T+(P+e ),
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tfj ~b f Vf (3) V (13)

with v=ZTZp/U. The total electronic wave functions +;
satisfies the Schrodinger equation

. aH i——4 (r t)=0j T~ (4)

. a
H, I i —

Q, i=0

where

with the initial condition 4,.~P, as t ~—oo. The initial
and final channel wave functions, p, (rT, t) and QI(rl, , t),
are the traveling atomic orbitals that satisfy

the channel wave functions do not satisfy the Coulomb
boundary conditions. The eikonal approximation takes
account of the Coulomb boundary conditions in only one
of the channels. The post-form eikonal amplitude is
given by

te&k b 2&v (14)

with

lit; =p;exp i —I V, dt'

and V, = —Zp/pp. In order to make the interaction
short ranged, we modify the final state similarly to Eq.
(8),

and

H,-=H —V; with V, = Zp/I p (6)
tfj —ib ' gf Vf Uf (16)

HI =H —Vi w&th Vi = —ZT Ir T .

(8)

The distorted wave gf satisfies

. aHf+ Uf —i gf =0,
at

with the condition yI ~P& as t~ ~. Note that y& to-

gether with the phase factor due to the internuclear in-

teraction, that is a part of b ', satisfies the correct
Coulomb boundary conditions in the final channel. The
distorted-wave Born approximation

t ——ib ' g V —U g dt (10)

Introducing a distortion potential UI(R) to cancel the

Coulomb tail of Vf, tf, is rewritten as'

rf( ii) I (gf ~ Vf Uf ~% (' )dt

10

10
keV

We call this formula the boundary-corrected eikonal ap-
proximation, in which the Coulomb boundary conditions
are satisfied in both entrance and exit channels.

In the above text we have derived the approximate for-
mulas for tf; after eliminating the internuclear interac-
tion by introducing the phase factor b ' . We can also
formulate similar approximation methods retaining the
internuclear interaction as a part of V; and Vf. In the
latter treatment, the B1B and the DWBA formulas are
the same as Eq. (10). The internuclear interaction cancels
completely in the interaction Vf —Uf, and its distortion
in g, and gf is combined to give precisely the factor b ".

is obtained by replacing 4, in Eq. (8) by the distorted
wave g; defined by

. aH+U —i g =0,
l gt l

Zp ZT
U(R)= — with U (R)=— (12a)

with the condition y, ~P; as t ~—~. If we choose U;

to cancel the Coulomb tail of V;, y; together with the

part of b ' satisfies the correct Coulomb boundary con-
ditions in the initial channel. Among various possibili-
ties, we examine the following two typical choices of
U; (R ) and U&(R ):
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We call the formula Eq. (10) using the potentials (12a) the
B1B approximation, and the formula using the poten-
tials (12b) the DWBA.

On the other hand, in the OBK amplitude

FIG. 1. Differential cross sections for p+H(ls)~H+p in

center-of-mass scattering angle and a proton energy of 125 keV.
Theoretical cross sections: dotted, OBK; dot-dashed, B1B;
double-dot-dashed, DWBA; long dashed, eikonal; short dashed,
.DWBA eikonal; solid, B1B eikonal (see text). Experimental
data are from Ref. 14.
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FIG. 2. The same as Fig. 1, but for 60 keV. FIG. 3. The same for Fig. 1, but the phase factor b-"' is

neglected (see text).

f(0)= e'q t, (b)d b', (17)

where p is the reduced mass and q.b=2pvb sin(0/2).

III. RESULTS AND DISCUSSION

We have calculated differential cross sections for

p +H(1s )~H+ p using the approximate formulas
defined in the preceding sections. The results are com-
pared with experiments in Figs. 1 and 2. All the theoreti-
cal results are the sum over final states up to the principal
quantum numbers n =3. The experimental cross sec-
tions' are the sum over all final bound states. The OBK
cross sections are too large, as expected, but the
scattering-angle dependence is reasonably good. We note
that Eq. (13) is different from the usual definition of the
OBK amplitude in which the phase factor b "is omitted.
Without this phase factor the angular distribution of the
OBK cross sections is quite different from the experimen-

This is also true for the boundary-corrected eikonal ap-
proximation (16).

Dewangan" introduced the Glauber-eikonal approxi-
mation for the p+H system. He included the internu-
clear interaction explicitly in the eikonal approximation
to eliminate an ill-defined phase factor in the transition

amplitude, and discussed the high-energy behavior of the
electron-capture cross sections. However, he did not de-
velop a distorted-wave formalism for a general ion-ion
collision. Our treatment coincides with his one for the

p +H system.
The scattering amplitude at a scattering angle 0 is cal-

culated by a two-dimensional Fourier transform of a
transition amplitude,

tal data. It has no effect on the integrated cross sections
but it plays a crucial role in the differential cross sections.
Both the DWBA and the eikonal cross sections are in

good agreement with experiments. The former is a little
larger and the latter is a little smaller than the experimen-
tal data but their shapes are similar. The B1Bcross sec-
tions have an undersirable dip around 0.9 mrad. Belkic
et al. ' reported that this dip becomes less prominent as
we add more and more contributions of final highly excit-
ed states. However, they could not remove the dip com-
pletely by the summation.

As stated in Sec. II, the distortion potential is not
unique in the boundary-corrected eikona1 approximation
(16). We adopt two types of distortion potentials, Eqs.
(12a) and (12b). We call the former the 81B eikonal and
the latter the DWBA eikonal approximation. These two
boundary-corrected eikonal approximations show poorer
agreement with experiments than the original eikonal ap-
proximation. The disagreement is serious for the B18
eikonal approximation at large scattering angles. The
Coulomb boundary conditions are well defined only at
asymptotic region. Nevertheless, it gives a marked effect
to the large angle scatterings that are mainly determined
by the inner part of the potential.

We attribute these disagreements to the lack of the
phase factor b ". Equation (10) apparently contains this
factor but it is canceled completely by the phase factors
contained in g, and gf in the B1B amplitude for the

p +H system. This may be easily understood if we think
of the fact that the 818 approximation coincides with the
JS approximation for this system. Similarly, half of this
factor is canceled by gf in the B1Beikonal amplitude. In
order to confirm this conjecture we calculated cross sec-
tions disregarding the phase factor b ". Figure 3 shows
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the results. All the cross sections are considerably
modified, especially at large scattering angles. The dip of
81B cross sections has disappeared and the shape has be-
come much better. The eikonal approximation shows the
worst behavior. These results support our conjecture
that this phase factor is the most important in the angu-
lar distribution. Since this factor is missing in the origi-
nal 818 amplitude, as stated above, the neglect of this
factor in Eq. (10) retrieves it as b ". The matrix ele-
ments of the 818 amplitude are real quantities, so that
this factor gives the same effect as b ' . On the other
hand, this phase factor is completely missing in the
modified eikonal amplitude.

It is sometimes claimed that the dip in 818 cross sec-

tions is caused by the two-term interactions Vf Uf.
The fact that the dips in both the 818 and the 818
eikonal cross sections have disappeared by omitting the
phase factor b "implies that the subtraction of the dis-
tortion potential from the interaction is not the only
cause of the dip. This point is also confirmed by the fact
that the DWBA differential cross sections are free from
the dip though the transition operator is also composed
of two terms.

The phase factor b "is the consquence of complete in-
clusion of the internuclear interaction. If it is modified
by a Coulomb boundary condition, some portion of it is
lost. Our results show that this factor should be fully in-
cluded to explain experimental angular distributions.
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