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Variational limits on the Helmholtz free energy of simple fluids
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Accurate radial-distribution functions obtained from a thermodynamically consistent integral
equation are used to calculate upper and lower bounds to the Helmholtz free energies of several
inverse-power potential fluids and the Lennard-Jones fluid. Comparisons with results from Monte
Carlo simulations indicate that the true free energies are tightly bracketed by the variational
bounds. In addition, the simulations agree with the arithmetic mean of the limits near melt to
within about 0.03Nk~T for inverse power fluids and about 0.06Nk&T for Lennard-Jones fluids.
These results indicate that it is possible to obtain accurate free energies very eSciently by the varia-
tional method.

I. INTRODUCTION

Variational perturbation theories for the thermo-
dynamic properties of fluids have been widely used over
the past two decades. ' Most of these theories are
based upon the Ciibbs-Bogolyubov inequality which
places an upper bound on the excess Helmholtz free ener-
gy A of a fiuid interacting through the pair potential u (r)
in terms of the excess free energy A o of a reference fluid
interacting according to the pair potential uo(r):

~o + f d r[u(r) —uo(r)]go(r) . (1)

Here go(r) is the radial-distribution function for the
reference fluid, T is the temperature, and p is the number
density. Historically, the most popular reference fluid
has been hard spheres, ' although both the one-
component plasma (OCP) ' and inverse 12th-power
Auids (I12) (Refs. 6 and 7) have also been used.

Of course, the inequality is also valid when the roles of
the reference and actual fluids are reversed. Interchang-
ing the subscripted and nonsubscripted quantities in Eq.
(1) and rearranging yields a lower bound for the free ener-
gy:

Yevick (PY) and hypernetted-chain (HNC) equations in
which the interpolation parameter is chosen to ensure the
equality of the virial and compressibility equations of
state. It provides highly accurate g (r)'s for repulsive po-
tentials. Zerah and Hansen improved this equation to in-
clude attractive potential tails by interpolating between
the mean spherical approximation (MSA) and the HNC
equations. We employ their method to obtain g(r)'s for
the Lennard-Jones (LJ) Auid.

In Sec. II we describe our methods for ending the vari-
ational limits in Eqs. (1) and (2). In Sec. III we compare
our results against simulation data for r " potentials, and
in Sec. IV we present results for the LJ potential. In Sec.
V we discuss our results.

II. VARIATIONAL METHODS

0u(r) =u„(r)=E
r

(3)

are parametrized by the dimensionless quantity
' 3/n

Fluids interacting through inverse power potentials of
the form

n

+ P f d r[u(r) —uo(r)]g(r) .
po ' E

v'2 k~ T
L

(4)

This second form of the inequality has received little at-
tention because its evaluation requires knowledge of the
g (r) for the Auid under consideration, which until recent-
ly was difticult to obtain. In addition, if one uses the
hard-sphere fiuid as a reference, Eq. (2) yields the trivial
result A ~ —~ for any positive sphere diameter.

Very recently, Lai has used Monte Carlo (MC) g(r)'s
and an OCP reference fluid to place upper and lower
bounds on the free energy of liquid metals near melt. In
this paper we will use the I12 fluid for our reference, and
we will obtain g(r)'s from the thermodynamically con-
sistent integral equations developed by Rogers and
Young (RY)' and Zerah and Hansen (ZH). " The RY in-
tegral equation is an interpolation between the Percus-

or equivalently by the coupling constant
n

' n/3
o. 4m&2

na 3

u(r) =ut J(r) =4c,
12 6

(6)

and is parametrized by T*=k~ T!cand p* =po. .
By scaling distances to a, x =r/a, and replacing the

subscript 0 with subscript 12 to explicitly indicate our use
of the I12 Auid as a reference, Eq. (1) becomes

where a =(3/4trp)' is the ion-sphere radius. The LJ
potential is
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A, 2(z, 2 )

Xk~ T Xk~ T

u ax Ii2
gi2(x, ziz) . (7)

The minimum of the right-hand side of Eq. (7) with
respect to z, 2 is obtained using a simple Newton-
Raphson code previously developed and described in Ref.
7.

Using the same reduced variables, Eq. (2) may be reex-
pressed as

(14)

Our approach will be to use g(r)'s obtained from the
RY and ZH integral equations in Eqs. (7) and (8)
evaluate variational limits on the free energy with the
reference free energy given by Eq. (14). In order to test
the usefulness of these limits we compare them to the MC
free energies for other Auids in Secs. III and IV.

III. NUMERICAL RESULTS FOR INVERSE-POWER
POTENTIALS

3 —U

Xk~ T
5 ) 12 12

Xk,
—

Nk, T (8) A. Soft potentials {4~n (12)

where U is the excess internal energy for the actual Quid,

U= —,
' I dx x u(ax)g(ax), (9)

and

I,2=——', dx x, g(ax) .
0 X

(10)

Combining Eqs. (9) and (11) gives an approximate expres-
sion for the excess free energy,

Xk~ T Xk~ T
U —TS2

Xk~ T
+1. (12)

It has long been known that the contributions of higher
correlations to the entropy are important, ' but they are
expected to be less significant for high densities than for
low densities. ' Since Eq. (12) is quite easy to evaluate
once the RY and ZH radial distribution functions are
available, we examine its validity for the softer repulsive
potentials and the LJ potential.

In order to evaluate the variational free energies in ei-
ther Eq. (7) or Eq. (8), one needs to know the free energy
of the I12 fluid. There are extensive MC data' for the
excess pressure for this Quid which can be accurately fit

by a virial series:

pV —1=B2z+B3z +B4z +Biz +Biz . (13)

The coefficients B2 through B5 are computed from first
principles' and have the values Bz

=3.6296,
B3 7.58 16, B4=9.9792, and B5 =8.4520. The last
coefficient, B&=4.4, is a fit to the difference between the
MC data and the four-term series. Integration of the
virial series gives the expression for the reference free en-
ergy used here,

We note that because it is the "true" g (r) appearing in
Eqs. (9) and (10), the right-hand side of Eq. (8) is a simple
algebraic expression whose maximum can be found much
more easily than the minimum can be found in Eq. (7).

Recently Wallace' has used the first term in a correla-
tion expansion' ' to obtain a closed-form approxima-
tion to the excess entropy which depends only upon g (r):

S,„S2
Xk~ Xk~ 2

+1= = —+Jd r g(r)lng(r) .

TABLE I. Excess free-energy comparisons for n =4. A,„ is
the upper limit determined from Eq. (7), A;„ is the lower limit
determined from Eq. (8), and AMc is the fit due to Young and
Rogers in Ref. 7. A2 is the correlation expansion prediction of
Eq. (12). The figures in parentheses are obtained from the first
three terms in the exact virial expression (see text).

Z4
A max

Nk~ T
A min

Nkq T
AMC

Nk~ T
A2

Nk~ T

0.030
0.050
0.10
0.25
0.50
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0.3356
0.5718
1.188
3.181
6.927

15.60
25.48
36.31
47.93
60.25
73.21
86.74

0.3098
0.5267
1.010
3.021
6.709

15.34
25 ~ 18
36.00
47.62
59.95
72.90
86.43

(0.3299)
(0.5596)
(1.164)
(3.001)

0.3506
0.5893
1.203
3.228
6.893

15.53
25.40
36.22
47.83
60.14
73.09
86.62

1.125
1.277
1.755
3.530
7.055

15.46
25.17
35.91
46.51
59.85
72.84

86.44

In addition to the very extensive MC data available for
the I12 Quid, there is also data' for inverse-power poten-
tials with n =4, 6, and 9. We will compare the free-
energy bounds predicted by Eqs. (7) and (8) to free ener-
gies obtained from fits to the MC pressure data for these
Auids. Young and Rogers provide virial coefficients to
be used in an expansion like Eq. (14) for n =4, 6, and 9.
Unlike their coefficients for the I12 system, all of the B 's

for these other systems are obtained from fits to the MC
data. For n =6 and n =9 the values of B2 and B3 are
very nearly the exact, first-principles values. But for
n =4 the Bz obtained from the fit is about 7% larger
than its exact value. Hence the fits for n =6 and 9 can be
expected to give reliable results for all values of z„, but
for n =4 we expect that the fit will give free energies
which are too large at low density.

This last difficulty is illustrated in Table I which shows
the limits placed by Eqs. (7) and (8) on the free energy for
n =4 and compares them to the MC fit. For low z4 the
free energies from the fit are too large. However, if one
calculates the free energy from the virial expansion using
the exact values' ' of B2, B3, and B4, the values shown
in parentheses are obtained. These values are "in
bounds" indicating that any apparent difficulties at low
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TABLE II. Same as Table I, but for n =6. TABLE III. Same as Table I, but for n =9.

Z6

0.025
0.05
0.10
0.25
0.50
1.00
1.50

A max

Nkg T

0.1366
0.2800
0.5952
1.706
4.169

11.50
22. 13

A min

Nk~ T

0.1293
0.2662
0.5626
1.638
4.066

11.36
21.98

AMC

Nk~ T

0.1337
0.2747
0.5792
1.673
4.121

11.44
22.07

A2

Nk~ T

1.0211
1.0756
1.2513
2.097
4.259

11.30
22.06

Z9

0.025
0.050
0.10
0.25
0.50
1.00

A max

Nk~ T

0.1030
0.2121
0.4495
1.330
3.548

12.35

A min

Nk~ T

0.1022
0.2102
0.4444
1.318
3 ~ 528

12.32

AMc

Nk~ T

0.1029
0.2115
0.4459
1.320
3.535

12.36

A2

Nk, T

1.0122
1.0420
1.1500
1.7477
3.623

12.69

density for n =4 are due to the fit to A4 and not the vari-
ational methods. For z4 ~0.5, the MC fit to A4 lies be-
tween the variational limits whose difFerence initially in-
creases with z4 but seems to saturate at about 0.3Nk~ T.
For all values of z4, the arithmetic mean of the limits,
A =(A,„+A;„)/2 is in good agreement with the fit.
At z4=4 (melt is at z4=3.94), A4=86. 62Nk~T while
A =86.59Nk~ T. The difFerence between these numbers
is within the uncertainty in the MC data itself.

The correlation expansion results obtained using Eq.
(12) are also shown in Table I. They appear to be in
worse agreement at lower densities than near melt, which
is consistent with previous results for the hard-sphere
fluid '

The results for n =6 and 9 are shown in Tab1es II and
III. The qualitative features are the same as for n =4.
The separation between the limits gets larger with z„ for
each n, but as n gets closer to the reference value of 12
the separation in the limits decreases. In both cases the
MC fits lie between the limits, except for the highest
value of z9 for which the fit is very slightly too high. But
once again suspicion lies with the fit and not the method.
Nonetheless, in both cases the arithmetic mean of the
limits agrees well with the MC fits for all densities and is
within about 0.02Nk~T of the MC estimate near melt.
Again, A2 is generally much more accurate at densities
near melt.

B. The reference quid (n =12)

If we put n = 12 in Eqs. (7) and (8), we would expect to
find A;„=AMC=A, „, provided that g&z(x, z,z) and
A, z(z, z) are exact and that the numerical calculations
are done exactly. Hence any difference between A;„and
A,„ for n =12 will be a measure of the accuracy of the
reference functions and the numerical calculations. In

Table IV we list A „/Nk~ T and A;„/Nkz T, as well as
the corresponding variational parameters z „and z
The free-energy bounds are extremely close and equal to
the MC results to within the MC accuracy. The only no-
ticeable deviation from equality occurs at the freezing
point, where AA /Nk&T=0. 002. The variational z
and z;„values show somewhat larger deviations from
the actual z value, showing that the variational functions
are very flat near the extreme values.

We believe that the numerical calculations have been
done with high precision and that the deviations from
perfect equality in the A and z values in Table IV are due
to the RY approximation for g, z(x, z,z). At the melting
point, for example, the RY pressure' deviates from MC
by 2%, which implies errors in g&z(x, z&z ). Overall, how-
ever, the small deviations from equality in Table IV show
that the RY results are very accurate and suitable for
variational calculations.

C. Hard potentials (n ) 12)

We conclude our study of purely repulsive potentials
by evaluating the free-energy bounds for n =20 and 28 ~

While there is no MC data for these systems, they are still
of some physical interest. Very recently, Moriarty has
shown that electron shells with angular momentum l pro-
duce a repulsive potential that varies as r ", with
n =4(21+1). Thus n =4, 12, 20, and 28 correspond, re-
spectively, to s-, p-, d-, and f-shell electrons.

The results for these two cases are shown in Table V.
As expected, the separation of the bounds increases with
z in both cases and is in general larger for n =28 than for
n =20. From our experience with the softer potential~
we would expect that the arithmetic mean of the bound~
will give a very accurate estimate of the free energies of
these fluids.

TABLE IV. Variational bounds on the excess free energy for n =12. The variational z values for
,x and A;n are included.

Z12

0.025
0.05
0.10
0.25
0.50
0.813

max

0.0290
0.0524
0.100
0.250
0.497
0.805

Zmin

0.0249
0.0499
0.100
0.250
0.502
0.820

A max

Nk, T

0.093 03
0.191 38
0.404 41
1.205 4
3.337 7
8.478 6

A min

Nk, T

0.093 16
0.191 38
0.404 38
1.205 4
3.337 9
8.480 6

AMc

Nk~ T

0.093 16
0.1914
0.404 4
1.205
3.338
8.480
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TABLE V. Variational bounds on the excess free energy for
n =20 and 28.

0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70

A max

Nkq T

0.1773
0.3731
0.8345
1.418
2.165
3.139
4.437
6.193

n =20
A min

Nk~ T

0.1714
0.3614
0.8106
1.379
2.111
3.070
4.351
6.090

A max

Nkq T

0.1787
0.3721
0.8277
1.404
2.139
3.108
4.412
6.227

n =—28
A min

%kg T

0.1629
0.3430
0.7675
1.304
1.998
2.917
4.167
5.921

IV. LENNARD-JONES FLUID

V. DISCUSSION

The thermodynamically consistent integral equations
developed by Rogers and Young' and Zerah and Han-
sen" are efficient algorithms for obtaining accurate
radial-distribution functions. In this paper we have used
these functions in the Gibbs-Bogolyubov inequality to
evaluate upper and lower variational bounds to the
Helmholtz free energy of inverse-power potential fluids
and the LJ fluid, with the I12 system acting as our refer-
ence.

The general trends indicated by the tabulated results
are what would be expected. For the inverse-power po-
tentials, the separation between the upper and lower
bounds increases as the density increases and as n devi-
ates more and more from the reference value of 12. For
the LJ fluid the separation between the limits decreases
with increasing T*, since at high temperature only the

The preceding section indicates that the RY integral
equation can be used to obtain useful limits on the free
energy of inverse power fluids. Here we present results
for the LJ fluid using the generalization of RY proposed
by Zerah and Hansen. " Since the repulsive part of the
LJ potential is identical to the I12 reference potential, we
expect the free-energy bounds to be very close together,
especially for high T*. This expectation is borne out in
Table VI, which shows the variational limits for several
points near the LJ melting curve. "Exact" free energies
for the LJ fluid can be obtained by integrating MC data
from T*= cc to the chosen T* value. This is time con-
suming, and not many such numbers are available. The
exact values ( A,„) quoted in Table VI are either MC or
perturbation theory results from Hansen. ' Accurate free
energies at low temperatures are not available. The vari-
ational results are in reasonable agreement with the exact
results, given the probable errors in the latter. From the
table it seems that the correlation expansion results A2
are somewhat worse for the LJ fluid than for the inverse-
power fluids.

TABLE VI. Excess free energies of the LJ fluid near the
melting curve. A,„and A;„are from Eqs. (7) and (8). A2 is
from Eq. (12), and the exact free energy A, x is from Ref. 21.
Accurate values of A „are unavailable at the lower-T* values.

0.786
1.15
2.74
5.0

20.0

0.85
0.936
1.1
1.279
1.765

A max

Nkq T
—4.06
—1.44

2.33
4.21
6.46

A min

Nk~ T

—4.22
—1.54

2.29
4.19
6.46

2.31
4.26
6.49

Nk~ T

—3.8
—1.1

2.7
4.6
6.9
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repulsive r ' part of the potential is important.
The correlation expansion method' provides a very

convenient form for the free energy in terms of the
radial-distribution function. However, from the results
presented here the correlation expansion method seems
to be less consistently accurate than the mean of the vari-
ational limits. As expected, the method is also less accu-
rate at low density than near melt.

In all of the cases we studied the variational limits were
close enough together to provide a useful constraint on
the actual free energy. Near melt, we found
AA 0.3Nkz T. In addition, comparison with MC esti-
mates of the free energy for n =4, 6, and 9 indicate that
the arithmetic mean of the variational limits is always
within about 0.06Nk~T of the actual free energies and
usually much closer. Near melt the mean is within about
0.03Nkz T. Since the uncertainty' in the MC data itself
is at least of order 0.01Nk~ T, such agreement is quite re-
markable.

Assessing the utility of our method for the LJ fluid is
more difficult due to lack of accurate free energies. Of
the three exact values in Table VI, only the one corre-
sponding to T*=2.74 comes directly from MC data.
The other two are perturbation theory results. Neverthe-
less, the overall agreement in Table VI is quite encourag-
ing.

The use of the RY and ZH thermodynamically con-
sistent integral equations in the Gibbs-Bogolyubov in-
equality seems to provide a very efficient method to ob-
tain highly accurate free energies in simple fluids all the
way up to melt. The results presented here for inverse-
power repulsive potentials and the Lennard-Jones poten-
tial hold the promise that accurate free energies for fluids
interacting through more realistic potentials can be cal-
culated in the same manner.
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