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Dimensions and entropies of chaotic intensity pulsations
in a single-mode far-infrared NH3 laser
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Detailed studies of digitized recordings of periodic and chaotic intensity pulsing of an unidirec-
tional far-infrared NH3 ring laser at 81.5 pm reveal common features of a broad range of different
pulsing patterns as well as systematic relationships among entropies, dimensions, and decay rates of
the autocorrelation function. Spiral-type "Lorenz-like" chaos of many different spiraling rates and
of differing modulation depths has an underlying attractor dimension of 2.0—2.3 and an entropy rate
that lies mainly in the range (0.2 —0.7)T, where T is the average intensity pulsing period. Over a
wide range of types of pulsing (spiral chaos, period-doubling chaos, and periodic states) the decay
rate of the envelope of the autocorrelation function over short times provides an estimator of the en-
tropy. The results are in excellent agreement with the characteristics of the Lorenz-Haken model
for similar operating parameters.

I. INTRODUCTION

Periodic and chaotic self-pulsing has been observed in
NH3 FIR (far-infrared) single-mode lasers. ' Many of the
characteristics (thresholds, period-doubling sequences) of
this pulsing for relatively high-pressure operation have
been in agreement with predictions from the Lorenz-
Haken model for a single-mode laser with a homogene-
ously broadened two-level medium. At lower pres-
sures three-level coherence effects seem to become
relevant, indicating their presence by lower pulsing
thresholds, supercritical Hopf bifurcations, and homo-
clinic chaos.

The formal justification of modeling optically pumped
FIR lasers (in the high-pressure regime) by the simple
Lorenz-Haken model has been widely disputed " be-
cause the coherent optical pumping appears to prevent
reduction of models for the three-level FIR laser to the
simpler form for a two-level system. However, none of
the more complex models proposed is yet as complex as
the FIR laser. In particular, large angular momentum
states of the relevant molecular levels are involved and
the angular momentum m sublevels are mixed by the or-
thogonal linear polarizations of the pump and FIR fields.
In addition, transverse and longitudinal profiles of the
pump and FIR beams have not yet been incorporated in
the theories. The most complex of the alternative models
considered (that of Ref. 11 which involves as may as 1000
equations) closely approaches the experimental results in
terms of instability thresholds and intensity pulsing pat-
terns, but differs in some more subtle characteristics
which have been resolved only recently by phase-sensitive
measurements of the laser amplitude.

Chaotic pulsing corresponds to motion on strange at-
tractors which can be identified and characterized by di-
mensions, entropies, and Lyapunov exponents. ' ' In
order to quantitatively characterize the chaotic pulsing of
the FIR laser, we have applied the methods of

Csrassberger and Procaccia to calculate the dimension
(D2) and the associated entropy (K2) which are lower
bounds and generally good estimators of the fractal di-
mension (Hausdorff dimension) of the strange attractor
and of the Kolmogorov entropy of the signal. The
signal-to-noise ratio with which the chaotic pulses are
recorded in this experiment exceeds 250 in the observa-
tion bandwidth. It is thus adequate for full use of the
eight-bit resolution of the fast transient digitizers with
large storage capacity which are presently available. Sig-
nals of this quality have so far not been available for sta-
tistical analysis of chaos in autonomous laser systems.
We can therefore calculate dimensions and entropies of
the laser pulsing for comparisons with the results from
various theoretical models.

The paper is organized as follows. In Sec. II we de-
scribe the laser, the measurement system, and the record-
ed intensity pulsing patterns. In Sec. III we illustrate the
analysis procedures for sample data sets. Dimensions,
entropies, autocorrelation times, pulsing periods, spiral-
ing rates, and other characteristics of the many different
data sets are compiled and discussed. The results are
compared with those from the analysis of similar data
records generated by the numerical solution of the
Lorenz equations in Sec. IV. Discussion of the results is
provided in Sec. V.

II. EXPERIMENTAL SETUP AND DATA SAMPLES

The measurements were made on an 81.5-p, m ' NH3
cw (FIR) laser, pumped optically by the P(13) line of an
NzO laser via the vibrational ag(8, 7) NH3 transition.
The basic laser setup is shown in Fig. 1 and is essentially
identical to that used in Ref. 1. As in Ref. 1 stable pump
conditions were achieved by control of the pump laser
frequency with respect to the Lamb dip of the aQ(8, 7)
NH3 absorption line center using an NH3 Lamb dip cell.
Detuning of the pump laser frequency leads to different
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FIG. 1. Ring laser for observation of chaotic laser dynamics.
M: mirrors; Gr: 10-pm grating; SD: Schottky-barrier diodes
used as detectors. The usual coupling holes which perturb
modes are avoided by in coupling of the pump radiation via a
grating and out coupling via a mesh refiector. Pumping is by a
10.7-pm NzO laser. The wavelength generated is 81.5 pm. The
pump beam is attenuated without change in geometry, direc-
tion, or frequency by a combination of a spatial filter [lens,
pinhole diaphragm, lens (LPL)] and iris {diaphragm D).

increasing the resonator losses (using an iris in the reso-
nator) which gives clear evidence that the pulsing arises
after passing through a "bad cavity" instability.

Laser pulsing was recorded for different pump intensi-
ties, NH3 pressures, and FIR cavity detunings (see figure
captions for values). The first two of those parameters
could be reliably determined but the detuning values are
less precise since they are taken from mechanical resona-
tor length readings, which are affected by mechanical
hysteresis (resonator length changes are in the submi-
crometer range).

Short sections of different time series are shown in
Figs. 2 and 3. Figure 2 shows a variety of measured
"spiral" (intermittent) chaotic pulsing (in the following
called "Lorenz-type chaos") found for near resonant tun-
ing of the FIR laser cavity. They differ notably in the
length and modulation depth of the envelope of succes-
sive spirals. Differences in the spirals result primarily
from changes in the NH3 pressure in the range of about 8

to 10 Pa. Unusual features are seen between the last
large pulse and the very beginning of the next spiral, e.g. ,
broad gaps, where oscillation is suppressed up to one
pulse length (see trace c), small kinks before the start of
the spirals (end of traces d and e), or overshooting com-

resonant frequencies for forward and backward traveling
waves (forward denotes FIR emission copropagating with
the pump light) which are fully separated when the de-
tuning exceeds the homogeneous linewidth. Laser emis-
sion in the direction opposite to the pump beam propaga-
tion can thus be achieved by tuning resonator length into
resonance with the backward wave only. The backward
emission line shows no ac Stark splitting (though there is
ac Stark broadening). The emission in the direction of
the pump beam propagation nevertheless was monitored
to assure that there was no bidirectional emission while
the data were taken. The backward emission of the FIR
laser was detected by a micrometer-sized Schottky-
barrier diode. The resulting intensity pulsing when ob-
served on a spectrum analyzer had a spectral signal-to-
noise ratio as much as 70 dB in 100-kHz bandwidth.
This corresponded to a signal-to-noise ratio of about
300:1 in terms of peak pulse height to rms noise. For nu-
merical analysis the signals were digitized with 8-bit reso-
lution, an interval of 40 ns between samples, and 25000
samples per recording.

The experimental parameters are the pump intensity,
FIR laser pressure, and FIR laser cavity tuning but for
comparison with the Lorenz-Haken model it is important
to also know the decay rates. The most "Lorenz-like"
pulsing could be found at the highest pressure (about 10
Pa) which still gave pulsing. At this pressure the gain
linewidth is about 1 MHz wide, and the pulsing frequen-
cies observed were of this order. This leads us to infer
that the cavity linewidth was probably not more than two
or three times larger. It is known for the NH3 transition
used that the ratio of the population and polarization de-
cay rates is 0.25. ' At higher pressures than 9 Pa no puls-
ing was observed in the normal resonator setup. Howev-
er, pulsing could be restored at these higher pressures by
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FIG. 2. Spiral-type pulsing of the laser intensity. The pres-
sure varied for cases (a) —(e) from 8 to 10 Pa and the pump inten-

sity was about 14 times above threshold. Resonator tuning was

kept as constant at line center as experimentally possible. 1500
samples were plotted per trace. The average pulsing frequency
increases from about 1.05 MHz (about 25 samples per pulse) for
trace a to about 1.7 MHz (about 15 samples per pulse) for trace
e. Successive traces are offset vertically for clarity.



6356 U. HUBNER, N. B. ABRAHAM, AND C. O. WEISS

iliiiluiiIIijisiilil, l&iiiiilii, ~i&iliiii&III)iiii(iiiiiii~iJl~ij~ii, i)i&iii&, «ii~&Ii

(b)

I, IIIJ, I ill, l, lI, JI(li, ill all. ,
l „II Ili, ii

N
C
(U

C
M

(c}

j, . „j. I, i I}i lII Ji i, i &» l. J, i J» I . IIJ II» i
. ii, i „» J.~ J, , ii

&I(I&i&libel, i&ll&lgiiiI&liilI~&liJI&[„lilzllig&&&liylilllqilliiligllli&llq&jiilglJIIII&l

0 IOOps
Time

FIG, 3. Periodic and period-doubling chaotic pulse trains for
the detuned laser resonator with different detunings around
5=0.2. The pressure was held constant at 9 Pa and the pump
intensity was the same as in Fig. 2. 2500 samples are taken per
trace. Case (a): Onset of period-doubling chaos; case (b): stable
period 8; case (c): inverse period-doubling to the stable period-3
window; case (d): stable period 12; case (e) period-doubling
chaos. Successive traces are offset vertically for clarity.

pared to the next smaller pulses (midway in trace d). The
pulsing frequency increases from 1.05 MHz (about 25
samples per pulse) for trace a to 1.7 MHz (about 15 sam-
ples per pulse) for trace e, primarily because of differences
in gas pressure.

Figure 3 shows periodic pulsing and a closely related
form of chaotic pulsing (in the following called "period-
doubling chaos" ) which were observed by detuning of the
laser resonator. These include the onset of period-
doubling chaos (traces a and e), stable period 8 (trace b),
period 5 (see first third of trace c) which by inverse period
doubling (perhaps because of a drifting parameter)
switches to period 3, and stable period 12 (trace d). Sim-
ple periodic traces such as period 2 or 4 have been
recorded but are not shown.

be used to discriminate roughly between periodic,
period-doubling chaotic, and Lorenz-type chaotic pulse
trains. For more precise identification and characteriza-
tion we have used "phase portraits" (row 2), autocorrela-
tion functions (row 3), log-log plots of the correlation in-
tegral C of Grassberger and Procaccia' (row 4), and its
slope (row 5). The latter two have been used to determine
the correlation dimension D2 and the second-order entro-
py K2.

The term phase portrait is used for a two-dimensional
plot of the 8-bit data x, (i =1,2, . . . , 25000) in the form
of x, +k versus x, . For different values of the delay k one
obtains some insight into the spatial structure of the at-
tractor underlying the data set, as different delays provide
different views of the attractor, by a process equivalent to
looking at the attractor in phase space under different
viewing angles. One can understand a spatial cluster of
points by looking at other angles which may reveal that a
thickened line is the side view of a flat structure [see Fig.
5(f)] or of nearly periodic and nearly coplanar structures
[see Figs. 5(a) and 5(b)]. One can also judge how point
density variations are responsible for anomalous (non-
fractal) structures see in the slope of the correlation in-
tegral C.

Figure 5 shows examples of phase portraits for three
types of pulsing recordings. Parts (a) and (b) contain in
each case the same 25 000 data points of a period-8 signal
for delays 3 [case (a)] and 20 [case (b)]. The period-8
structure of the data is far better resolved in case (b).
Parts (c) and (d) also contain in each case the full data set
of 25 000 points for period-doubling chaos, again with the
delay k =3 for case (c) and delay k =28 for case (d). The
underlying attractors of period-doubling chaos have a
"hole" determined by the smallest pulses [cases (a) and
(c)] if the delay is of order —,'th of a period, but for other
delays the attractor appears folded in a very strange
manner [case (d)] with flat parts like wings of different
orientation in phase space. A hole also occurs for
Lorenz-like spiral chaos when the trajectory does not en-
croach on the vicinity of the unstable fixed point of con-
stant intensity, i.e., each spiral begins with significant
modulation. The last two figure parts [(e}and (f)] belong
to a data set of Lorenz-type chaos. 25 000 data points are
plotted for delay 2 [case (e)] and 15 [case (f)]. Here the
signal looks like case (c) of Fig. 2 where the laser field
comes close to the fixed point and thus practically no
hole is observed [case (e)]. The structure of the pertinent
attractor seems to consist of two leaves, one nearly per-
pendicular to the other [case (f)].

The autocorrelation function (ACF) of the data also
provides insight into the structure of the attractors. It is
normalized to unity for zero delay ~ using the definition

III. ANALYSIS OF DATA

Several methods' ' ' were used to analyze the physi-
cal properties of the different data sets. Figure 4 presents
three typical data sets called Lorenz-type chaos (data set
5), period-doubling chaos (data set 10), and period-2 puls-
ing (data set 7).

Portions of the intensity time series shown in row 1 can

[(r (r)1 (r +r) ) —(1(r))']
[(I(&)')—(I(t) )']

The maximum delay plotted is v. =2000ht, where At is
the time spacing between two adjacent samples.

We define a correlation time ~, by fitting the first few
peaks (and thus the envelope) of the autocorrelation func-
tion R (r) =exp( —~/r, ). For our 17 chaotic data we find
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r, is in the range of about 2T to 6T (see Table I), where T
is the period defined by the location of the first peak in
the ACF. The rather high value for data set 26 results
from the nearly perfect periodic pulsing parts contained
in it. The envelope of the autocorrelation function de-
creases rather rapidly but there are significant differences

in the overal1 structure of the ACF's of Lorenz-type and
period-doubling chaos. All 15 Lorenz-type autocorrela-
tion functions show the typical small groups of peaks
growing ("revivals" ) and decreasing nonperiodically as
found by numerical investigations of the Lorenz equa-
tions. ' Clearly length, amplitude, and separation of the
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FICx. 4. Comparison of data sets for the various methods used to analyze the experimental data. Columns 1, 2, and 3 are for data
sets 5 (pressure = 8 Pa, same pump intensity as in Fig. 2, detuning 6=0), 10 (pressure 9 Pa, same pump intensity as in Fig. 2, detuning
6=0.2), and 7 (pressure 9 Pa, same pump intensity as in Fig. 2, detuning 6=0.2) as collected in Table I. Row 1: pulse trains of
characteristic data sets with 1500 samples per column. Row 2: phase portraits (25 000 data; delay k =2; T/ht values in Table I); row
3: autocorrelation functions (maximum delay: 2000 sample spacings; maximum vertical scale: 1.0). Row 4: log-log (base e) plot of
the correlation integral vs length scale r for embedding dimensions 1 to 20 (upper to lower); row 5: slopes of the log-log plots of the
correlation integral vs log(r) for embedding dimensions 1 to 20 (lower to upper).
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groups of oscillations differ slightly among those 15 data
sets but the overall structure compares favorably with the
calculation.

On the other hand no such groups of oscillations are
found with the ACF's of the period-doubling chaos data
sets. This completely different overall behavior can be
seen in column 2 of Fig. 4 Despite a relatively small
correlation time r, (see Table I, data set 26) a much
longer second characteristic time of moderate correlation
is also found. Because we recorded only a small number
(2) of data sets identified as period-doubling chaos, a
confirmation that this behavior is characteristic of such
ACF's is not safely established.

Rows 4 and 5 of Fig. 4 show examples of the correla-
tion integral C and its slpoe versus the distance r. C is
calculated, as mentioned previously, using the method of
Grassberger and Procaccia. ' This method analyzes a
single-variable time series by constructing representations
of the attractor in E-dimensional phase spaces using the
time-delay method as discussed, e.g. , by Froehling et al.
They define

X(r)=(x(r),x (t+r), . . . , x(r +(E —1)r)),
where X(t) is a vector built up out of E consecutive sam-
ples of the time series with successive time delays

~=n.ht, n being an integer. For discrete samples x, the
correlation integral C becomes

C(r)= lim [JV'(i, k), ~~X;
—

Xk~~ (r]1

X(X—1)

X, (similarly Xk, k Wi) mean vectors
(x, ,x, +„,x, +z„, . . . , x, +{@ &l„), JV(i, k) is the number of
pairs (i, k), and ~~X;

—
Xk~~ is of the norm of the vector

difference. E is called the "embedding dimension. " The
choice of the norm is of practical importance for data
sets such as ours, although in Eq. (1) the Euclidean norm
(length of the difference vector) and the maximum norm
give the same correlation dimension D2 and entropy
Kz. To reduce the time necessary to compute the
correlation integral C for 25000 data and 20 embedding
dimensions (1 ~ E ~ 20) we chose the maximum norm

max Ix;+ —xk+

In practice, one infers the existence of an attractor
when one observes a plateau region in the slopes of the
correlation integral, where the Aatness of the plateau is
interpreted as evidence for a self-similar scaling region of
fractal dimension and where the convergence of the
slopes with increasing embedding dimension indicates the
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FIG. 5. Characteristic phase portraits for period-8 [cases (a)
and (b) with delays k =3 and 20 for data set 23, pressure 9 Pa,
pump intensity as in Fig. 2, detuning 5=0.2], period-doubling
chaotic [cases {c) and (d) with delays k =3 and 28 for data set
10, pressure 9 Pa, pump intensity as in Fig. 2, detuning 6=0.2],
and Lorenz-type chaotic [cases (e) and (f) with delays k =2 and
15 for data set 5, pressure 9 Pa, pump intensity as in Fig. 2, de-
tuning 6=0] pulsing. 25 000 data were used.

FIQ. 6. (a) Average slope in the "plateau region" versus
embedding dimension E for data set 5 (see column 1 of Fig. 4 for
parameter values). The correlation dimension D~ is taken as the
value for embedding dimension 15. (b) [ln(Cz) —ln{Cs+, )]pin
vs embedding dimension E; p is the average number of data
samples covering the average pulsing period and n (integer)
means the delay between successive components of each vector
X;. The entropy K2 per average pulsing period T, K, T, is taken
as the estimated asymptotic from the highest values of E.
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reconstruction of a topologically unique attractor. One
sees such a plateau in Fig. 4, row 5, and as an example for
the Lorenz-type chaos, the average in the scaling region
is plotted in Fig. 6(a). One also sees that for E ~6 the
value converges to slightly more than 2.0. A slow in-
crease in this plot with E for large E reflects an unavoid-
able effect of the presence of noise. An analysis of these
effects is given elsewhere.

While, in principle, the method does not depend on the
choice of ~, practical considerations of precision, noise,
and exponential divergence limit satisfactory values of ~.
As an estimate of the best value of the time delay ~, re-
spectively, n, we have found for our data sets that if ~ is
not too large there is a relation ~E, =T between ~, the
average pulse period T, and the embedding dimension E,
which marks the onset of the convergence of the slope
curves and which, on the other hand, signals convergence
of the method. It reflects the fact that the structural in-
formation used to reconstruct attractors which are nearly
two dimensional is connected with the time interval
(E —I)r of the data set covered by the vector and not
with the individual choices of E or z. ' Moreover,
after one revolution of the attractor the succeeding orbits
come close to the previous one so that the benefit for
structural information is small if E or ~ are increased fur-
ther.

Considering various arguments and after some empiri-
cal trials, we settled on r = T/7 as a best value (which led
to n =2 or n = 3 for our data sets).

Equations (I), (2), and the relation' '

D2 —E7K2C(r)-r 'e (3)

which holds for r ~0 and E~ ~, were then used to cal-
culate D2 and Kz. The 8-bit data can have integer values
between 0 and 255 and thus so also do the absolute values
of the component differences. Thus r lies in the interval
0~ r ~255 which results in an interval of 0~In(r) (6 on
the natural logarithmic scale. The plateau area of the
converging slope curves was averaged and corresponds to
a D2 of slightly above 2 for the Lorenz-type and the
period-doubling chaos or to D2 = 1 in case of the period-2
signal. ICz was calculated by dividing Cz(r) and Cz+ &(r)
[see Eq. (3)] which results in In(Cz) —In(Cz+, )=rtC2.
Numerically In(Cz) and In(Cz+, ) were calculated from
the average straight line in the plateau area for a value of
r in the center of this interval

The plots in rows 4 and 5 of Fig. 4 contain a special
correction which we call the "shift correction. " This
means that the correlation integral C(r) is plotted versus
r +p where p is half the least significant bit. This is the
most straightforward way to correct for the errors in the
calculation of C resulting from the rounding of the data
by the digitizer. On average this correction procedure
increases the slopes of C (r) in the plateau region (correct-
ing for the erroneous bias resulting from using 8-bit data)
and thus increases the calculated estimate of Dz by about
5%%uo but it does not change K2.

Some more remarks are necessary about characteristic
features of the plots in row 5 of Fig. 4. All slope values
were calculated from the difference of two adjacent

values of In(Cz) divided by the difference of the corre-
sponding values of In(r) and then centered onto the mid-
point between those In(r +p) values. This is the reason
that the slope curves do not start at the vertical axis. The
calculated values of the slope were then connected by
straight lines as a guide to the eye to discriminate be-
tween results for different values of E.

For small r, as r decreases towards zero, the curves in
row 5 of Fig. 4 (slopes) increase. An analysis shows that
this increase is caused by noise and is proportional to
EIr because, in each case, noise blurs the attractor into
the available E dimensions, increasing to infinity for
E~~. The noise-induced increase in the curves also in-
creases the slopes (plotted in row 5) in the plateau region,
which is the explanation for the continued slight increase
with E of a few percent in the average slope values as
shown in Fig. 6. There the average slope in the plateau
region is plotted versus E showing a clear onset of con-
vergence at about E=7. All data for D2, presented in
Table I, were then taken for embedding dimension
E = 15. This choice is somewhat artificial but is a
compromise of looking for the best estimate of Dz in
spite of the noise influence, and treating all of our data
sets consistently.

Besides the influence of noise there is another structure
on the slope curves even in the plateau area. Especially
at the largest r values, moderate or high peaks appear
and grow with increasing E. That structure may be inter-
preted in two ways. First, density variations, easily seen
in our phase portraits, cause variations in the differential
increase of C(r) with r. A second reason for this struc-
ture is connected with our choice of the maximum norm.
It sharpens the frequency with which extreme values of
the distance appear in contrast to the Euclidean norm
which gives somewhat smoother variations of the density
of interpoint distances.

Further structure sometimes shows up (see row 5 of
Fig. 4, column of period-doubling chaos) for intermediate
values of r. The steps and peaks on those slope curves
may be residuals of the period-doubling scenario leading
to this type of chaos. Periodic orbits lead to slope values
of one but when period doubling happens the developing
period-doubling Cantor set transverse to the periodic or-
bit leads to sudden increases in the density of points when
new layers of the periodic orbits are crossed and thus
slope values higher than one will be seen as steps and
peaks becoming more and more. They are rounded by
the smooth curvature of the continuous variable flow on
the attractor and by noise that one finds a significantly
higher dimension than one. Indeed, one finds the value
characteristic of the accumulation point of a period-
doubling sequence which is 1.55.

The consequences of the mechanisms which produce
the above-mentioned structure in the slope are that it is
not smeared out by taking more and more data. Thus the
determination of a region which can be interpreted as a
plateau might be difficult or even impossible.

Figure 6(b) shows (InCz —I Cz n)p +jn versus E. It
provides an estimate of K2 which is taken from the con-
verging part for E ~ 10. Circles mark the calculated
values which are connected by a Lagrange interpolation
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curve of third order to make the shape of the curve more
pronounced, as was done in Fig. 6(a). The main point of
Fig. 6(b) is that the values converge well above E = 10.
But there is again a structure which may be interpreted
as residual inhuence of the average period of the intensity
pulses. Two maxima are found in this curve, one at E =4
and the other at E = 12.5. The difference AE =8.5 when
multiplied with the time difference used, ~=2ht, between
the vector components, gives a period of 176 t which is
very close to the average pulse period 17.5ht of that data
set. Because of those oscillations, the estimated values of
E2 contain some uncertainty. The high amount of com-

putation time, necessary to calculate data up to, e.g. ,
E =40, prohibited more accurate evaluation of K2.
These oscillations and the slower convergence of K2 with
E than was observed for Dz versus E are consistent with
the observations of others. We also find that the condi-
tion for convergence of K2 requires vector spans
(E —1)n ht which are 5 —10 times larger than E, .

All data, estimated by these procedures, are collected
in Table I. Two data sets were not included, nos. 9 and
11. They consist of long parts alternating between
periodic and chaotic behavior. We think that their aver-
age dimension, entropy, etc. , would not yield any valu-

TABLE I. Collection of the most important results of the different experimental data sets with com-
parison to results of the numerical integrated Lorenz equations. The data sets are sorted such that the
uppermost seven rows stand for data sets with periodic pulsing (P2,P4, . . . ), the next two rows stand for
period-doubling (PDC), and the other rows for Lorenz-type (LC) chaotic data sets. Theoretical values
are added in the last four rows for comparison. p is the average number of samples per pulse period, w,

is the decay constant of the autocorrelation function. C, WI, and I denote "constant, " "weakly increas-
ing, " and "increasing" which reflects the behavior of the last 10 points of the average slope curve versus
the embedding dimension parameter (see, e.g. , the upper part of Fig. 8). I means increasing of less than
5% over the full range 10~E ~20. Data set 26 is the only one taken for a pressure of 6.5 Pa, detuning
5=0, and for a pump intensity 14 times above threshold. At this pressure three-level coherence effects
are present and the dynamics of the laser is no longer Lorenz-like.

Data
set
No.

7
4
8

12
23
24
25

19.4
24.0
20.0
19.5
23. 1

21.4
22.0

525
666
531
469

1400
24.3
10.0

D2

1.03
1.08
1.23
1 ~ 19
1.24
1.79
1.79

K2T=A. +T

0.018
0,028
0.046
0.052
0.039
0.33
0.35

E,r
D2 —2

Remarks

P2;C
P2;C
P4;C
P4;C
P8;C
P12;C
P2+ P4;C

26
10

28.6
19.0

7.5
2.7

2.30
2.29

0.54
0.61

1.8
2. 1

PDC;C
PDC;I

1

2
3
5

6
13
14
15
16
17
18
19
20
21
22

18.7
19.0
24.8
17.3
16.9
16.7
15.2
17.5
17.6
17.5
21.8
17.3
17.0
21.9
20.3

1.9
2.8
2.6
2.5
3.2
5.6
4.9
5.8
2.8
3.4
3.2
3.5
2.7
4.4
3 ' 5

2.16
2.09
2.15
2.20
2.18
2.18
2.06
2.04
2.23
2.29
2.11
2.07
2.12
2.15
2.02

0.74
0.73
0.63
0.46
0.45
0.37
0.18
0.40
0.50
0.59
0.37
0.44
0.51
0.27
0.47

4.6
9.1

5.5
2.3
2.5
2. 1

2.7
10.6
2.2
2. 1

3.4
6.2
4.2
1.8

20.3

LC;WI
LC;C
LC;C
LC;WI
LC;I
LC;WI
LC;WI
LC I
LC;WI
LC;I
LC;WI
LC;WI
LC;WI
LC;WI
LC;WI

Numerical integration
Numerical integration
Numerical integration
Caputo et al. (Ref. 25)

2.033
2.055
2.066

0.70
0.69
0.71
0.69

Tuned, noise-free
Tuned+noise (a =0.5)
Detuned (5=0.05)
Numerical integration
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which yields an estimation for A, . Because Dz is a lower
bound of D and is near 2, this estimation of the Lyapunov
exponents of our experimental data can give only a very
rough approximation, but it is rather robust so long as
the estimate of D is not too close to 2.0.

IV. LORENX MODEL

The information, given in this paper, would not be
complete if we did not compare our experimental results
to theoretical data of the Lorenz-Haken model. For this
purpose, we integrated numerically the equations of the
Lorenz model ' which are also appropriate for a single-
mode laser with the homogeneously broadened two-level
medium,

du =s(U —u),
dt

GV = ru —v —uw,
dt

dw =uv —bw,
dt

(5)

to generate a set of data, comparable to at least one [see
Fig. 2(a)] of our experimental data sets of Lorenz-type
chaos. The variables (in laser physics) in (5) are the nor-
malized inversion w, and the normalized amplitudes of
the electric field u and of the atomic polarization v.
Three parameters steer the behavior of the set (5) of equa-
tions: s is the cavity decay rate divided by the polariza-
tion decay rate (x =~/y~), 6 is the population inversion
decay rate divided by the polarization decay rate
(6 =y~~ly~), and r is the pumping rate, where r =1 gives
the lasing threshold. Integration was done by a double
precision Runge-Kutta method with automatic adapta-
tion of the integration step width.

An important point was to choose values for s, 6, and r
which would lead to a pulse train comparable to at least
one of our experimental data sets of Lorenz-type chaos
and which would be consistent with the experimental pa-
rameters. The pump rate r should be the same as in the
experiments where we have estimated r =15. The value
for b was taken as 6 =0.25. ' It remained for us to esti-
mate s. If we assume 4 Jo round trip losses 4', an experi-
mentally reasonable value), y~=1.6 MHz (Ref. 29) for a
pressure of 9 Pa, and 2 m as cavity length, we obtain
s =2. For this value of s we obtain a pulse train which
appeared to be similar to our data set no. 3 (see trace a) of

able information.
Table I contains two columns connected with K2

which has the inverse dimension of a time variable. That
is why we calculated a dimensionless Kz in terms of the
average pulse period T as K2T (see column 5). The sixth
column uses a relation between K2, the dimensions, and
the Lyapunov exponents. If there is only one positive
Lyapunov exponent, as is the case for the Lorenz model,
K2 =A, +, where k+ is the positive Lyapunov exponent. If
we accept the Kaplan-Yorke conjecture as valid, we ob-
tain a relation between D and the Lyapunov exponents,

(4)

Fig. 2. 25 000 8-bit samples of the intensity u were then
taken from that pulse train.

Figures 7 and 8 show the result of the integration and
of the data analysis. Part (a) of Fig. 7 contains the inver-
sion w plotted versus the field u. It contains a trace of
about 850 loops on the symmetric attractor. Typical
Lorenz-like spirals of different length can be seen in part
(b) where we plotted 5000 samples (=175 pulses). The
average number of samples per pulse is p =28.6. Two
phase portraits were made, one with delay 2 [part (c)] the
other with delay 25 [part (d)]. They show again the hole
of the attractor and the strange shape which projections
of it can have. The center of the hole locates the unstable
steady-state laser solution u =+(r —1)' and the hole it-
self indicates that the time-dependent solution in this case
avoids that value. The autocorrelation function [part (e)]
was calculated up to a delay of 4000 samples or about 140
average pulse lengths T. The slope of the correlation in-
tegral [part (f)] exhibits clear convergence with the
embedding dimension E and a good plateau for the di-
mension estimation. The peaks again appear in the slope
for higher ln(r) and are again somewhat enhanced by the
use of the maximum norm but mould have been also
present with the use of the Euclidean norm.

The evaluation of the slopes and the differences of
ln[C(r)] are presented in Fig. 8 from which we estimate
Dz =2.033 and K2T =0.70. These values lie very well in
the range of data found in Table I for Lorenz-type chaos.
KzT is also very similar to the value extracted from a
theoretical investigation of Caputo and Atten as can be
seen in Table I.

As discussed in Sec. III experimental data clearly con-
tain a certain unknown amount of noise. Its influence on
experimental data could roughly be estimated by adding
noise of different sizes to the theoretical data, performing
the same dimension calculations as for the experimental
data sets, and comparing to their results. Figure 9 shows
the results for the "slope curves. " We added gaussian
white noise with standard deviations 0 of 0.0, 0.2, 0.5,
and 1.0 in units of the least significant bit of the 8 bits
used. The noise was added to the double precision data
before rounding to 8-bit precision with the largest pulses
nearly using the full 8 bits. One sees that the left part of
the slope curve increases with increasing noise whereas
the rest of the curve remains undisturbed. The compar-
ison with experimental data (Fig. 4) reveals that the noise
contained in those data is equivalent to o. =0.5 which
would be expected from the signal-to-noise ratio in our
measurements. An analytical discussion of the influence
of noise will be published elsewhere. "

For a further check of the robustness of the compar-
ison between theoretical results to the measured data we
included detuning by using the equations of Zeghlache
and Mandel,

su ) sGup+sV&

u2 = —su 2+sdu ] +svp
dt
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dVi
u)w +ru) U)+dv2

dt

U2
u2w +rug Up dU)

(6)

dw

dt
—u )v) +u2v2 &w

where w is the normalized inversion as before, u, and u 2

are real and imaginary prats of the normalized complex
amplitude of the electric field, and U& and U2 are real and
imaginary parts of the normalized complex polarization.
The detuning d is the normalized steady-state laser fre-
quency detuning from the atomic resonance frequency

d =(co„—coL)/y~, where co„mean the atomic and coL

the laser frequency.
With the same values (r = 15, b =0.25, and s =2) as

before we found a wide period-3 "window" near
d =0. 155, whereas for d ~0.05 we found Lorenz-type
pulsing very similar to our data set no. 3 [see Fig. 2(a)]
but with a bigger hole in the attractor. Even with this
rather large detuning all other qualitative features differ
only slightly from those of Fig. 7. Results for dimension
and entropy are included in Table I for the noise-free
data set in this detuned case. One is led to the conclusion
that small detunings could have been present during our
measurements of Lorenz-like spiral chaos that would not
have led to noticeable differences from behavior in the

(c) 2
(tn&25)

u (t„)

0.8—

0.4

0.0

— 4

@@lib.~i~a, . . .~I~~.~~~ .~~he
„~~~~ ~"-" ""~"~~qpye~ ~" '

~~qllrgymflll

;2

0

log, (r )

FIG. 7. Numerical results of the integrated Lorenz equations (Refs. 2 and 3) for parameters r =15, b =0.25, and s =2. (a) Inver-
sion w vs the field u (about 850 loops). (b) Lorenz spirals of different lengths (5000 samples = 175 pulses; average period p =28.6). (c)
Phase plot u„vs u„+i„k =2; (d) phase portrait for k =25. (e) Autocorrelation function (maximum delay 4000= 140T). (f) Slopes of
the log-log plots of the correlation integral for embedding dimensions 1 (lower curve) to 20 (upper curve) vs ln(r).
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2 5 V. DISCUSSION

2. 0I- A A A A A A A
v v v v v V v v

A A Il
v V V

1.5—

)
(u

4 I—

0'
10

V V V

20

FIG. 8. (a) The correlation dimension D, and (b) K.T taken
as in Fig. 6 vs embedding dimension E for the data set of the nu-
merically integrated Lorenz equations.

perfect! z tuned case. This provides quantitative
confirmation of the apparent similarity of the chaos in
resonance and the chaos with small detuning which was
noted by Zeghlache and in Ref. 4.

I T

IaI 0 = o. o (bj a = 0.2

QJ 2

C3

0 I

5

I

CU 2

C3

2 3

log, Irj

2 3

log, (r )

FIG. 9. Slope curves of the noisy numerically generated data
sets calculated by integration of the Lorenz equations, then add-
ing Gaussian noise of different standard deviations cr (values
taken in units of the least significant bit) and then truncating the
"noisy data" to 8 significant bits. In each of the four figure
parts the lowest curve belongs to embedding dimension E =1
and the uppermost to E =20.

Lorenz-like spiral chaos exhibited in the intensity puls-
ing of FIR lasers has been shown to be relatively indistin-
guishable from the numerical simulations of chaotic solu-
tions of the Lorenz model when comparisons are made
between them in phase portraits, autocorrelation func-
tions, and values of dimension (D2) and entropy (IC2).
One can thus conclude that these features of the experi-
mental system are well described by the simple model.
However, in the face of the numerous analyses of optical-
ly pumped (three-level) systems which claim to demon-
strate that the Lorenz-Haken model is not sufficient to
explain the behavior, one should be cautious in drawing
absolute conclusions from the comparison so described.
The measurement of these single quantities from the
"spectra" ' of D and K only indicates Lorenz-like be-

q q
havior of the experimental three-level system and further
studies of the full spectrum of these quanties are neces-
sary for conclusive statements. Such studies are in pro-
gress.

As an alternative, phase-sensitive measurements have
recently been used to distinguish Lorenz-like chaotic
pulsing from other types, based on the existence or ab-
sence of phase jumps by ~ radians between successive
spirals. It is clear that the D 's or K 's calculated from
intensity time series will not be sensitive to this diA'erence
because it occurs relative abruptly while the intensity is
so close to zero that the subtleties may be impossible to
resolve with finite accuracy. Hence, one is left to con-
clude that the quantitatively resolvable characteristics of
these intensity time series are also Lorenz-like.

Some further comments about the values of D2 and K2
are in order.

We note that the D2 values are consistently close to 2,
which gives special features related to the nearly two-
dimensional character of the attractor. One of these spe-
cial features is that the attractor is efficiently reconstruct-
ed when E,nht=T if E, ~2D2+1. Hence, an efficient
selection of

nest

is T/5 {we have used T/7 with excellent
efficiency of convergence). It is worth noting that we
have not separately varied the "embedding time" (the
spacing between components of any one vector given by

nest)

and the "attractor sampling time" (the spacing be-
tween first components of successive vectors). Indepen-
dent variation of these two times may provide better rules
of thumb for the application of the algorithms.

Furthermore, because D2 =2, the systematic errors in-
troduced by the limited precision of the 8-bit data, can be
sufficient to suppress Dz below 2. This anomalous and
sometimes controversial result (since DO~2 for chaotic
attractors it is often surprising when D2 falls belo~ 2
even though there is no lower bound for Dz) is avoided
by applying the simple first-order correction procedure
described in the text.

With D2 =2, there can be only one positive Lyapunov
exponent which is given to a good accuracy by Kz. It is
interesting to note that K2~, = 1, where ~, is the decay
time of the envelope of the autocorrelation function in
the limit of short times. How universal this simple rela-
tion will be is unclear from other systematical analyses
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reported to date. However, it is clear that one may
have to use a much larger embedding to find a convergent
value for K2. The evidence is that the required embed-
ding dimension for this convergence is given by
En 6t =~, =K z

' which for Lorenz-like spirals is of order
3 —5T. While similar values for Kz and D2 are found for
period-doubling chaos and Lorenz-spiral chaos, other less
"highly regarded" characterizations such as phase por-
traits and autocorrelation functions as we11 as, perhaps,
return maps can more easily be used to distinguish them.

The discrepancy between the values of ~, and Kz in the
periodic cases merit some discussion. Because of noise
we find that ~, is not infinite for these periodic cases and
thus it is not surprising that K2 is larger than zero. How-
ever, because ~, is large we must also caution that our use
of a maximum value of E =20 probably has not yet
reached the conditions necessary for Kz to fully con-
verge.

Finally, we should remark on the use of an average of
C(r) over all points of the attractor before finding its
scaling with r. For attractors with complex macroscopic

structure (such as period-doubling cases) it tnay be neces-
sary to take pointwise values of C(r) (that is, centered on
a particular point) in order to avoid spurious averaging of
diA'erent length scales of the macroscopic structure in
diff'erent portions of the attractor.
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