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We consider the small-signal response of a rate-equation laser to modulation of the laser cavity
length. To avoid nonlinear resonances in modulators and power supplies, we demonstrate that one
can hold the modulation frequency and amplitude fixed while varying the cavity detuning to change
the resonant response of the laser to modulation, and thereby one can extract the relaxation oscilla-
tion frequency and the damping rate of those oscillations. This technique permits a careful study of
the relaxation parameters of the laser that govern small oscillations and thereby permits discrimina-
tion among several different models recently proposed to describe CO, laser dynamics. We demon-
strate this method of analysis by applying it to such a laser experimentally with the result that the
simple rate-equation model is shown to fail while the more complex vibro-rotational model satisfac-

torily describes the results.

INTRODUCTION

Ever since it was noted that lasers using ruby, yttrium
aluminum garnet (YAG), CO,, and semiconductors as
the gain medium displayed damped relaxation oscillation
transients following sudden changes in the excitation or
laser cavity loss, modulation of a parameter has been
used to generate giant ‘‘Q-switched” pulses at rates
slightly less than the relaxation oscillation frequency.! It
is readily found that the modulation need not be 100% of
the difference between the unsaturated gain and loss
(thereby actively turning the laser off once each cycle),
but that for many lasers only a few percent modulation is
sufficient to generate distortions from sinusoidal response
often in the form of trains of giant pulses separated by in-
tervals of nearly zero intensity.?

The sensitive dependence of these lasers to modulation
and the weakly damped relaxation oscillation transients
can be viewed in two ways. In the point of view of the
behavior of the standard Maxwell-Bloch equations or
laser-Lorenz equations for a single-mode laser interacting
with a two-level, homogeneously broadened medium,
these characteristics arise from a particular relationship
among the decay rates for the field, polarization, and
population variables. The typical lasers designed with
the materials mentioned above are lasers for which the
polarization can be adiabatically eliminated, yielding
equations for the field amplitude and the population in-
version. Furthermore, these are lasers for which the field
decay rate is much more rapid than the population-
inversion decay rate. The weakly damped transients
reflect the existence of a pair of complex-conjugate eigen-
values governing the stability of the lasing solution that
have negative real parts that are much smaller in magni-
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tude than the imaginary parts.

Laser media that are accurately described as two-level,
homogeneously broadened materials are few, but many
can be effectively described this way. This is because the
behavior of much more complex models (involving indivi-
dual populations of many levels and many interlevel po-
larizations) can often be reduced to dynamics in a partic-
ular two-dimensional subspace of the phase space which
can then be effectively described by two coupled equa-
tions for motion in that subspace. This is formally ac-
complished by the center-manifold theory. The strong
response to modulation and the weakly damped tran-
sients are indications that the dynamics in this manifold
are those of a weakly damped oscillator. Using this more
general approach a much wider range of lasers can be de-
scribed by a generic class of two coupled equations.

Such lasers are often discussed as a class because of
their similar behavior, though the particular values of the
decay rates determine the corresponding frequencies and
damping rates of the damped oscillations. This group of
lasers was first identified in the selective adiabatic elim-
inations in the studies by Tang®?® of the simple laser
model and in a classification scheme in the Russian litera-
ture [Belenov et al. and Genkin and Khanin, Ref. 3(b)]
and has more recently been popularized for the study of
lasers dynamics as “class-B” lasers.*

The nonlinear response of a CO, laser to modulation
was used by Arecchi and co-workers in one of the earliest
studies of optical chaos.” Further experiments have been
performed with cavity-loss modulation,® gain modula-
tion,” 8 and cavity-length modulation® in CO, lasers, pri-
marily for the study of nonlinear dynamics (period dou-
blings, chaos, crises, etc.). Other class-B lasers have been
studied for relaxation oscillations transients under step-
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wise excitation and for their nonlinear dynamics under
sinusoidal modulation.!® Theoretical studies have ex-
plored the sequence of nonlinear modulation resonances'!
as a function of modulation strength and frequency and
many of these results have been observed recently in an
analog simulation of the equations.'> The details of the
nonlinear resonances and the families of coexisting
periodic and chaotic oscillations and their collisions and
crises have been found in numerical simulations and
linked to the relative degrees of conservative and dissipa-
tive character in the dynamics.'?

It was demonstrated in Ref. 7 that such lasers are
much more sensitive to loss modulation than pump
modulation when the modulation frequency is close to
the relaxation oscillation frequency. This relative sensi-
tivity has been observed experimentally (see discussion in
Ref. 7) and the analysis of Ref. 7 has been extended to the
case of cavity-length modulation.'* No experiments on
the linear-dynamical response of a CO, laser to length
modulation as a function of cavity detuning have been re-
ported previously, but the nonlinear dynamics have been
shown to be sensitive (with evidence of period doublings,
chaos, and crises) to cavity detuning under either length
modulation® or gain modulation.?

The response of the class-B lasers to loss modulation
can be so strong that it is relatively difficult to have a
sinusoidal response to sinusoidal modulation unless the
modulation amplitude is extremely weak. This is because
the damped resonance is characterized by a Toda poten-
tial’> which is highly anharmonic for all but the smallest
oscillations and because the relatively weak damping in
these lasers usually permits excitation of large excursions.
Nevertheless, we propose to explore the small-signal
response regime because of its utility in confirming the
parameters of the damped relaxation oscillator. Such ex-
plorations might equally well be carried out with loss or
gain modulation, which also show resonances. However,
both CO, and YAG lasers can have their relaxation oscil-
lation resonances (of the order of 30-300 kHz) incon-
veniently near the characteristic frequencies of mechani-
cal resonances in piezoelectric, acousto-optic, or electro-
optic modulators. Such resonances limit the tuning range
of the modulators and make it difficult to monitor the ac-
tual modulation amplitude as a function of modulation
frequency. We thus take the approach of modulating the
cavity length at a fixed frequency and tuning the parame-
ters of the damped relaxation oscillator of the laser by
changing the laser cavity detuning.

There are several different ways of extracting the
characteristics of the small-signal response in terms of
the real and imaginary parts of the eigenvalues governing
the stability of the steady-state laser solution. One can
use a stepwise change in the excitation to obtain a
damped relaxation oscillation, and from the oscillation
frequency and the decay of the amplitude of the oscilla-
tions one can extract the laser parameters,'®@10(¢)10(/)
The alternative route is to evaluate the resonant response
of the system to weak periodic modulation. In its sim-
plest form this method entails measuring the response as
a function of the modulation frequency (for fixed modula-
tion amplitude); the width and center frequency of the
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resonance peak can be used to extract the real and imagi-
nary parts of the eigenvalues. For reasons discussed
above we pursue a variation of this method in order to
characterize the resonance features.

These studies have special current merit because of the
debate that has recently appeared over the necessary and
sufficient models for the description of the dynamics of a
CO, laser. Many studies have used a simple two-level,
rate-equation model*” 4! even though the population
dynamics in a CO, laser is known to involve complicated
couplings of many vibrational and rotational levels.
However, careful analysis of the multilevel models reveals
that most populations have rapid decay rates and that the
population decays are limited by a pressure-dependent
bottleneck in the decay of the lower vibrational manifold
(that includes the lower laser level) to the ground state.
This permits adiabatic elimination of the fast levels (in-
cluding the laser levels) leaving the dynamics of the popu-
lation inversion between the upper and lower vibrational
manifolds which contain the actual lasing sublevels (001-
10°0). The result is that one arrives effectively to the
same rate equations for a population inversion and the
field that one would have by simply adiabatically elim-
inating the polarization in the standard two-level, homo-
geneously broadened atom model. However, this has
been shown to be inadequate to describe the dynamics of
CO, lasers with saturable absorbers'>!718 (LSA) and CO,
lasers with switched parameters.!” The explanation is
that the sum of the upper and lower populations in a CO,
laser does not remain constant (as is necessarily required
for validity of a two-level model). In the latter case it was
proposed to return to a more complex model originally
proposed for CO, lasers?® in which the intravibrational
band relaxation of the rotational levels is proposed to
play a key dynamical role. This model also formed the
basis of the LSA studies in Refs. 15 and 18.

It may seem surprising that there would be any debate
over the models for such a well-known and well-used
laser as the CO, Refs. 21 and 22, but this is a reflection of
the relatively recent emergence of the nonlinear-
dynamical studies. In the theoretical modeling of non-
linear dynamics, most authors are content to use the sim-
plest model that explains the observed experimental re-
sults rather than using the extremely complicated models
developed for the explanation of efficiencies and Q-
switching characteristics. This is because most physical
results depend primarily on the existence of a damped
resonance (such as that in the two-level model) and thus
they are frequently not sensitive to model-dependent
subtleties except insofar as they change the parameters of
the damped resonance.>%°~ !> That the details of exact
dynamical models for CO, lasers are still uncertain is evi-
dent from the continuing discussion and measure-
ments, 1517 19,2325

From the nonlinear-dynamical point of view there are
now at least three physically distinct models: the simple
two-level picture for which one uses equations only for
the intensity and the population difference of the two vi-
brational manifolds; a three-level picture requiring two
separate equations for the upper- and lower-level popula-
tions;!” and the intraband relaxation model requiring
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population difference equations both for the two levels in-
volved in the lasing emission and for the two vibrational
bands.!>'872° The latter model has been simplified by
the center-manifold technique to an equivalent two-
equation system.>* This contrasts with a multiple-time-
scale analysis!>? using more traditional methods of adia-
batic elimination which leads to a similar, though less ex-
act, result.

Each of these models predicts damped oscillations with
the resonant frequency and the damping rate dependent
on the different physical parameters. In the case of the
simple laser with a two-level medium these parameters
are simply the degree of excitation above the lasing
threshold, the cavity detuning measured in units of the
polarization decay rate, the field decay rate and the popu-
lation inversion decay rate. As these quantities can be
determined independently in a straightforward manner, it
is possible to compare their values to the characteristics
of the relaxation oscillations. The relationships between
the decay parameters and the oscillations will add
credence to the claims that the more complex models are
necessary. While this has been demonstrated in the non-
linear dynamics, the studies we propose will show that
such complex models are needed even to describe the
response to slight modulation of the laser about its
steady-state values. In particular, the model with inter-
band relaxation processes predicts damping rates for the
relaxation oscillations that are as much as twenty times
greater than are found in the two-level model while the
frequency of the oscillations is relatively unchanged.

SMALL-SIGNAL RESPONSE TO MODULATION

To illustrate the effects of detuning on the response to
modulation we consider the two-level model, beginning
with the basic laser rate equations including cavity detun-
ing. We assume that all changes are slow compared with
the polarization decay rate permitting adiabatic elimina-
tion of the polarization amplitude. We further assume
that the laser frequency adiabatically follows changes in
the cavity length. (This development parallels that given
in Refs. 7 and 14, but as important subtleties are to be ex-
ploited in our fitting of experimental data, we expand
upon the results found in Ref. 14.) Then

42 — —y (D —1+1D /1+8] , (1a)
%:—2;(1[1—,41)/(1%2)], (1b)
6=((Dc_(UA)/}’J_[1+(K/'}’_L)] ’ (1c)

where D and I are the suitably normalized variables for
the population difference and the laser intensity, respec-
tively, with their respective decay rates y, and 2« (we re-
tain k as the decay rate of the electric field in the laser
cavity); A is the laser pump rate normalized to unity at
the laser threshold for a resonant cavity; and & is the de-
tuning of the laser frequency from the center of the two-
level resonance in units of the decay rate of the polariza-
tion. & is expressed in the usual mode-pulling formula in
terms of the laser cavity frequency and the material reso-

nance frequency in Eq. (1¢).
The steady-state nontrivial solution is given by

Ig=A—1-8}, (2a)
Dgs=(1+83)/4 . (2b)

Linearizing about this solution we find that the eigenval-
ues of the linear stability analysis are given by

A=—(y,4'/2)xi[2ky (A'—1)—(y, 4" /2)*]"/?, 3)

where A'= A /(1+83). It is clear that Re A is always
negative indicating that the steady state is stable. If
K>>y,, we see that the decay rate is slow compared with
the oscillations which are given approximately by the fre-
quency o,

IImA| =wy=[2cy (4'—1)]'2 . (4a)
We also define the value of w, for §,=0 given by

coorm_——_[2K‘y“(A-—1)]1/2 . (4b)

For a typical low-pressure CO, lasers (at about 10
Torr), k is of order 10’ s™! while y, is of order 5Xx10*
s~ !, governed primarily by the pressure. For a laser a
few times above threshold, we show in Fig. 1 the varia-
tion of steady-state intensity, the eigenvalue ImA, and o,
as functions of detuning.

The response of this system to modulation of the cavity
length is given by considering the addition of a modulat-
ed cavity length as specified by
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FIG. 1. Plot of steady-state solutions and their characteris-
tics for the two-level model from Egs. (2)-(4) using 4 =1.8,
k=1X10" s~ 1, YI=6X 10* s71. (a) Isg vs 8y; (b) w, (solid line)
and ImA (dotted line shows where it deviates from w,). Intensi-
ty and frequencies are normalized to unity at zero detuning.
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daD

—dT=—7/”[D—1+ID/(1+82)], (5a)
%=—2KI[I—AD/(1+62)], (5b)
8=258,+m cosQt . (5¢)

For a small modulation depth and §,>>m we can use the
approximation

(1485 '=(1+83) {1 —[28ym cos(Q)]/(1+83)} ,
(6a)
and linearizing about the steady-state solution by writing
I=I¢+a, (6b)
D=Dg+b , (6¢)

we arrive at the equation for the amplitude of the intensi-
ty modulation

d%a da

e +B?17 +wda=F cos(Qt +d+) , (7a)
where

F=4k8;m(A'—1)(y]+Q%)'"2, (7b)

tang=—(Q/y,), (7c)

B=yA". (7d)

As was done for w, we call the line-center value of 3,

Bmax
Buax=v;4 - (Te)

We have made a variety of assumptions of adiabatic
following in the course of this derivation, and while these
are the traditional arguments, one may doubt their validi-
ty if one is to make a careful comparison between
theoretical predictions and experimental results. The for-
mal justification can be found in Ref. 26 where the
center-manifold technique has been applied to the five
equations for the interaction of a single mode with a
two-level medium in the presence of detuning. They
demonstrate explicitly that when « >>y,, the dynamics in
the vicinity of the steady-state solutions can be described
by motion on a two-dimensional submanifold with a
damped resonance of exactly the sort described above.

It is of interest to note the difference with the
vibrational-rotational model developed in Refs. 15 and 20
where an equivalent damped oscillator equation is
found?* with changes in the parameters given by

B—y [4'+H(A'=1k/(J+1)ye], (8a)
w5—2ky,(A4'—1) (unchanged) , (8b)

where Yy is the intraband relaxation rate and J is the
number of rotational levels involved in the intraband re-
laxation. Clearly 8 does not depend sensitively on J for
values of J =10, and as this number has recently been
proposed to be as large as 15-20 for the P20 line (see
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Refs. 19, 24, 25, 27, and 28) it may be difficult to infer
anything about its value. (Recent cross-spectral satura-
tion measurements would suggest, however, that J may
be only of the order of 4-5.2 In contrast, the
rotational-relaxation rate to all other levels in the vibra-
tional manifold (J + 1)y at pressures above 10 Torr
should involve the same mechanisms as the polarization
decay rate ¥, and thus these rates should be equal in the
equivalent two-level model.

The amplitude of response a, as given by solutions to
Egs. (8) in the form

a(t)=aycos(Qt+¢+7+0O) 9
is expressed as
a,=4kdym (A’ — 1)y} +Q*)!"?
X [(03—Q?)?+452Q%] 12, (10)

It is helpful to rewrite Eq. (10) as

ay=Cy,(8y)y,(8¢) , (11a)
where
C=4km , (11b)
Y1(8g)=8x( A4’ —1)=8,[ 4 —(1+83)]1/(1+83)
=1I4(80)[8/(1+83)1, (11c)
Y2(80)=(y{+ Q) *[(0f—Q*)?+4B2Q%] 72 . (11d)

Physically y(8,) corresponds to the product of the slope
of the intensity versus detuning curve (28,) (which is an
“adiabatic” factor giving the amplitude of the steady-
state intensity modulation corresponding to adiabatic fol-
lowing of the frequency modulation) and the normalized
degree above threshold at that detuning (4’'—1). The
second factor y,(8,) is the resonant response of the
damped resonance of the system to modulation at fre-
quency () when the resonance of the system has eigenval-
ues given by A=—(B/2)*i[w3—(B/2)*]'/2. This result
appears in Ref. 14 though the full range of variation (par-
ticularly for Q > womax) and its applicability for fitting ex-

perimental results was not explored.

Figures 2(a)-2(c) show the functions ay(8,), y(8),
and y,(8,) normalized to their peak values for cases in
which € is less than wo_ - Figure 2(d) shows an example

for Q>w, . Figure 3 summarizes the characteristics of
max

such curves. Figure 3(a) shows the value of §, that gives
the peak of ay(8,) for different values of Q) and a second
curve on the same graph shows the value of o, for each
value of 8,. Figure 3(b) shows the actual (unnormalized)
height of the maximum value of ay(8,) as a function of
Q. Figure 4 shows how the dashed curve in Fig. 3(a) de-
pends on the parameters for fixed value of their product
(fixed relaxation oscillation frequency). Figure 5 gives the
half-width at half-maximum of the curves for ay(8,) in
Fig. 2.

From Fig. 2 we infer the following trends.

(a) For a fixed modulation frequency Q, a,(§,) has a
peak as § is scanned.
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FIG. 2. Plot of functions identified in Eq. (11) for 4 =1.8,
k=1X107 s7!, y;=6X10* s7% ay(8,) (solid line), y,(8;)
(dashed line), y,(8,) (dot-dashed line). Values of Q (angular fre-
quency) are (a) 3X10° s7}; (b) 6X10° s7!; (c) 9.5X10° s™!; (d)
11X10°s™ 1

(b) For small values of 1 (less than wg_ ) the curve

ay(8y) is governed primarily by the curve y,(8,), the res-
onance peak is very narrow and occurs for relatively
large detuning. At the resonance, Q@ =ImA.

(c) For larger values of () the peak in a,(8,) moves
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FIG. 3. Plot of the characteristics of the peak in ay(8,) [(a)
defining Sopeak and (b) aopeak] for A=1.8, k=1X10" s},
71 =6X10* s~ ! as functions of Q. For comparison, the value of
, for the steady-state solution specified by 80=80peak is plotted

as a solid line in (a).

closer to line center (smaller values of detuning) and the
peak becomes wider.

(d) When ) is greater than Wy > the peak moves to
larger values of 8§, and the curve ay(8,) approaches the
function y,(8,).

We summarize the results in Figs. 3—5 as follows.

(i) When Q>>w0max the resonance peak appears at an

asymptotic value of the detuning given by
0.89

5Opeak

0.445 AT P

Q (108 s 1.88

FIG. 4. For comparison with the dotted curve in Fig. 3(a)
with 4=1.8 and «ky;=2X10" s™? but different parameters
k=2X10*s7", y;=1X10’ s™' (dashed curve); k=2.5X10°s™",
y;=8.0X10* s~' (dot-dashed curve); k=4.4X10° s7},
¥ =4.5X10°s™! (solid line).
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FIG. 5. This figure gives the half-width at half-maximum
(=A8,) of the curve ay(§,) as a function of € for
Kyl,=8.75>< 10'"" s™! but different parameters (a) k=8.75X 10?
s7hLy=1X10°s7"; (b) k=5.83X10°s™", ¥ =1.5X10° s"' (c)
k=3.5X10°s"", y=2.5X10°s™".

8o={1[(A42+8A4)"2—(A4+2)]}!/%, which is the max-
imum of y,(§y), and the width of the resonance ap-
proaches the width of the curve y(8;).

(ii) The convergence of the curves for wy and Q in a
certain range in Fig. 3(a) indicates that the resonance in
the output corresponds to matching of the modulation
frequency to the internal relaxation frequency.

(ili) When  is much larger than w,  we see that the

peak in the resonant response of the system is simply
given by the location of the maximum slope in the inten-
sity as a function of detuning since the resonance condi-
tion cannot be achieved for any detuning.

(iv) When for large detuning the laser is taken close to
threshold, the curves again diverge showing that the ap-
proximate formula w, used for ImA is no longer correct.

(v) Figure 3(b) shows the peak of the a((§,) curve as a
function of the modulation frequency. The maximum
occurs at the frequency for which y(§,) and y,(5,) have
their peaks at the same detuning.

1
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FIG. 6. Schematic of the experimental setup. (1) Single-
mode tunable CO, laser; (2) piezoelectric ceramic (PZT) used
for cavity-length modulation; (3) dc power supply for §, tuning;
(4) amplifier; (5) signal generator; (6) attenuator; (7) pyroelectric
detector; (8) galvanometer; (9) HgCdTe detector; (10)
preamplifier; (11) frequency selective amplifier; (12) oscilloscope;
(13) high-frequency voltmeter.
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From the convergence of the curves in Fig. 3 for small
) we see that one can use the experimental values for the
resonance peak for §, in order to estimate the value of
W - From the width of the resonances in §, compared

with Fig. 5 (when Q <w, ) one can also determine 3. 8

also governs the divergence of the curves in Fig. 3(a) at
high values of ). Knowing .., and @y (which per-

mits a prediction of the values of k and v depending on
the particular model), the measured values can be used to
determine which of the various dynamical models dis-
cussed earlier gives values consistent with direct measure-
ments or estimates of these decay rates.

EXPERIMENTAL RESULTS

Figure 6 shows our CO, laser experimental setup and
Fig. 7 shows the resonance curves a,(§,) as in Fig. 2.
Figures 8(a) and 8(b) show the summary corresponding to
Figs. 3(a), 4, and 5; Fig. 9 for reference shows the average
intensity output for each detuning. We note that there is
a small shoulder on the curve in Fig. 9 which we inter-
pret as the presence of a weak transverse mode (as it did
not appear on the negative detuning side) and hence we
disregard data for detunings larger than 1.24.

The limit of 300 kHz for () was given by the end of the
response range of the piezoelectric ceramic on which the
mirror was mounted. We note that by following the reso-
nance in 8,, we are not sensitive to the resonances in the
PZT which often distort attempts to follow a,(Q) for
fixed §,. By normalizing each curve a,(8,) to its max-
imum we need only follow the location of the peak and
the width of the peak to extract the desired information.

Our laser was operated on the P36 line of CO, with a
wavelength of 10.76 um. The power at line center was
about 1 W for a total gas pressure of 17 Torr with a mix-
ture of gases Xe:CO,:N,:He of 1.00:2.22:3.50:17.00. The
discharge was dc excited at a current of 11 mA. The
laser discharge length was 80 cm and the laser cavity
length was 115 cm giving a sufficiently large free spectral
range so that we obtained single-mode operation. An
aperture was placed in the cavity to suppress unwanted
transverse modes. From the estimated window and mir-
ror losses for the field (taken to be 12% per roundtrip) we
expect a cavity decay rate of

k=—clIn(1—1)/2L=(1.7£0.3)X10’s" ! ,

where L is the length of the laser, and / is the losses.

CHARACTERISTICS OF CO, 10.6 um
TRANSITIONS

The rotational relaxation rate (J + 1)y, for our pres-
sures can be determined from the data of Cheo’s?? Table
18:

[(1.130.2)Po +(1.0+0.2)Py

2

+(0.7£0.1)Py 1X10’s 7' Torr ! .

Using this formula gives a value of (1.4+0.3)X 108 s™!
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FIG. 7. Experimental results for a,(8,) at different values of Q. Solid curves smoothly connect each set of data. Values of Q (an-
gular frequency) are open circles, 5X 10* s'; solid circles, 3.76 X 10° s™!; solid triangles, 6.28 X 10° s~ '; open squares, 9.42 X 10° s !;

solid squares, 1.26 X 10° s~ !; open triangles, 1.88 X 10°s ™",
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FIG. 8. Collection of experimental results for (a) value of &,
at the peak of ay(8,) and (b) half-width at half-maximum of that
curve (AS,) as functions of ) with best fitted values of corre-
sponding curves for the two-level model using decay rates giv-
ing k=(7.2£0.3)X10® s™!, y;=(1.4£0.2)X10° s~' for the
two-level model.

0.63 Detuning 1.26

—-1.

for (J +1)yg.

For the Lorentzian pressure-broadened linewidth y, of
the transition, we refer to the empirical formula of Judd,
quoted by Smith, DuGuay, and Ippen and also by Deg-
nan,? which takes the following form for gas tempera-
tures of order 300 K:

(2.38Pco, +1.74Py, +1.43Py,) X 10’s ! Torr !,

which for our pressure mixture gives 2.55X 108 s~!. The
total linewidth is a convolution of the homogeneously
broadened lineshape with a Gaussian Doppler-broadened
linewidth of 1.67X10® s™!' (53 MHz full width), which

1.0

0.3}

0.6}

Intensity

0.4

02t

0 N L +
0 0.5 1.0 1.5
Cavity Detuning

FIG. 9. Plot of Iss vs cavity detuning for experimental data.
Intensities are normalized to unity at zero detuning. Cavity de-
tuning is measured in units of y .
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we estimate to reach about 3.05X 108 s~!. (Note that all
decay rates, and hence also linewidths, are in radians per
second and correspond to half-widths at half-maximum
of the spectral line shapes.)

For the population decay rates for these partial pres-
sures, the empirical formula of Cheo for the decay of the
bottleneck level in the decay channel of the lower lasing
level?2

[(1.94X10%)Pco. +(6.5X 10" Py +(6.5X 10)Py
co, H, 5

+(3.27X 10%)Py,1s~ ! Torr ™!

gives a value for y at our pressures of 4.2X 10* s~ L. In-

dependent measurements of the effective decay rate of the
lower lasing level [Table 15 in Ref. 22 (p. 161)] gives an
empirical formula

[2.2Pco, +33Py, +0.026Py +4.7Py,
+5Px, +(1.2X10°)Py 51X 10% ™' Torr ',

which yields a value for y at our pressures of 6.5X 104
s~ !, which we can safely assume is accurate to about
20%. In the effective two-level model for CO, lasers this
decay rate becomes the y. [Alternative formulas for the
population decay rates can be derived from Table II in
Ref. 30 (p. 146) and Table 3.4 in Ref. 21 (p. 76) yielding
values of order 5X 10*s™ ! Torr ']

(Note that the bottleneck value is about an order of
magnitude larger than the values found in Refs. 21 and
29 and that quoted in Refs. 5, 19, 24, and 25 where
5%X10% s~ ! is used for lasers operating at 10 Torr, con-
sistent with the measurement of Ref. 29 at 1 Torr CO,.
In contrast 5X10* s~ ! at 10 Torr is more consistent with
the measurements reported by Cheo. (The confusion
over the use of 5X10° s™! at 10 Torr for the population
decay rate arises from considerations that appear in Ref.
31, which reports a lifetime of [5+3.7P(Torr)] X 10> s ™!
for the lifetime of the upper vibrational band 00°1, and
from concerns about getting the correct output powers
for CO, lasers from the rate equations where the satura-
tion intensity is fixed by the rate constants.) If the lower
value is correct, then the bottleneck is not the limiting
constraint.)

In any case, the authors of Refs. 19 and 25 demon-
strate that an artificially increased value of 5X10° s~ !is
required to find agreement between their swept or
switched gain experiments and the two-level model.
Hence they chose to use the vibro-rotational model in-
stead. Similarly, the authors of Ref. 17 who quote the
value from Cheo as the “true” characteristic of CO, find
that they must also use a value of order 3X10° s~ ! for
the decay of the lower lasing level to obtain agreement
between their experimental results at 18 Torr and
theoretical results from their three-level model of the
transitions in the CO, gain medium of a laser with a
saturable absorber.

Clearly confusion reigns—a confusion which we hope
to resolve somewhat (at least for dynamics) from our
measured results. However, we will have to approximate
the partially inhomogeneously broadened medium by pa-
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rameters that we can use in models that assume homo-
geneous broadening. It is worth noting that studies of
the stability of inhomogeneously broadened single-mode
lasers with a two-level medium have been done*? and the
methods of those studies could be used to find the correc-
tions to the eigenvalues in at least that simple case,
though the amount of computational difficulty in such
procedures and the doubtful exactness of the results leads
us simply to refer to that possibility.

ANALYSIS OF RESULTS

To complete this analysis on the assumption of homo-
geneous broadening we need to adopt a value of ¥, to use
in the normalization of the detuning parameter § and for
determination of the value of the pump parameter. We
also need to adopt a value of (J+ 1)y to use in the more
complicated formulas for the vibrational-rotational mod-
el. Conventional wisdom is that the same processes are
involved and thus that the values should be the same.
One might conclude from the literature cited above that
the values are known with poor precision and that the ro-
tational and collision decay rates might differ by as much
as a factor of 2. We choose the values 2.55X 10® s™! for
both, which must be assigned uncertainties in the range
of 20% given the uncertainties implicit in the formulas
and the additional errors induced by the inhomogeneous
broadening.

From the maximum cavity detuning range (of the fun-
damental longitudinal mode) as a fraction of one-half of
the free spectral range measured directly as 0.83+0.02
and from the mode pulling factor given by «x/y,=0.067
we determined the value of A4 (using I=A4 —1—86% in
our experiments to be 2.6%0.5.

From Fig. 8 and the fitting procedure we extract the
values of wp_ and Bmax as follows:

@, =(1.74+0.28) X 10° rad /sec ,

Brax=(3.8+0.8)X10° s71 .

Note that the value of 3,,,, is comparable to the value of
@y and unusually large if it is equal to 4y given the

population decay rate of a CO, laser if it is described by a
two-level model; however, it is consistent with the rela-
tively few oscillations in transients observed in some re-
cent experiments. '’

The estimates for the y’s permit us to compare in
Table I the values of x and y, from these independent
determinations with those measured from the experiment
using the relations for the two-level model and for the in-
terband relaxation model that give the values in terms of
the measured values of 3,,,, and wg -

We see that the agreement between the measured
values and the known parameters of the laser we used
and the properties of the CO, medium is better for the
vibro-rotational model with about 25+5 coupled levels.
This is consistent the value of 16 reported in Refs. 19 and
25 for the P20 line. Further refinements in the fitting
procedure may give even more accurate estimates. In-
dependent measurements of the cavity-loss rate instead of
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TABLE 1. Comparison of values of y; and « from estimates and models. Using 4=2.6,
¥1=2.55X 10" s ! and the measured values of B,,,, and @, we can also calculate the relaxation rates

for the different models.

’}(” (S_l)

k(57

Estimated from experiment
Two-level model
Vibrational-rotational model

J=5
J=10
J =20
J =30

(6.5+1.3)x 10*
(1.410.2) X 10°

(1.24£0.1) X 10°
(1.1£0.2) X 10°
(8.4%0.8) X 10*
(6.3£0.8) X 10*

(1.7£0.3) X 10’
(7.240.3) X 10°

(0.81£0.01) X 107
(0.90+0.08) X 107
(1.20+0.50) X 10’
(1.60+0.70) X 10’
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estimates thereof would permit more exact determination
by self-consistency of the values of J and y in the
vibro-rotational model and measurements on different
lines of a CO, laser could determine the number of levels
involved in the intraband couplings as a function of the
position of the level in the band. We see, for example,
that if one used the lower value for Y, given by Cheo,
then we would obtain a larger value of k and a smaller
value of y, which would fit the data even better. Perhaps
these discrepancies could be used to test the assumption
that (J+ 1)y is equal to ¥, or to test the assumption of
the validity of this vibrational-rotational model.

FINAL DISCUSSION

In summary, we should note that the careful study of
the behavior of the linear response of a cavity-modulated
class-B laser as the laser is detuned provides a sensitive
measure of the properties of the intrinsic damped oscilla-
tor (the relaxation oscillations) that underlies the ap-
proach to stable laser operation. Although there is no
response for resonant tuning of the laser cavity, the sensi-
tivity of the amplitude of the linear response to the value
of detuning suggests that studies of more complex non-
linear dynamics of modulated lasers need careful control
of the values of the parameters.

It is not surprising that any system with a damped re-
laxation oscillation can be described by an effective sim-
ple damped oscillator equation. The formal justification
for this is provided by the center-manifold theory. What
is clear is that the simple two-level atom model is too
constrained to describe the behavior of the CO, laser
when one uses physically realistic parameters. It is likely
that many more complicated models will have sufficiently
many degrees of freedom in their parameters that a more
realistic effective oscillator on the slow manifold can be
found. However, the vibrational-rotational model seems
to be a particularly attractive candidate model because of
its physical basis and the tractability of its analysis using
center-manifold techniques as demonstrated in Ref. 24.
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