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Phase-jump instability in the bidirectional ring laser with backscattering
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The third-order equations of motion for a bidirectional, inhomogeneously broadened ring laser at
line center with backscattering are solved exactly when the additive noise terms are negligible. The
resulting solution for the relative phase of the two propagating modes may exhibit steady-state or
transient oscillations. For certain initial conditions, the solution is not unique and is unstable. This
gives rise to deterministic phase jumps in both the transient and steady-state behavior. A series of
phase jumps occurs if the system repeatedly crosses its unstable boundary. These series may be ran-
dom or periodic if the system is driven by a stochastic or deterministic source, respectively. In all
cases, the jumps are multiples of ~ radians in magnitude. The solution for the intensities provides a
means to determine the pump parameter and backscattering coefficients for the laser through inten-
sity measurements, provided the effects of spontaneous emission are negligible. The results are com-
pared with numerical solutions of the original Langevin equations and with experiments.

I. INTRODUCTION

Sudden phase jumps associated with anticorrelated in-
tensity oscillations have recently been predicted' and
observed in a remarkably wide variety of ring-laser
systems. An unusual feature of these jumps is that they
occur in multiples of ~ radians. We first summarize the
models and systems in which these phase jumps appear.

One approach ' ' for a bidirectional laser starts with
the semiclassical Maxwell-Bloch equations for a homo-
geneously broadened gain medium under the uniform
field and slowly varying amplitude approximations. The
polarization is adiabatically eliminated, the population
inversion is expanded in harmonics, and the final seven
differential equations of motion arise from the truncation
of this expansion. Phase jumps and intensity oscillations
are predicted by this model for parameters appropriate
for solid-state lasers and CO2 lasers with nonzero detun-
ing. The anticorrelated intensity oscillations have been
observed. '

Unidirectional and bidirectional far-infrared (FIR) ring
lasers for which neither the atomic population nor polar-
ization can be eliminated also exhibit this phase and in-
tensity behavior. ' It has been proposed that the uni-
directional FIR laser should exhibit Lorenz-type chaos"
due to the equivalence' between the Lorenz equations
and the Maxwell-Bloch equations for a single-mode
homogeneously broadened ring laser. Experiments at
high gas pressure confirm this, although those at lower
gas pressures reveal more complicated dynamics. ' In
both cases, sudden m jumps in phase are observed. The
bidirectional FIR laser also exhibits similar phase and in-
tensity behavior when operated at high pressures.

Phase jumps and intensity oscillations are predicted in
a related deterministic model which also retains the
atomic polarization in the Maxwell-Bloch equations, but
assumes a multimode, unidirectional ring cavity whose
inversion is sinusoidally modulated. '

We have recently reported theoretical predictions and
experimental observations of such ~ phase jumps and in-
tensity oscillations in an inhornogeneously broadened bi-
directional ring laser described by the usual third-order
Langevin equations without detuning, provided complex
terms representing the effects of backscattering from one
mode into the other are added. "' In contrast with
the preceding models, these equations include stochastic
noise terms representing spontaneous emission and have
both the atomic polarization and inversion adiabatically
eliminated from them. This model also predicts the
well-known phase jumps' ' of magnitude 2~ which arise
in a ring laser when noise rnornentarily overcomes the
phase locking caused by backscattering. '

In light of this summary, in which a wide variety of
lasers described by deterministic models exhibits phase
jumps and intensity oscillations, it seems natural to ask if
such behavior in the stochastic model arises from dynam-
ics intrinsic to the deterministic portion of the Langevin
equations, or whether the stochastic noise terms are its
fundamental source. This paper addresses this question
by removing the noise terms from the Langevin equa-
tions, solving the resulting deterministic equations, exam-
ining their behavior, and comparing this behavior with
numerical simulations of the original Langevin equations
and with experimental data. It will be shown that the
solution to the deterministic equations is unique inside a
certain domain in which intensity oscillations may exist,
but no phase jumps. On the edge of this domain, howev-
er, the solution for the phase is no longer unique and is
unstable. Once driven to this edge, the system may re-
turn via either of the two phase solutions. If it departs
following the solution other than the one on which it ar-
rived, a ~ or 2~ phase jump occurs, depending upon con-
ditions on the backscattering phases. Under these condi-
tions, stochastic noise can serve to repeatedly drive the
solution to this unstable boundary, and a series of ran-
dom jumps occurs. When these conditions are relaxed,
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the system deterministically evolves away from this
boundary for all times, or it may pass through the bound-
ary once and then never return. In this latter case, one
transient deterministic ~ phase jump occurs. A series of
deterministic jumps occurs if the system is continuously
driven through the boundary. Other new results are
mentioned, including an estimate for the average mode
intensity in the presence of backscattering and a means to
experimentally determine the operating point and back-
scattering coefficients for the laser. These results may be
applied to lasers whose spontaneous emission noise is
negligible„as for lasers operating far above threshold or
lasers with large backscattering, or possibly FIR lasers.

If we now separate the real and imaginary parts of the re-
sulting equations and define a(t ) and b, g by

+2= sr+2

a(t ) = g, bg—+$2(t )
—P, (t ),

(4)

E, =(a I, —I2)E—, +R,E 2cos( a+kg),
E2=(a I, —I2)E—2

—R2E, cos(a —bg),

E,E2a =R,I, sin(a —b g) —R, I2sin(a+ hg), (8a)

then we arrive at the following three coupled real equa-
tions:

II. GENERAL SOLUTION TO THE
DETERMINISTIC THIRD-ORDER EQUATIONS

We start by presenting the dimensionless third-order
Langevin equations just described, which assume zero de-
tuning and include the effects of backscattering:

or, for E,WO and E2%0,

E1 E2a=R sin(a —b, g) —R sin(a+A, g),2E 1E

in which we define the mode intensities by

(8b)

E) =(~
(
—IE( I' —IE21')E)+R )E2+q~,

E,= «2 —IE, I' —IE2 I')E2+ R,E, +q, .

I,(t)=[E,(t)]', j=1,2 .

We can show (see Appendix) that the solution (apart
from the trivial unidirectional solution) to these equations
is

(q,*(t)q, (t')) =46,,6(t t'), i,j =1—, 2 . (2)

We now drop the noise terms and make the following
substitutions:

Rj Rje Ej Ej e ', j= 1,2 (3)

Here E, and E2 are the complex, dimensionless, slowly
varying field variables for the two counterpropagating
modes, Q, and Q2 are their corresponding pump parame-
ters, and R, and R 2 are the corresponding complex back-
scattering coefficients. Throughout this paper, we will set
a~ =a2=a (a &0; see Appendix). For each mode, the
complex noise terms q, and q2 represent rapid spontane-
ous emission fluctuations and so we take them to be 6-
correlated random variables of zero mean:

R QI (t)= ' S (t)T(t), j=1,2
R, +R, j

with

S, (t ) = 1 —A (t )cos[y(t )],
S,(t)=1+2(t) co[sy(t)],

y(t ) =co, t+p,
3 ( t ) = sech(trt +D ),
~= —2+R, R2sin(b, g),
co, =2+R &R 2cos(hg),

(10)

R2 —R1T(t)= H(t)+CA(t)e "+
R2+Ri

A(t)
]+co /4Q

cos[y(t )]+ sin[y(t )]
2Q

(12)

H(t)=

4Q
'

4Q

1+ g (l )(at e 2~i+ D i e2~t+D) K =+2Q

1 — tanh(~t+D), Ial&2a
2Q

(13)

a(t ) is determined on the interval —~ to ~ by

A (t )sin[y(t )]
QS, (t )S,(t )

together with

tanh(~t+D )sin a t
Q S(t) S(2t)

(14)

(15)

for A(t) &1 or A(t)=1 with yWn~. The peculiar case

&0
for sin(a0) ' (16)

A(t)=1 with y=n~ will be discussed later. The con-
stants C and D and the angle p ( —rr & p & ~) are deter-
mined from the initial conditions I, (0)=I,0, I2(0) =I20,
and a(0) =a0 by the following relations:

1/24R, R 2I &0I20s (a0)

(R 2I,0+R ) I20 )
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QR ) R 2I IOI20
sin(P) =2cos(ao)cosh(D )

2 10 1 20

(R2I)0 R &I~o)
cos(P) = —cosh(D )

2 10 1 20

2R )R2a
C=cosh(D)

(R, +R )(R I, +R I )

CO

(R, —R2) cos(P)+ sin(P)

(17)
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FIG. 1. The relative phase a(t) vs dimensionless time com-
puted from Eqs. (10)—(18) for a =10, Rl =R2=30, 3 =0.99
(curves), and 3 =1 (horizontal lines). The initial conditions are
I =I =1 and ao= —8. 1', 8. 1, and 351.9'. The vertical dot-I io I2o an
ted lines indicate the jump transitions between the unstable
3 = 1 boundary lines. The adjacent phase trajectories are
unique for 3 (1.

(4a —Ir )

For a&0, the time-dependent amplitude A(t) decays to
0, so that I& 2 and o. undergo damped oscillations to
steady-state values. We will return to this general case
later.

III. SOLUTION FOR THE
~ PHASE- JUMP CONDITION

A. Form of the deterministic solution

For R „R2&0, K equals zero provided 60=nvr. This
condition on the backscattering phases will be referred to
as the vr jump condition. In this case, 2 (t ) is now a con-
stant which we call A. The solution for the intensities
given by Eqs. (10) factors into a steady-state oscillation
S, 2(t), an amplitude prefactor, and a factor T(t) which

R WRis only a transient decay term if R, =R2. For R, W 2,
this term also introduces a periodic modulation which
distorts the shape of the intensity oscillations, and which
causes eses the sum of the two intensities to oscillate.

ellThe anticorrelated intensity oscillations are we
known. ' 'k ' ' ' ' ' ' Earlier stability analyses of

bthe Langevin equations approximated the intensities y
power series in the laser gain, which to first order demon-
strated that oscillations occur in the intensities and their
correlation functions with frequency equal to 2R, for the
specia case ]

='
1 R, =R . This effect was verified experimen-

tally for the cw dye ring laser. Data and numerical
solutions of Eqs. (1) were presented to support a conjec-
ture that Eqs. (11) gives the correct form for co, for the
case 56I=O. Recently, a steady-state probability density
has been derived from the Langevin equations for the
cases (i) a, &a2 with R, =R2 and (ii) a, =a& with
R

&

=R ~ This solution relies upon a transformation2

whose effective eigenvalue has real and imaginary parts
1 to half our co and K. It is significant that this

transformation is valid even if R, WR2, although the re-
sulting probability density is not. A11 these results are

O4
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FIG. 2. Plots of the relative phase a(t ) and the dimensionless
intensities vs dimensionless time as computed from Eqs.
(10)—(18) for a =10, R

&
=R, =30, and initial conditions

I =Izo= 1 and a~=8. 1, 60', and 90' [yielding 3 =0.99 (large10 20

oscillations), 0.5 (small oscillations), and 0 (no oscillations), re-
spectively].

consistent with our equations. Comparisons will not be
drawn here with experimental and theoretical work con-
cerning oscillations induced by backscattering in solid
state and semiconductor lasers ' ' ' as the equations3, 8, 10, 37 tions of
motion for these lasers are somewhat different.

The shape of the solution for the relative phase a(t ) is
independent of R, and R2, which only affect the oscilla-
tion magnitude A. For 68=0, Eqs. (6) and (7) are even
in a; for every solution of these equations with initial

is another solution corresponding to the initial conditions
I I nd n~+a whose intensities are the same as10~ 20~ a 0

of thethe first solution, but whose phase is a reAection of t e
first about the line a=n~, as illustrated in Fig. 1. We
consider a to be a cumulative phase difference which is
not restricted to ( rr, rr) so that s—olutions for the initial
conditions ao and 2n m+ao are distinct curves. Figure 1

demonstrates that these solutions are distinct for 3 (1,
but overlap for 2 =1. In Fig. 2, we plot the intensities
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The A =1 solution is stable, marginally stable, or unsta-
ble when A, (t ) is less than, equal to, or greater than zero,
respectively. In Fig. 4 we plot A, (y)/co, and a(y) togeth-
er versus y. The stability behavior is exactly as expected.

0.2—

C. Correspondence with numerical solutions
of the Langevin equations
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II II
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We now compare these results with numerical solu-
4,40tions of Eq. (I) obtained by Monte Carlo simulations. '

Figure 5 shows the time evolution of the relative phase
a(r ) and the intensity I, (t ) during the course of several n.

jumps for 50=0. Horizontal dotted lines indicate the
3 =1 boundary lines. The amplitude 3 of the phase os-
cillations is seen to increase near a transition. A trajecto-
ry may reach the boundary and return along the same
trajectory (A), it may hover along the boundary and
slowly cross to a vr-shifted trajectory (B), or a rapid jump
may occur ( C). Due to the stability features of the A = I
trajectory discussed previously, large fluctuations away
from the boundary occur only as the system approaches
times which satisfy y=n~, such as at (C). Otherwise,
small fluctuations may drive the system back and forth
across the boundary without a resultant large excursion
away from it ( A ). Hence a distribution of time intervals
between jumps will show peaks when either intensity is
zero, which occur at times equal to multiples of n/co, .
Although phase jumps may occur at other times, they are
hard to identify, as their resultant excursions are very
small. These conclusions may be substantiated by numer-
ically computing a distribution of times TJ between
jumps by defining a jump to occur whenever a(t) passes

R

I

0 0.1

TJ (dimensionless time)

FIG. 6. The probability distribution P(TJ) of the time inter-
vals TJ between phase jumps, for a = 15, R

&

=R &
= 100, and

60=0, found through numerical integration of Eqs. (1), with
iteration step size = 0.00001. The distribution represents an
ensemble average over five elements, each contributing 1000 in-

tervals.

1.5
I
E

~~
CO

1 ~ 0 ——
O
CO
C

0.5 —-

= 10

= 30

through a hysteresis band centered on the 3 =1 boun-
daries. Figure 6 shows a distribution of the probability
P(TJ) of a jump occuring at time TJ versus TJ. Due to
large (90 ) phase fluctuations which occasionally arise
just before or after a jurnp, it is necessary to set the hys-
teresis bandwidth equal to 180. The form of the distribu-
tion is as expected. The dimensionless time between
peaks, 0.0157, corresponds to half the period of the inten-
sity oscillations. The small peak at TJ=O indicates that
jumps of n n. (n =+2, +3, . . . ) are possible, but very un-
likely for these initial conditions.

Previously it was shown that phase jumps occur when
R, +R2 =0. Although this is su%cient, the foregoing
analysis shows that equality of R, and R2 is not neces-
sary. Numerical simulations corroborate this. The mean
time between phase jumps ( T~ ) is dependent upon
a, R &, R2, and 649. Figure 7 illustrates the dependence
of ( TJ ) upon the pump parameter a and R, for R, =R2
and 60=0. Phase jumps occur more frequently when the

0
0

I I
I

/
I }

DIMENSIONLESS TIME

A

0.0
-10

100.

0 10 20
PUMP PARAMETER a

FIG. 5. Time evolution of the relative phase n(t) and the in-

tensity Ii(t ) from numerical integration of Eqs. (1), with dirnen-
sionless iteration step size equal to 0.000 01,
a = 10, R, =R2 =30, 68=0. The oscillation amplitude
grows near a phase jump, but may equal 1 without a jump
occurring, such as at ( A ).

FICr. 7. Dependence of the mean time ( TJ ) between phase
jumps upon pump parameter a and the backscattering
coefficient Rl =R2. The dimensionless iteration step size used
in the numerical integration of Eqs. (1) is 0.00001, and 60=0.
Due to the uncertainty in the ensemble average, the position of
these curves is uncertain to 10%.
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system is driven closer to threshold (by decreasing a or
increasing R

&
or R2) as the intensities have a greater

chance of becoming zero.

IV. PHASE JUMPS IN THE GENERAL SOLUTION

A. Noise driven jumps

l. m. jumps

a. Behauior of the deterministic solution In. the general
case for which b, 0&nn, phase jumps may still occur. In
order to demonstrate that the magnitude of these jumps
is still ~, consider the limiting forms of Eqs. (14) and (15)
as y ~n ~ and a t +D ~0 simultaneously:

+K
sin(ct ) =

( 2+ 2 )1/2
S

CO+
2 2 1/2(K +co )

(24)

4
Ch
Ch

3tD

L0
~~
Ch

tD
2--

E
U

A

I-
02 04 06

hO (deg)

FIG. 8. Dependence of the mean time between phase jumps
upon 60. Numerical integration of Eqs. (1) utilized
R, =R2=100, a =10, and a dimensionless iteration step size
equal to 0.00001. Each point is an ensemble average over five
realizations, and its error bar represents the standard deviation
of the five means. Each realization counts the time intervals be-
tween 1000 consecutive jumps.

The sign depends upon the direction from which we ap-
proach the limit. Hence, the general solution contains an
irremovable discontinuity in o; as in the 3 =1 case, and
its uniqueness is insured except for A (t ) = l. Although
the value of a before and after the jump is different from
the A =1 case, the magnitude of the jump is still ~, as
both sin( ct ) and cos(ct ) change sign. If ymn vr as
~t+D ~0, the phase undergoes a continuous transition
of magnitude ~ rather than a discontinuous jump, and
neither intensity reaches 0.

b. Comparison with numerical integration of the
Langevin equations. The preceding section demonstrates
that the deterministic instability which allows ~ phase
jumps to occur is still present for b, 9&n~. We now dis-
cuss the eff'ect of nonzero ~x~ upon the rate at which
spontaneous emission noise drives the system across its
unstable boundary. Equations (10)—(18) show that the in-
tensity and phase oscillations decay to zero at a rate
equal to x~, which in turn depends upon b, H, R, , and

Rz. Figure 8 shows the effect of this decay upon ( TJ ) as
a function of 60. Hence, random m. phase jumps can
occur even when the m.-jump condition does not hold, but
their frequency decreases with increasing ~1~~. Therefore,
in an experiment in which 60 cannot be held precisely at
zero, increasing R

& z may not decrease ( TJ ) but rather
increase it by damping out A(t). The effect of fluctua-
tions in b, 8 upon the distribution P(TJ ) is to increase
( TJ ) and to broaden the individual peaks, as their sepa-
ration depends upon 60. If the fluctuations are large
enough, P( TJ ) may be continuously distributed.

2. 2m jumps

a. Behauior of the deterministic solution Whe. n a ring
laser operates below or near threshold and it is strongly
influenced by stochastic noise, its phase may exhibit 2m

phase jumps which are associated with the momentary
unlocking of its modes. ' ' Although our solution is not
valid under these conditions, we may still examine it for
an intrinsic instability which may contribute to this
effect. Consider first the extreme case in which
b, 8=+a/2 (with f3&n~). Here, co, =0 and ~1~~ is at its
maximum, so a(t ) rapidly decays without oscillation to-
wards its asymptotic (steady-state) value of 2n sr+ m /2 for
Ag=+n/2 (cf. Eqs. 10—15). Hence, for fixed b, 9%0, the
steady-state values of a are separated by 2m. . The insta-
bility at t= —~/D is still present, but if the phase is
driven to this point from an initial steady-state value and
undergoes an n~ jump, afterwards it must evolve towards
another steady-state value shifted by 2nvr relative to its
initial one.

Consider the two curves for a(t) generated from the
initial conditions a+(t ~—oo ) = vr/2+o wit—h 5) 0 but
arbitrarily small. Initially close together, these tra-
jectories evolve to values separated by
2~: a+( t ~ ~ ) = ~/2+sr —More g. enerally, for the
family of curves of a(t ) generated from the set of initial
conditions a(t ~ —~ ) =2n~ vr/2 (analogo—us to Fig. 1,
but with b, g = —vr/2), the horizontal lines a( t )

=2nsr —~/2 are unstable boundaries which separate re-
gions whose asymptotic values of e differ by 2~. For
60= vr/2, the unstable boundaries are the lines
a(t ) =2nvr+~/2.

For 50& ~/2, oscillations in a can drive it across
these boundaries, so the direction of the phase jump is
determined by the behavior of cosa when t = —~/D. As
cos60 becomes large, crossings rapidly occur and the de-
cay to the steady state slows, so the dynamics become
those of ~ rather than 2m. jumps.

b. Comparison with analytical results from the Fokker
Planck equation. The boundary lines discussed in the
preceding section correspond exactly to the maxima of a
sinusoidal potential in which a hypothetical particle
(representing the phase) moves under the influence of
random noise. ' The positions of the minima of this
potential are separated by 2m and are the steady-state
phase values just discussed.

c. Comparison with numerical integration of the
Langevin equations Numerical soluti. ons to (1) establish
other correspondences with our analytical solution. They
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confirm that the phase jurnp is associated with an intensi-
ty becoming zero, which occurs at our instability. How-
ever, studies of the effects of backscattering on the in-
tensity cross correlation show that the intensities are pos-
itively correlated close to threshold. Therefore, whereas
~ jumps are associated with anticorrelated intensities and
a zero crossing of one field amplitude, 2m jumps are asso-
ciated with correlated intensities and zero crossings of
both field amplitudes. Although our solution does pre-
dict identical behavior for the two intensities when
b8=+tr/2 with R, =R2 and I,o=I2o, it does not allow
for both intensities to become zero simultaneously. A
distribution of time intervals between 2m jumps similar to
Fig. 6 reveals a continuous distribution with approxi-
mately exponential form, as expected for phase jumps
driven by random noise rather than the periodic zero
crossings of anticorrelated amplitudes. Numerical stud-
ies similar to those used in Fig. 7 show that these jumps
become more frequent with decreasing a and R, con-
sistent with threshold operation and a decreasing rate of
decay to the steady state, ~ir~. Finally, computations
similar to those used in Fig. 8 show that jumps near
threshold occur over a wide range of 60. We will not
discuss this in greater depth, as our solution has very lim-
ited validity in this region.

B. Transient deterministic jumps

In addition to these noise-driven jumps, the determinis-
tic equations alone allow for a single transient tr jump (or
transition) to occur for arbitrary b, 8. If the deterministic
systetn is started such that A(t ) initially evolves towards
its maximum (at t= lr/D) rath—er than away from it,
one of the following will happen there: (i) for y = n rr, one
intensity will become zero and a discontinuous jump
occurs, or (ii) for yXntr, neither intensity becomes zero
and a continuous transition occurs. Figure 9 shows plots
of I&(t), I2(t), and a(t) given by Eqs. (10)—(18) for these
cases. In Fig. 9(a), b,8= —4 and A(t)-=1 at the jump.
In Fig. 9(b), 68= —60' and A (t ) is never very close to 1.
The other parameters are the same for each plot:
Q = 10 R

&
=R2= 10 Ap=270 IIp=20, and I2p= 10.

Figure 9 also illustrates the effect of changing 60 upon
the period of the oscillations and their decay time. In an
experiment, it may be possible to generate a series of
jumps by operating the system far from threshold, but
continuously resetting the system to a state which will
evolve through A(t)=1. These jumps can be dis-
tinguished from the stochastic ones as the phase oscilla-
tions rapidly damp out and the system phase will lock
(compare Figs. 5 and 9).
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RI = (a+QR, R2~sin(68)~), j=l, 2
R)+R~

P=Pz —P, =b,8 8, + —for sin(b, 8)~w0 —.7T
(25)

For b.8~ n rr, Eqs. (25) give the mean values for the oscil-
lating intensities and phase. In Fig. 10 we plot I& (t ~ oo )

180 ——

0

-100 -50 0 50
A9 (deg)

100

FIG. 9. Time evolution of the relative phase a(t ) and the in-
tensities from Eqs. (10)-(18). If the system is started so that it
deterministically evolves through the maximum of the ampli-
tude function A (t ) then either a single (a) discontinuous phase
jump or (b) continuous transition occurs. The parameters used
to generate the curves are identical except that 60= —4 for (a)
and 60= —60 for (b).

C. Steady-state deterministic jumps

If sin(b, 8) is driven through 0 so slowly that the tran-
sients may always be considered to have relaxed to zero,
a deterministic phase jump still occurs at the zero cross-
ing. This is distinct from the transient response just dis-
cussed, as it is exhibited in the steady-state phase behav-
ior and only occurs when 60 crosses nm-. For t ~ Oo and
b,8%nrr, Eqs. (5), (10)—(18) yield

FIG. 10. Agreement between the dimensionless intensity I&

and the relative phase P computed from Eqs. (25) (solid curve)
and the ensemble averages for the intensity and phase deter-
mined by numerical integration of Eq. (1) (solid points) as a
function of 60 for R, =20, R2 =80, and a = 1. Each solid point
is an ensemble average over 10 realizations of Eqs. (1), integrat-
ed with dimensionless step size equal to 0.00001. The standard
deviations of the ensemble means are approximately 0.1 times
the size of the solid point.
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and P(t~ cc ) versus Ag for a =1, with R, WRz.
linearly follovs At9 except at a jump. Independent of
how slowly the zero of sin(b, 0) is crossed, a rt phase jump
must be present in the steady-state response.

D. Modulated deterministic phase jumps

If 60 is sinusoidally varied about 0 ( for D =0) in such
a way that the system never has time to fully relax, then
e exhibits a combination of the two forms of phase jumps
(or transitions) just discussed. Theoretical and experi-
mental work concerning this behavior is presented else-
where, ' but for completeness, we summarize the results
here.

(i) At slow modulation frequencies, the jumps occur
when AO=n~, and oscillations in the phase and the in-
tensities die out between jumps.

(ii) As the modulation frequency approaches co, the
transient response does not have time to decay before the
next zero crossing, so phase and intensity oscillations per-
sist. The periodic jumps no longer occur at AO=n~, as
the laser response lags behind the modulation.

(iii) The directions of the phase jumps in this case are
very sensitive to initial conditions, and are in this sense
chaotic.

(iv) For modulation frequencies on the order of co, (de-
pending upon the amplitude of the modulation), the
phase jumps abruptly cease, as A(t) is damped away
from 1. For still greater modulation frequencies, the
laser phase and intensities exhibit increasingly smaller
fluctuations about steady-state values.

The distinguishing characteristic of this case is that vari-
ations in both 50 and time affect the laser.

V. APPLICATIONS

A. Estimates of the mode intensities

For a&0, the steady-state mode intensities of the laser
are given by Eqs. (25) provided that spontaneous emission
can be neglected. Previous work led to an expression for
the sum of the average mode intensities resulting from
an analysis of Eqs. (1), which included the effects of noise,
but which required R

&

=R
& and the pump parameter to

be far above threshold. This expression is a special case
of Eq. (25). Recently, this result has been generalized
for arbitrary a. To illustrate the failure of our intensity
equations at low pump parameters, we superimpose upon
the curves of Fig. 10 the corresponding ensemble aver-
ages computed from numerical solution of (1), which in-
cludes the effects of the noise terms. The agreement fails
for small 60, as the effects of the noise terms are no
longer negligible. At b0 equal to 0 and 5', the disagree-
ments are 10 and 1 times the standard error of the ensem-
ble means, respectively. This disagreement at 50=0 de-
creases with a and is under 5% for a=10. The agree-
ment also improves with increased ~tr~, as the effect of the
backscattering is to increase the effective pump parame-
ter. '4

B. Estimate of the operating point of the laser

Equations (25) may be used in an experiment to deter-
mine R„R2, a, and 60 for a ring laser. This is useful,
as voltages or currents usually control these parameters,
but the actual parameter values may not be known. Even
if backscattering is facilitated by means of calibrated
retroreflectors external to the laser cavity, ' ' the cou-
pling of the retrorefiected beams into the cavity modes
cannot be precisely known, as it depends upon beam
geometry. The following is a method which allows for
the determination of the parameters through a series
of intensity measurements, and avoids having to esti-
mate mirror reflectivities, quantum efficiencies, or
retroreflected beam coupling. Inside the cavity, the
steady-state intensities are given by Eqs. (25). Outside
the cavity, a detector measures

I =g I, j=1 2 (26)

where g accounts for the optical losses from inside the
cavity to the detector, the detector's efficiency, and subse-
quent amplification and measurement of its output. Plots
of I, versus ~sin(58)

~
will be straight lines given by

I =m ~sin(bO)~+b (27)

with

q R a r) R QR&RzJ J J J
R )+R2 ' J R )+R2

j=1,2 .

Hence, we can obtain the ratio

QR, R~ j=1,2 (28)

For 58=nm, the intensities undergo steady-state oscilla-
tion with unscaled frequency A„which may be comput-
ed from a time record of the intensities. To convert to
the dimensionless frequency co„we use the relationship
between unscaled time t and dimensionless time t':

t'=&SB t (29)

R2(c) b, bz(c)c=
R2 b2b, (c) (30)

In order to determine c, we have assumed Eqs. (27) hold
and have utilized b values for both modes. Therefore,
the data sets for each mode are no longer independent in
any subsequent calculation involving c, and so we must
use only one set. Suppose we choose only the data set for

in which S is the additive noise strength and B is the sat-
uration coefficient. This will determine both a and the
product R &Rz. The scale factor can be experimentally
determined beforehand through a series of equal time and
time-dependent correlation measurements.

Suppose R2 is varied and several sets of data are
recorded. For each set, R2 is increased by an unknown
factor c, so that Rz(c)=cR2, and mz and b become
mJ(c) and b (c). The factor c can be determined from
Eqs. (27) by
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mode 1 and plot 1/b, (c ) versus c. This relation is

1

b, ala

Rze+
R, g&a

(31)

From a series of experimental measurements we can
determine the slope and vertical intercept for Eq. (31),
whose ratio for mode 1, 8'„ is

O', =R2/R, .

Then, from having already determined co„we have

Rz =co,+8', /2 .

Finally, we may calculate the ratio

bl 8'I

b2

(32)

(33)

(34)

Thus we have determined R „gl, g2, a, and the set of
R z values utilized in an experiment.

VI. COMPARISON WITH EXPERIMENTAL RESULTS

We now describe an experiment to verify several of
these results. Figure 11 illustrates the apparatus, which
is similar to that reported previously. ' ' ' The He-Ne
bidirectional ring cavity (made by Honeywell) has three
mirrors, two of which are output couplers and the other

is used to piezoelectrically tune the cavity to line center.
Portions of the exiting light waves are retroreAected into
the cavity with controlled amplitude and phase. A single
retroreAector consists of a variable liquid-crystal polar-
ization rotator positioned between two linear polarizers.
The second polarizer has a mirror coating on its exit face.
RetroreAector two is used to vary the phase by mounting
its second polarizer on a piezoelectric driver. A portion
of the remainder of the laser output is recorded by inten-
sity monitors [photomultiplier tubes (PMT) 1 and 2]
while the other part generates an interference pattern at a
beam splitter. The fringes are enlargened by lenses, and a
fraction of each fringe passing through a pinhole is
recorded (PMT 3 and 4). By adjustment of the pinholes
normal to the beam directions, PMT 3 and 4 can be made
to measure light intensities at different fringe positions.
Each PMT is an RCA 1P21 photomultiplier tube whose
output current is integrated, amplified, and converted to
a voltage signal. These signals are simultaneously record-
ed by four DSP Technology analog- to- digital converters
which have 12-bit precision and a 2-MHz bandwidth.
Time records of the intensities are read from these units
into a PDP-11/73 computer via CAMAC for subsequent
analysis.

The relative phase P(t ) is reconstructed from the four
recorded intensities in the following manner. Let I (t)
be the measured intensity at PMT j (j=1,. . . , 4). We
can show that

M=I

P R P M
8

««a ««0

PIT 2 I

PMT 3

RETROREFLECTOR 1

pz
RING LASER

e «~c ~ «mm «« ~

PHASE

~

- PZT

RETROREFLECTOR 2

/

~i LENS
/p

r~-
p

LENS

~

I
PINT 1

M

FIG. 11. The experimental apparatus. Each retroreflector consists of two polarizers (P), an electronically variable liquid-crystal

rotator (R), and an end mirror (M). The laser cavity and the mirror of retroreflector 2 are adjusted by piezoelectric tuners (PZT).
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I~(r ) =q„I, (r )+q„I~(r )

+2('931i)32I1 (r )I2 (r )) cos[It'(r )]

I4 ( t }= ri~,I i ( t ) +vl4zI z ( t }
(35)

+2(rl4, g~2I, (t}I2 (t))' cos[P(t)+A/],

where the g; account for beam splitter reflectivities, oth-
er optical losses, and detector signal processing. The
constants g; are determined by alternately blocking light
beams 1 and 2 while recording the intensities. Inverting
each equation separately determines the argument of
each cosine up to an overall sign. For fixed nonzero b,P,
comparison of these four arguments yields only one pair
which agree upon a value for P( t ). Alternatively,
cos[I))(t )+bp] may be rewritten in terms of sin[I|I(t )] and
c o[stI(It)]; then sin[/(t )] is determined and p(t) can be
reconstructed over (

—~, IXI ). In practice, $(0) and b, ItI

are determined at t =0 [when P(t) is slowly varying] by
choosing the positive arguments in Eq. (35). b, P is varied
by translating the pinhole for detector 4 as described.

In order to obtain measurements of the intensities and
P versus 68 a slow (20-mHz) sawtooth voltage is applied
to the piezoelectric driver in retroreflector 2. The four
intensities are measured, and P is reconstructed. Figure
12 shows the two measured mode intensities and P as
functions of 60. The sampling rate was 10 samples/sec
and the total sampling time was approximately 100
seconds. The horizontal axis is calibrated from the posi-
tions of the minima of the intensities, which are separated
by 180'. The sharp features at the minima are due to in-
complete sampling of the oscillations which occur there.
For these data, co, (at b,8=0) will be shown to be 20
krad/sec or 1.2 X 10 deg/sec, which is much greater
than the 4'/sec ramp rate for 60. Therefore, the steady-
state results are expected to hold except within approxi-
mately 0.2 of 60=nm. . The behavior of both the phase

and intensities is exactly as expected from the steady-
state equations [cf. Fig. 10 and Eq. (25)]. To examine the
behavior at a jump, we record the intensities at a rate of
10.ksamples/sec near At9=0 while ramping AL9 at 2 /sec.
The results of the measurement are presented in Fig. 13.
The horizontal scale is calibrated by performing an addi-
tional scan to obtain the separation between intensity
minima, but the absolute position of 60=0 is chosen to
coincide with the phase jump shown. Oscillations in the
intensities and in P die out completely by b, 0=0.2 .
Since oscillations persist for b, 8%0, the steady state is not
attained, despite the fact that co, is 3 X 10 times greater
than the rate of change of 60. On this scale, the jump
must be modeled as a driven jump (Sec. IV D) for which
transients persist. We will not pursue this case here, but
note that the intensity and phase oscillations are highly
correlated and build up to full scale at a jump, as predict-
ed.

In order to determine the operating point of the laser, a
series of 11 scans similar to that of Fig. 12 was made.
Following the procedure of Sec. V B, I is plotted versus
~sin(b, O) ~. Only at small b, 8 are all these curves linear, so
the values of m are extracted for 60(20'. Inconsistent
results for m are obtained at larger bO values due to
contributions from three mechanisms: (i) interferometer
drift during the course of a scan, (ii) intrinsic backscatter-
ing internal to the triangular cavity, and (iii) periodic
variations in R z due to slight displacements of the
retroreflected beam as the retroreflector mirror is
ramped. Extracting m near 60=0 insures that the mag-
nitudes R] and R2 have not varied from their values at
50=0, where the b~ are determined. R ] and R 2 are ac-
tually effective backscattering coe%cients, containing
contributions from the intrinsic backscattering of the
cavity. Numerical computations which include intrinsic
backscattering have been performed, and they predict
that (i) the mode intensities may peak at diff'erent 60
values and (ii) using their heights to determine the m re-
sults in inconsistent values for a [if it is calculated ac-
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FIG. 12. Plot of the experimental intensities (arbitrary units)
and relative phase vs 60. A linear ramp voltage is applied to
the mirror piezo of retroreflector 2 to vary 60. All data shown
were recorded on the same rising cycle of the ramp. The rela-
tive intensity scaling is that of the intracavity intensities, deter-
mined by dividing the measured intensities by the g, values.
Here, a =160, R& =190, and R2=2193.
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FIG. 13. Plot of the experimental intensities (arbitrary units)
and relative phase vs 69 in the region of a phase jump. The rel-
ative intensity scaling is identical to that of Fig. 12. The laser's
operating parameters are the same as in Fig. 12, except that
R, =510. The oscillation frequency is 1.7 kHz.
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FIG. 14. Plot of 1/b& vs e determined from the 11 sets of ex-
perimental data according to Eqs. (27) and (30), so to fit these
data to Eq. (31). Superimposed upon the data is the best-fit line
whose slope and intercept are 0.01095 and 0.00406, respective-
ly.

threshold, (b) of magnitude 2n. for b, 8 near +m/2 and the
laser near or below threshold; (ii) a single deterministic
transient m. jump or transition for arbitrary b, O; (iii) a
deterministic ~ jump in the steady state equations at
b,8=nvr; (iv) a series of m. phase jumps or transitions
driven by a deterministic source, which need not occur at
66=n~, and which abruptly cease for driving frequen-
cies on the order of the natural oscillation time of the sys-
tern, depending upon the amplitude of the modulation.

For AO=nm or for t = —~/D with y=nm. , the m. jumps
must be discontinuous and one intensity must reach zero.
Otherwise, continuous transitions occur: these require
one intensity to reach its minimum, but it will not be-
come exactly zero. Numerical work indicates that 2m

jumps are associated with positively correlated intensities
which are both near or equal to zero at a jump.

VIII. ACKNOWLEDGMENTS

cording to Eq. (28)]. These effects are observed in the
data from several scans, but are not as apparent in scans
with large external backscattering, as in Fig. 12. Al-
though such calculations may be used in principle to
determine the intrinsic backscattering characteristics,
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From the data set displayed in Fig. 13, A, is deter-
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in Fig. 13, Eq. (28) yields a =160 for both modes. We
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large backscattering and pump levels used in these exper-
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theory is still a reasonable approximation.

VII. CONCLUSIONS

Although our model is limited due to its exclusion of
additive noise terms, it compares well with the results of
numerical solutions of the Langevin equations and with
experiments, provided that the effective pump parameter
(which includes backscattering) is large. Not only is
steady-state behavior well described, but it gives much in-
sight into time-dependent effects not accessible through
the steady-state probability solution to the Fokker-
Planck equation corresponding to Eq. (1), especially the
phase-jump instability. This earlier work showed that the
condition R, +R2 =0 is sufficient for m jumps. This pa-
per demonstrates that the equality of R, and R 2 is not re-
quired, nor need b0 be zero for jumps to occur.

The following four cases of phase jumps may be
identified: (i) random jumps driven by stochastic noise (a)
of magnitude m for 60 near n~ and the laser far above
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APPENDIX: METHOD OF SOLUTION

The purpose of this appendix is to outline the method
of solution of the three nonlinear differential equations
(6)—(8). That their solution exists in the factored form of
Eq. (10) is due to the fact that Eqs. (6) and (7) share a
common nonlinear term. If this is not true, i.e., for un-
equal pump parameters or unequal self- and cross-
coupling coefficients, then the method discussed here
fails. (In these cases, the solution is quite complicated
and will be discussed elsewhere. )

The solution for 60=0 with R& =Rz is obtained by
first noticing from numerical work and experimental data
that the steady-state solution is oscillatory, and that the
modes are antiphase. This trial solution for S, and S2 is
substituted into an equation formed from the difference
of multiples of Eqs. (6) and (7) contrived so that both
T(t) and the nonlinear term cancel. This generates an
equation for cos(a) and the equation for co, . It is then
proven that this solution for cos(a) satisfies Eqs. (8). Sub-
stitution back into Eq. (6) or Eq. (7) yields a nonlinear
differential equation for T(t ) which can be solved by a
series of substitutions. For unequal R, and R2, the pro-
cedure is the same, but the calculations more complicat-
ed.

For 60%0, the difference equation is solved with the
assumption that 2 is a function of time. This yields a
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nonlinear differential equation for A(t), which can be
solved by substitution, and which gives the equation for

This solution is then shown to satisfy Eqs. (8). The
difFerential equation for T(t) is solved by using a trial
solution found by substituting A(t) for all A's in the
69=0 solution for T(t), and including in T(t) the arbi-

trary function H ( t ) [see Eqs. (12)]. A nonlinear
differential equation for H(t) is then generated. It must
be solved under the two separate cases indicated in Eqs.
(13) by substitutions. In all cases, the remaining con-
stants are easily determined from appropriate initial con-
ditions.
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