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The double-photoionization probability of many-electron atoms is calculated within the
independent-particle model. The sudden approximation approach and scaled hydrogenic wave
functions are employed. The electron-electron interaction is effectively taken into account by
screening parameters assigned to individual electrons. The interaction between the ejected electrons
and other atomic electrons is described by the respective relaxation energies. The results for He and
Ne agree well with the experimental data for photon energies greater than approximately twice the
threshold energy.

I. INTRODUCTION

The calculated probability of ejecting two atomic elec-
trons from an atom by a single photon depends strongly
upon the choice of atomic wave functions before and
after electron ejection, as well as on the correct descrip-
tion of the electron-electron interaction. The results ob-
tained by using sophisticated correlated wave functions
for helium' agree rather well with the corresponding
experimental data. These techniques (using, e.g. , creation
and annihilation operators) increase in complexity when
extended beyond He-like atoms. Therefore it seems
worthwhile to consider less sophisticated and more ap-
proximate Inethods based on the simple independent-
particle atomic model. The corresponding wave func-
tions are scaled hydrogenic ones. Here we present a sim-

ple approach, where the electron-electron interaction is
almost completely taken into account by screening pa-
rameters assigned to individual electrons. A similar pro-
cedure is common in the calculation of x-ray attenuation
coefficients, and in the plane-wave Born approximation
for the ionization of atoms by light ions.

The probability of ejecting two atomic electrons will be
calculated in the sudden approximation first proposed by
Migdal for atoms following /3 decay. The method was
elaborated by Levinger' and Green, " and extended to
multiple-ionization processes by Carlson and co-
workers. ' ' In order to avoid continuum wave func-
tions in the calculations, for the electrons from a particu-
lar shell Carlson calculated the probability wo of their
remaining in the same shell. The difference 1 LUO was
then the probability for transitions into the continuum, as
well as into excited but bound states. Aberg'" applied the
same method for the double K-L ionization. Using
Hartree-Fock wave functions, he obtained good agree-
ment between the experimental and calculated intensities
of satellite lines. ' Later measurements of LaVilla' indi-
cated that the sudden approximation results' are accu-
rate to within 15%%uo.

On the other hand, Carlson found that in the sudden
approximation the probability of ejecting two electrons
from the same atomic shell is considerably underestimat-
ed if independent-particle scaled hydrogenic wave func-
tions are employed. ' It was claimed that the main

reason for this deviation is in neglecting correlation
effects.

It is also the relaxation energy which significantly
inAuences the electron ejection probability. In the
present method we shall use elementary expressions for
the ejection probability into the continuum and extend
the k-space integration to the region where the electron-
electron interaction and relaxation effects are important.

II. THE MODEL

We shall calculate the double photoionization proba-
bility as a function of the photon energy within the fully
independent particle model of the neutral, or singly and
doubly ionized atom.

For a neutral atom, the Hamiltonian

Ho= g (p; /2m —Z/r, )+ g g 1/r,

is replaced by

H= g (p; /2m —Z, /r, ) .

In this transformation, the electron-electron interaction
[double sum in (1)] is approximated by a sum of central
field terms. As a result, the Hamiltonian in (2) is split
into the sum of single-particle scaled hydrogenic Hamil-
tonians, with the corresponding scaled hydrogenic wave
functions and single-particle energies as solutions. The
individual effective charges are given by Z, =Z —s, , with
s, the screening parameters, which can be easily calculat-

d 17—19

The electrons are then treated as fully independent
quasiparticles, each experiencing its own screened
Coulomb-like field, forming a special kind of fermion sea.
Atomic energy is given as a simple sum of independent-
particle energies W; = Z, /n, (in—rydbergs). The
difference between the model and experimental atomic
energies defines the correlation energy. For He-like
atoms, for instance, it is about 1 eV, almost independent
of Z.

The independent-particle Hamiltonians for an atom
which has lost one (say i =1) or two (i =1,2) electrons
are

40 6303 1989 The American Physical Society



6304 Z. SMIT, M. KREQAR, AND D. GLAVIC-CINDRO

H*= g (p, /2m —Z,*/r, ),
!—2

(2a)
—W, due to the post-photoeffect relaxation of all other
electrons in the atom. It can be expressed as

H**= g (p, /2m —Z,.**/r, ) .
!—3

(2b)
co

&

= —
W& + g ( W,

* —W, ) .
!=2

The respective effective charges and energies are Z,*,
Z,*' and 8", 8'**. We shall also need the ionization
thresholds for ejection of one (i = 1) or two (i =1,2) elec-
trons, given by the difference in atomic energy before and
after ionization:

co, =g W,
*—g W, ,

!=2

co&= g W;**—g W, .
!—3

(3a)

(3b)

H'= g (p; /2m Z,'Ir, )—+1/r, 2 . (4)

The promotion of a particular electron therefore leads
to a sudden change of the individual effective charges
from Z, =Z —s, to Z =Z —s,

' and hence to the sudden
change of the respective electron states.

In the lowest-order approximation, the probability for
the ejection of the shakeoff electron is given by

w= kO dk.

Here ~0) denotes the initial state of the shakeoff electron
experiencing nuclear charge Z —s2, while ~k) represents
the final state of the same electron experiencing the
effective nuclear charge Z —s2. These states, being eigen-
states of different independent-particle Hamiltonians (2)
and (4), are not fully orthogonal which makes the matrix
element (k~0) different from zero.

The k space over which the integration (5) extends de-
pends not only upon the photon energy transfer but also
upon the available range of energy t, of the ejected pho-
toelectron. To express their dependence, we first consid-
er the one-electron photoeffect. There the matrix element
is obviously calculated for the energy

t;=&@+81 . (6)

Here co is the photon energy and W, the hydrogenic
independent-particle energy of the photoelectron. The
single ionization threshold co, (3a) is, however, lower than

The absorption of a photon of energy co promotes a
particular (i =1) electron out of the fermion sea. The
electron then no longer behaves as a fully independent
quasiparticle deep in the fermion sea but interacts with
other (i=2) electrons via the I/r, ~ term. This interac-
tion is responsible for the eventual ejection (shakeoff) of
the i =2 electron from the atom. It is also evident that
the interaction term is most effective for an electron pair
belonging to the same atomic shell.

Since the I/r, z term in (1) no longer contributes to the
formation of average independent-particle fields, its con-
tribution to the effective charges Z; has to be excluded.
Transforming the remaining i/ri terms within the cen-
tral field approximation we define a new model Hamil-
tonian

Since Z )Z, , the sum in (7) is negative. Its absolute
value represents the relaxation energy due to the ejection
of the i = 1 electron. It is convenient to include co, in (6):

The energy t, is therefore negative for photon energies
close to the threshold. However, to attain positive states,
the energy missing is supplied later through collisions
with other (i ) 1) electrons at the expense of the relaxa-
tion energy.

For the two-electron photoeffect, the energy relation
required for the calculation of the matrix element (5) is a
generalization of Eq. (6):

t1+ t2 =CO+ 8"1+ 8 2 (9)

+( W', —W, )+( W2 —W~) . (10)

The absolute value of the sum in (10) is evidently the re-
laxation energy available after the ejection of i =1,2 elec-
trons. The last two terms represent the contribution of
the interaction between the i' = 1,2 electrons.

It is reasonable that the lowest value of t, is close to
that for single photoeffect and therefore to the respective
single-photoeffect relaxation energy. This implies that
the relaxation energy in (10) is approximately equally
shared between the two electrons. Introducing the relax-
ation energy sharing factor a and using (3b), the lowest
value of t, can be expressed as

t, ~a g ( W,
*'—W, ) =a(co2+ W, + Wp) .

!=3

We shall further assume that the relaxation energy ex-

The sum t, +t2 is fixed for a given co but the available
ranges of individual values of t, and t2 may be consider-
able. In the following we shall determine the range of t2,
which in turn defines the integration limits in (5). We ex-
pect that Eq. (9) is valid when the interaction term 1/r, 2

is strong in comparison with the mean electron-electron
interaction. This condition is obviously fulfilled if both
ejected electrons are from the same shell, but not other-
wise. The case where the two electrons are ejected from
different shells will therefore not be considered in the
present study.

We shall first determine the lowest possible values of t,
and t2. For photon energies approaching the threshold,
the respective ranges of t, and t2 gradually decrease until
they finally converge into single values. Since the double
photoeffect is then just possible, these limiting values of
t, and t2 are also the lowest possible.

With the threshold energy co& (3b), Eq. (9) is rewritten
as

t, + t 2
= co —co~+ g ( W,

"*—W; )
!=3
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perienced by a particular electron is proportional to the
respective relaxation energy for the single photoeffect.
The values of a are thus typically —,', though they may be
significantly different for an electron pair belonging to
different subshells. Equation (11) also shows that t, may
extend to negative values, but not for He-like atoms
where the corresponding relaxation energy is zero. We
find the lower limit for t2 from the lowest value of t, + t2
as follows from (9) by setting co~coz and inserting (11):

t~~(1 —a)(coq+ W, + W~)+( W, —W, )+( W2 —W2) .

(12)

The absolute value of the first term in (12) is now the re-
laxation energy available to the shakeoff electron and ob-
viously vanishes for He-like atoms. The last two terms,
as in (10), take into account the interaction between the
ejected electrons.

The upper limit of t2 also depends on the lowest possi-
ble value for t, . As follows from Eqs. (10) and (11), it is
given by an expression similar to (12), except that co~ is
restored to co. Since the matrix element in (5) is a rapidly
decreasing function of t2, an accurate value for the upper
limit is not so important.

III. THE CALCULATION

By expanding the Coulomb wave function in (5) into
partial waves and realizing that contributions other than
monopole vanish, we obtain for the K-shell shakeoff pro-
cess:

(k ~0) = Sw— f R&o( kr )e t'"r dr .( Z )3/2

(Z —s') (13)

8 for K shell

A(p, k)= ~ 1 —p /4+k for L, shell

p (1+k2)/3 for L23 shell,

The screening parameters for the bound state ~0) and for
the final state ~k) are s and s', respectively. The parame-
ter p is defined as (Z —s )/(Z —s').

The Coulomb function in (13) is normalized as
Rqo(kr, k ~ ~ ) =sin(kr)/kr Integration . was per-
formed using the method of Zernik (note the different
normalization there). Formulas given in Refs. 1 and 3
might also be used, though in Ref. 3 the dependence of
the probability w on s and p is not so explicit.

The derivation of (13) for the L-shell shakeoff process
is analogous and can therefore be omitted here. Multi-
plying (13), or the corresponding formulas for the L-shell,
by the density of available states we find general expres-
sion for the shakeoff process from the K or L shell:

w=4p (p —1)

fX A(p, k)
max

—4arctan(nk/p) jk

( 1 e
—2nlk)( 2/n 2+ k2)2(n +1)

d(k )

(14)

with n =1 and 2 for the K and L shells, respectively.
Integration limits, as follow from (12), are

k;„=(1—a)co2/(Z —s') +2(ap —1)/n

(15)

k,„=(co—co~)/(Z —s') +k

Here we have used the rydberg as the energy unit and the
Bohr radius divided by Z —s' as the length unit.

The values of k are negative at the lower end of the
integration interval. According to Ref. 8, the normaliza-
tion factor 1 —exp( —2m/k) is then set equal to 1. For
arctan of the complex argument we use the identity
arctan( ix ) =i arctanh( x ).

In the limit of high photon energies, the probability w
scales as (p —1) =[(s—s')/(Z —s')], in qualitative
agreement with previous results. ' ' For low photon en-
ergies and p = 1 we obtain for the K shell:

w =32e (p —1) (co —co2)/Z (16)

This result agrees well with those of Wannier ' and
Rau where the behavior of w close to the threshold is
proportional to ( co —

coz )", the power r being slightly
greater than 1 due to the electron-electron interaction in
the final state.

The double ionization of helium is of particular interest
for the present approach, since comparison with other

and experimental datai2, 23 —2s is possible.
From the experimental binding energy and the relaxation
energy Z —(Z —s ) for the one-electron photoeffect, we
find the screening constant s =0.296. For He-like atoms,
s =0 c02 = 8

&
+ 8 2 and the lower integration limit

simplifies to

k;„=2(p —1) . (17)

Values of w for different photon energies were calculated
by numerical integration of (14). In the present approxi-
mation, w is equal to the ratio of the double- to total-
ionization cross section. The ratio of double- to single-
ionization cross section o ++ /o. + is then given by
ut /(I —w ). Figure 1 shows that the present results agree
well with the experimental data, and with the calcula-
tions of Carter and Kelly and Tiwary for photon ener-
gies greater than approximately twice the threshold ener-
gy. For lower photon energies, however, the sudden ap-
proximation method evidently yields too-steep behavior.
It might be argued that the change of screening should be
effectively smaller than s —s' since the photoelectron es-
capes from the atom with a velocity which is small com-
pared to the shell velocity.

For high photon energies, the cross section ratio is
4.98% which seems reasonable in Fig. 1. It should be
noted that choosing the screening constant as s= —,', —as
follows from the variational procedure as well as from the
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FIG. 1. Double- to single-ionization cross-section ratio for
He. Present results are shown by a bold line; the numbers on
thin curves are the same as in the list of references. Experimen-
tal data: X, Carlson (Ref. 12); '7, Schmidt et al. (Ref. 23); 2,
Wight and Van der Wiel (Ref. 24); H, Holland et al. (Ref. 25}.

independent-particle model in the completely uncorrelat-
ed case —would make the high-energy limit 5.87%. This
value exceeds the maximum of the corresponding values
reported in Refs. 5 and 6 by 10%. The high-energy limit
should probably be reduced by a factor of 2 for very high
(but not relativistic) energies according to the asymptotic
calculation of Aberg and Amusia et al. As shown in
Ref. 4, at very high energies events prevail where each of
the ejected electrons receives half of the photon energy.
Momentum conservation requires that the electrons quit
the atom in opposite directions. These processes indicate
gradual breakdown of the shakeoff model for very high
photon energies.

For the double L-shell ionization, we can compare our
results with the experimental' ' and theoretical
data on neon. This example also demonstrates the
importance of assumption (11), since setting t, ~0 would
lead to singularity in m.

The total probability for the L-shell shakeoff' process
was obtained from the sum of statistically weighted prob-
abilities for particular subshells. The relative single-
ionization cross sections for 2s and 2p subshells were tak-
en from the work of Chang and Olsen. ' The energies m2

were calculated using the Dirac-Fock values of Maurer
and Watson and the experimental binding energies of
Sevier.

The factors a (11) for an L, —L2 3 electron pair were
0.42 and 0.58, respectively, and 0.5 otherwise. Due to the
uncertainties in a, our results are uncertain not more
than a few percent, since the uncertainties in partial
shakeoff probabilities tend to be mutually canceled out.

Screening parameters were calculated according to the
simple model' which does not distinguish between 2s
and 2p electrons. From the total energy of the neutral Ne
atom calculated from the tables, ' we obtained s=4. 11
for the initial state. For the final state, the screening pa-

rameter was calculated from the independent-particle
part of the Hamiltonian (4). The 1/r, z term was treated
as a perturbation and therefore neglected. According to
the models, ' ' the total L-shell energy EL in (4) is given
by

EL =2(Z —2x —6A, ) /4+6(Z —2a. —7A, ) /4 . (18)

20
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FIG. 2. Double- to single-ionization cross-section ratio for
Ne. Bold line, present results; hexagon, calculation of Chang
et al. (Ref. 28); 1, calculation of Chang and Poe (Ref. 29); 2, cal-
culation of Carter and Kelly (Ref. 30}, dipole length (upper
curve) and dipole velocity approximation (lower curve). Experi-
mental data as in Fig. 1; asterisk, Lightner et al. (Ref. 26};
closed diamond, Samson and Haddad (Ref'. 27).

Here the first term represents the energy of i = 1,2 atomic
electrons and the second term the energy of the remain-
ing six. The parameters ~ and A, are contributions of a
distinct E and L electron, respectively, to the L-shell
screening parameter. Since the interaction term in (4)
was assumed to be small, EL can be set equal to the cor-
responding Dirac-Fock value obtained from the
tables. ' With ~=0.95 deduced from the energies we
find s ' =2~+ 6A, =3.866.

The cross-section ratio o.++/o. + as a function of the
photon energy is shown in Fig. 2. The present calcula-
tion gives —as in the He case —values which are too large
for low photon energies. The high-energy values seem to
be overestimated according to the measurements of Hol-
land et al. , but less than the corresponding values of
Refs. 28-30. The kink at 87 eV, also indicated in the
measurement of Samson and Haddad, is the L, —L3
threshold.

The sudden approximation method being sufficiently
efficient in the case of helium and neon, can be used fur-
ther to calculate the double to single ionization cross sec-
tion ratio for heavier elements as well. Results for the
double Kshell ionization are shown in Fig. 3. The
screening parameters s =0.3 and s' =0 were used for the
elements heavier than He. The energies co& up to Ne were
calculated according to the atomic model. ' For heavier
elements, the energies co, from the tables were used and
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tion measurements on Cu (Ref. 35) yield the E-shell dou-
ble ionization probability which is by an order of magni-
tude higher than the corresponding values in Fig. 3. The
difference is due to the parallel ionization-excitation pro-
cess (shakeup) which for these measurements cannot be
distinguished from the proper double ionization into the
continuum.

IV. CONCLUSION

0.0 I I I I I I

5 10 50 100

FIG. 3. High energy limit of 0.++ /o. +, normalized to
(s —s') /Z, as a function of Z.

The independent-particle atomic model provides a use-
ful estimate for the two-electron photoeffect. Based on
simple principles it yields results which (in case of helium
and neon) are comparable to those of more rigorous cal-
culation. The use of independent-particle wave functions
suggests that the concept of screening accounts well for
the many-body effects in the atom.

a simple approximation for the energy difference cu2
—2~,

was introduced.
Photon-induced hypersateHite spectra measured for

several elements from Ti to Ni (Ref. 34) and the absorp-
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