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First correction to the nonrelativistic Compton cross section
in the impulse approximation
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A correction to the nonrelativistic double differential Compton cross section within the frame-
work of the impulse approximation is discussed. An expression for a first correction is found. The
expression explains the asymmetry that is obtained in experiments where the Compton profile is
measured.

I. INTRODUCTION

Within the framework of the impulse approximation,
the nonrelativistic double differential Compton cross sec-
tion is proportional to the Compton profile. ' The
Compton profile J(p, ) is a symmetric function with its
maximum value centered on p, =0. However, experi-
ments show sma11 deviations from this picture. Measure-
ments of the Compton profile result in an asymmetry.
Theoretic attempts exist to explain this efFect by an exact
first Born approximation. ' In the present paper we will
use another method to explain this effect theoretically.
The method is based on the idea of an operator expansion
introduced by Eisenberger and Platzman. The result of
this method is then used to study the asymmetry in the
Compton profile. The asymmetry can be defined as

[J(p, )
—J( —p, )]/J(o),

where p, )0, and is of the order 1 —2 % in the region 0—2
a.u. '

Section II takes a closer look at the validity of the use
of plane waves in the final states of the electron. In Sec.
III an expression for a first correction to the differential
cross section is elaborated. In Sec. IV this expression is
tested, using momentum transforms of wave functions for
hydrogenlike systems. This test is performed on alumi-
num. In spite of the use of simple hydrogenlike wave
functions, the result agrees quite well with experiments
where the asymmetry is measured. Section V deals with

I

the validity of the impulse approximation. Section VI is
a summary.

II. VALIDITY OF THE USE OF PLANE WAVES
IN THE FINAL STATES OF THE ELECTRON

In this section, and throughout this paper, we will as-
sume natural units, i.e., c = 1 and A' = 1. Compton
scattering will involve an incident and a scattered pho-
ton. Let us denote the momentum and energy of the in-
cident photon by k and co, respectively. The momentum
and energy of the scattered photon will be denoted by k'
and co', respectively. The nonrelativistic double
differential Compton cross section can be written as

X 5( eg —E; + co' —co ), (1)

where ~g&) represents the final and ~hatt, ) the initial state
of the electron, and cf and c.; the energies of the electron
in, respectively, the final and initial state. Furthermore,
ro is the classical radius of the electron, 0' is the scatter-
ing angle, and q stands for k —k'. [The quantity q

=
~q~

can be written as (k —2kk'cos9'+k' )', or as
(co —2coco'cos8+co )'r, since k k'=kk'cos8'. ] Expres-
sion (1) may be rewritten. Since we assume wave func-
tions in the central-field approximation, we can use the
relation Htti=Eitt, and write Eq. (1) as

d20-

dQ) dA
1+cos ~ y 1 I dt ( q )

—iq r)q ) ( q (

iHt iq r —iHt)q ) t(co' cu)t—
Q) 2 f 2 7T

(2)

where we have used the well-known integral representation of the 6 function. Since we are dealing with Compton
scattering of photons, ~i'&�) will stand for a continuum state. The continuum states form a complete set together with
the bound states. This means that we can sum up the continuum states as follows:

d20-

Gco dA
—iq r iAt iq r —iHt

2 2'

; e iq r e IHte l q re —iHt
- e l(M —M)t

J

which can be rewritten as
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d2c

dt's dQ

2"0~ 1+cos 0'

co 2
1 dt(p;le i—q rei t"etq re iHtl1(t;)ei(m' —m(t

27T

—& I ( 0, I

e"'Ig, ) I'&(E, —8;+~' —~)

where
l g ) stands for a bound state, and e its energy. The last term in Eq. (4) can be removed, since

co ~ co+a, =co—ez in the case of Compton scattering. (The energy Ez is the binding energy of the electron in the initial
state. ) Thus the Compton cross section can be written as

d20-

dco d0 I dt ( q I

—iq riHt -t qr '—
iHtlq ) t(cu cu' )—t

CO 2 2&

The essential feature of this expression is that we have eliminated the continuum states which is the essence of this
work. The advantage one gains by eliminating the continuum states ought to be quite clear because of the diSculty of
working with continuum states.

An interesting point can be deduced from expression (5). Let us insert a complete set of plane-wave states in Eq. (5)
as follows:

1+cos
dt y 1 (q I

—iq rl tp.
' r)( ip .

rl i'Ht iq r —iHtlq ) t(cu —cu)t'

dao'd 0, '
m 2 2m —,V

P

(6)

Here, V is the normalization volume. The Hamiltonian of the electron 8 can be written as B=Do+ V, where
go =p /2m is the Hamiltonian of a free electron, p= —i V, and V the potential (which is isotropic in the central-field
approximation). If we make use of the approximation

exp(i8t ) =exp(iPot )exp(iVt ),
which gives the approximation exp( iVt )e—xp( iHot ) of th—e operator exp( iPt ), we c—an let the potential cancel out
in Eq. (6), since exp(+i Vt ) and exp(+iq r) commute. If we do so, and use the relation

Aoexp(ip r) =(p. /2m )exp(ip r),
expression (6) can approximately be written as

d 0'

dc' dA q p' —
q /2m+co' —co

co 2, V m

Let us now use the well-known rule
3

lim —y = Id'p,v- V 27T
P

and perform the substitution p =p' —q, and rewrite Eq. (7) as

d2
J d ply(t, (p)l 5 q p+q /2m+to' —co

m
(9)

g;(p)= 1

2' Jd rg;(r)e (10)

The expression in Eq. (9) should be recognized as the usu-
al expression for the nonrelativistic Compton cross sec-
tion in the impulse approximation. The interesting point
here is how we arrive at this result. The insertion of a
complete set of plane waves in Eq. (5) is not an approxi-
mation. Consequently, when comparing Eqs. (2) and (6),
the use of plane waves in the final states of the electron is
obviously not an approximation. The potential cancella-
tion, first introduced by Eisenberger and Platzman, is
the only approximation that has been carried out. The

where g;(p) is the momentum transform of g, (r), and
can be written as

3/2

fact that one can, at least within the framework of the po-
tential cancellation, choose final states of the electron in
the form of plane waves without undertaking approxima-
tions, is entirely due to the completeness of the plane
waves. The completeness of the plane waves would be
the reason why the impulse approximation to a large ex-
tent works extremely well rather than the plane wave it-
self being a proper description of the final state of the
electron. Because, if the plane wave is a proper descrip-
tion of the final state, i.e., a good approximation of the
final state, one should get an accurate result only by re-
placing (g&j and E& in Eq. (1) with (1/V)'~~(e'p 'I and
p' /2m, respectively, and sum over p'. However, this
operation will give a less accurate result. This must be
credited to the fact that the potential is not properly can-
celed out of the energy for the initial and final states.
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Furthermore, one cannot say that a cancellation of the
potential makes the plane wave become a good descrip-
tion of the final state as this argument would also justify a
plane wave in the initial state of the electron. Thus the
use of plane waves in the final states is entirely justified
within the framework of the potential cancellation. The
reason for this is not that the plane wave is a good ap-
proximation of the final state, although this seems to be a
rather common view of the matter. The reason is ap-
parently more subtle. However, the plane wave will, of
course, be a proper description of the final state when the
energy of the ejected electron is large compared with the
binding energy of the active electron because the
inAuence of the potential will be less important. This is
also the requirement for the application of the impulse
approximation. But here due to the fact that one takes
into consideration a potential in the final state, it is ap-
parently possible to allow the ejected electron to have en-
ergies for which the final state starts to be badly de-
scribed by the plane wave.

ue' '=e''i' q p+q /2m+u1

m

we are able to obtain

e ' 'e' 'e'~'e ' '=exp i —q p+q /2m t X, (12)
m

where

X=exp( —iq pt/m). exp i q p+H t e
m

(13)

in Eq. (6). However, we will start from expression (5),
and consider the approximation of

exp( —iq r)exp(iut )exp(iq r)exp( iH—t )

to try to find a correction to the usual nonrelativistic
Compton cross section in Eq. (9).

The quantity exp( iq—r)exp(iut )exp(iq r).exp( —iHt )

in Eq. (5) can be rewritten. Using the operator relation

III. FIRST CORRECTION TO THE DOUBLE
DIFFERENTIAL CROSS SECTION

According to the preceding section, if we want to look
for a correction term to the cross section in Eq. (9), it is
only necessary to consider the approximation of

exp(iut )exp(iq. r)exp( —iHt )

Here, we have used the fact that q commutes with q p
and H. If we now use this, and

' 3/2

g;(r)= f d'p P;(p)e' ',1

277
(14)

where g, (p) is the momentum transform of P;(r), we are
able to write Eq. (5) as

4
d2C7

dc' dQ
d'p d p'; p; p' dt e' ' X e'~' exp i —qp+ p t, ]5

CO 2 2'
~here W=q'/2m —(~—~'). Our intention now is to find an approximation to X'. Expanding the first three terms
will be as follows:

X'=1+—"
2!

r, u +-. q.p it
m

' 3!
—;qp, —;qp,u +;u, —;qp,u

m m m
+ ~ ~ ~

=1+——i t V +-it . q-p it
2! m

' 3!
;qpt, qp V + « -2;qp

m
'

m 2m m
+ ~ ~ ~ (16)

where [, ] stands for the usual commutator. Here, we might just take the term it [ i q pt /m, V]/2—! as a first correction
to expression (9). [If we just put X= 1, we will, of course, obtain expression (9).] However, in this case, we have to con-
sider a whole expansion series of X as a first correction, and the series is

itX =—
2!

—lq pt, v + lt
m

' 3!
qpt, qpt V + t;qpt, qpt, qpt V
m

'
m 41 ' m m m

+ ~ ~ ~ (17)

where higher-order terms would contribute. The reason
why all the terms of this series would be important is the
momentum transfer q=~k —k'~. Since we are only in-
terested in a first correction term to expression (9), the
impulse approximation is still assumed to work well,
which ought to mean that the momentum transfer
q = ~k —k'~ must be large. Thus, in this case, we would
look for an expansion to X', where the first term contains
the factor I /q, the second ( I /q ), and so on. (The
zeroth-order term is 1.)

Returning to Eq. (15), the time t that appears in the
terms in the expansion of 2, can be eliminated by deriva-
tion with respect to W' in expression (15}, since W is a
constant quantity. Assuming that q p can be written as—qp„we will obtain the fi function 5( W —qp, /m ) in Eq.
(15). Let us also assume that we can retain this 5 func-
tion, until we are able to perform an integration, which
removes the 6 function. On the basis of these assump-
tions, after the integration, we are able to put
8/BW=(m/q)(B/Bp, ). This last equation tells us that all
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terms of X] contribute in the first order with respect to
1/q. The operator X, can be rewritten into a more con-
venient form as follows:

n

itX&= g exp —i tA,
, (n+1)!, BA. m 1

2K
dr, re

function P, (r) can be written as R„&(r)YI (H, $), where n,
l, and m are the usual quantum numbers, and Y& stands
for the spherical harmonic function. The momentum
transform of g;(r) can be defined as follows:

3/2

X Vexp i tk (18) =( i )'—X„,(p)Y, (Hp, pp), (20)

The term [ip t/2m, [—q pt/m, i Vt]]/3! in Eq. (16) con-
tributes in the second order with respect to
1/q. This term belongs to a series, where all terms will
contribute in the second order. The term
[ip t/2m, [ iq. pt—/m, iVt]]3! is the only one that will
be considered in this paper; see Sec. IV. Let us denote
this term by Xz. Since [q p, p ]=0, we can rewrite Xz as

2

where p, H&, and P are the spherical coordinates in
momentum space,

' 1/2

X„I(p)= — f r dr R„t(r)jt(pr), (21)

and jI stands for the spherical Bessel function. If we now
use Eq. (20), the addition theorem '

it itX2= —2—
3! 2m

[q.p [p' Vl] (19) 2I+1
Y,

*
(Hp, ,y, )Yt (.Ht„y, )= P, (p p'/pp'),

Let us approximate X with X=1+X,, and try to ela-
borate a first correction to Eq. (9). The calculation will,
in the present paper, be restricted to completely occupied
shells. In the central-field approximation, the initial wave

I

(22)

where PI stands for the Legendre polynomial of degree l,
and set X'= 1+5'„expression (15) can be written as

d2(r

d6) dO

2"0 1+cos H' 2l+1 f d3
l ( )lz&

1 + W
CO 2 4n m

4

+
~ o ~ 1+cos 0' 2l + 1

Cc) 2 4'
1

2w f d'p f d'p'X. t(p)X.t(p')»(p'p /pp )

X f" dt(e' 'lX, le' ')exp i —q.p+W t
oo m

(23)

for a completely occupied shell. Here, the spin is not included. Let us define the usual Compton profile for a complete-
ly occupied shell as

Jo(p. )=— f d p lX„ (Ip)l 5 —q.p+ w = f pd2pl X&(p)l4~ (24)

q 21+1

The first correction to Jo, which also will be a function ofp„ is now defined as
4

f d p f d p'X„,(p)X„I(p')Pt(p. p'/pp') f dt(e'~'lX, le'~")exp i —
q p+ W t (25)

The double differential Compton cross section can now be written in quite a simple form as follows:
2

d o. ~o~ 1+cos 0' m
J(p, ),den'd 0' co 2 q

where

(26)

J(p, ) =Jo(p, )+J&(p, ) . (27)

The last task now is to make J, (p, ) as simple as possible. Using Eq. (18) in expression (25), we are able to show the
following:

n

1J( )=~
(n + 1)!

C(A. )
8

(28)

where
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4

f d p f d p'X I(p)X i(p')Pi(p'p'~pp')

X f" dt(e'~'IVIe'~')exp i q (p —Ap+Ap')t+iWt
OO m

(29)

Expression (28) can be rewritten in a more convenient form as follows:
' n

00
1

J)(p, )= g
2

n~ f C(A')d .A' . = f C(A, ')d k' —f C(X')d A.
' —C(0)

0 x=o 0

= f dA. C(k) —C(0),
0

(30)

where we have simply made an identification with a Taylor-series expansion. We will now focus our attention on a
simplification of C(A, ). Using the momentum transform

' 3/2

V(p) = 1

2m f d r V(r)e (31)

we promptly get

8 g 2l + 1

BR' m 4w

3/2

f d'p f d'p'X„, (p)X„,(p')P, (p p'&pp')V(p —p')& —q (p —gp+gp')+ W

(32)

from Eq (29) In this case the integration order is not important. Thus we can do the change p —p to p, and write
Eq. (32) as

C(k) 8 q 21+1 1

88' m 4m, 2m.

3/2

fd'p fd'p'x. I(p)x.I(Ip'+ pI)PI ', v( —p'» q (p+~p')+ wp (p'+p)
p Ip'+pI m

(33)

8 ~ 21+1
88' m 4m f d'p ~ q p+ w fd'p'x. I(Ip —~p'I)x. I(Ip'+p —~p'I)

The next step is to do the change p+ A,p' to p, which results in
3/2

1

2'

(p —
A p' ).(p'+ p —kp')

Ip
—A.p'I Ip'+p —xp'I

Let us now use the fact that the potential V is isotropic in the central-field approximation, i.e., V(r)= V(r), and
V(p)= V(p). Since we integrate over the whole p' space in Eq. (34), we are able to make the choice p p'=pp'cosO.
Utilizing this choice, we can show the following:

1/2

C(~) 8 q 21+ 1

B8 m 4~

where

1

2m f d p 5 —q.p+ W f dt f p'dp'X. I(pI )X«(p2 )Pi[(pi'+pz' p') ~2pIpz] V(p')

(3&)

and

p', =(p +A, p' —2App't)'i (36)

pp=[p +(1—A, ) p' +2(1 A)pp't]'i2 .—.

Now, since we also integrate over the whole p space, it is possible to make the choice q p= —qp„and obtain

C(A, )= (2n)' f p dp f dt f p' dp'X„I(p, )X„l(p2)Pi[(p, p~ —p )/2pip~]V(p ),

(37)

(38)
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where m, m
p, =—IV= —,'q ——(co —co') . (39)

The definition of p, in Eq. (39) is the one usually chosen. Using this definition, we can perform the derivation regarding
W' in expression (38), and finally get

C(&)= —p, — (27r)'" J « f p'dp V(p )X.i(pl )X.i(p2»i[(p''i+p2 —p')/2pip2]'q 4~ —1 0
(40)

where

and

p, =(p,'+X'p' —2',pt )'", tern can be written as

V(r) =- E,
(46)

p3=[p, +(1—
A, ) p +2(1—k)p, pt]' (42)

Here, we have simply used the notation p instead of p',
since p, replaces p after the derivation in Eq. (38). The
expression in Eq. (40) is the important one in this paper,
together with Eq. (30). These expressions make it possi-
ble to calculate a first correction to the double differential
Compton cross section in the impulse approximation.

which gives the momentum transform
3/2

J d r V(r)e

1/2

mp
(47)

IV. ASYMMETRY

2
4c

(e2+p 2)2

' 1/2

X&o(p) =
7T

(43)

4p2 ~2

(e2+4p2)3gzo(p ) = 32m
E,

7T
(44)

and
1/2

3 ( 2+4 2)3
(45)

where c=nmZ; a is the fine-structure constant, and Z is
the atomic number. The potential for a hydrogenlike sys-

The expression in Eq. (40) is asymmetric with respect
to p, . How one defines p, is therefore very important.
[Besides the definition in Eq. (39), we are able to define p,
as p, =(m/q)(co —co') —(q/2). ] If we want to study the
asymmetry in the Compton profile, the sign in the asym-
metry will depend on how we define p, . Thus, consider-
ing the asymmetry, one must always clearly state what
definition ofp, is being used. In this paper we will always
use the definition in Eq. (39). In order to test the asym-
metry, arising from expression (40), we consider hydro-
genlike wave functions. The material that we will focus
our interest on is aluminum. Hence, if the three outer-
most electrons of aluminum are treated as a Fermi-Dirac
gas, we are able to use the momentum transforms of 1s,
2s, and 2p electrons for a hydrogenlike system as the
momentum transforms of the 1s, 2s, and 2p electrons of
aluminum, respectively. Thus we need the functions
y, o(p), g30(p), and gz~(p), defined by Eq. (21), for a hy-
drogenlike system. Using Eq. (21) for hydrogenlike wave
functions, these three functions can be written as

1/

Furthermore, for a hydrogenlike system, the energy of an
electron is

E
2mn

(48)

where n and l are quantum numbers. This equation
makes it also possible to write c. as

c. = n(2m ~E„, ~

)'" (49)

To get proper energies, one can use Eq. (49) to calculate
"effective" values in c. Using binding energies of the 1s,
2s, and 2p shells of aluminum one simply replaces ~E„i ~

with the corresponding binding energy of aluminum.
However, we will use another method which gives proper
momentum transforms, i.e., proper wave functions, rath-
er than proper energies. Using tabulated Compton
profiles, ' we put Jo(0) equal to the tabulated value, and
calculate an effective value in c.. Let us make a comment
here. If we calculate effective values in c according to
Eq. (49), we will get a result, i.e., an asymmetry, that
differs from the result where the values in c are calculated
according to Jo(0) being equal to the tabulated value.
However, no matter how we choose to calculate c., the
tendency of the result is the same. [Using Eq. (49) to cal-
culate the values in c, we will get a larger asymmetry
than what is deduced in this paper, but with the same
feature. ] The problem here is that we cannot get a proper
wave function and a proper potential at the same time.
In this paper we have made the choice that is likely the
most correct one, i.e., calculated the effective values in c
according to Jo(0) being equal to the tabulated value.
For knowledge about problems closely related to the
above, one may consult Issolah et al. "

We are now able to derive Jo(p, ) for completely occu-
pied 1s, 2s, and 2p shells. The evaluation of the integrals
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is straightforward. Using Eqs. (43)—(45) in Eq. (24), we
can show that the expressions of Jo(p, ) for the ls, 2s, and
2p shells are

and

1J i~(p, ) =Jg(p, )—2E arctan(2p, /s )
q

8c'
JQ'(p, ) =

3n.(e +p, )
(50) 10' +60p,

pz3 c2+20p2
(55)

and

Jo'(p, )=(E —10m p, +40p, )
128m.

15m.(E +4p, )
(51)

JP(p, )=(s +20p, )
64m

5ir(e +4p, )
(52)

respectively. [Note: Here, the spin is not considered, i.e.,
expressions (50) and (51) include one s electron, and ex-
pression (52) three p electrons. ] Considering the deriva-
tion of the quantity J, (p, ), here, the integral evaluations
will be more extensive. Putting Eq. (40) in (30), we have
to solve one double and one triple integral. However, it is
possible to solve the resulting integrals, and obtain a re-
sult for J, (p, ) that corresponds to the one for Jo(p, ).
The result will be as follows:

Here, expression (53) and (54) include one s electron, and
expression (55) three p electrons. Note: This result is al-
most the same as that derived by Gasser and Tavard us-
ing an exact first Born approximation. However, we have
received another result for the 2s shell.

The asymmetry is defined as [J(p, )
—J(p, )]/J(0),

where p, ~ 0. The asymmetry will be due to J, (p, ), since
J(p, )=Jo(p, )+Ji(p, ), and Jo(p, ) is symmetric. Consid-
ering Eqs. (53)—(55), Ji(p, ) will be small compared to
Jo(p, ) when ~p, ~ /q is small. The next term that is added
to J(p, ) contains the factor ( I /q) . If q is large, this term
should be smaller than J, (p, ). In the next section we will
take a closer look at such problems. However, let us
state here that J, (p, ) is a good first correction to Jo(p, )

when ~p, ~/q &&1 and s/q &&1. Consequently, the ex-
pression

1J,"(p, ) =JD"(p, )—[2E arctan(p, /E. ) ——,'p, ],0 z

1J,'(p, ) =Jo'(p, )—2e arctan(2p, /8)

c. +48p,
4pz4 c. —10m. p, +40p,

(53)

(54)

[J(p, )
—J( —p, ) ]/J(0) = [J,(p, )

—
J i( —p, )]/Jo(0)

for the asymmetry is accurate when ~p, ~ /q && 1 and
E/q «1. The condition ~p, ~/q &&1 is no problem, since
the asymmetry is only important near p, =0, due to its
definition. But we might meet with di%culties owing to

0 p

—oo o 0 p

0' n 4 h

p (a.u. )

FICx. 1. The asymmetry (J+—J )/J(0) expressed in percent of J(0) for aluminum. J+ is the value of the profile on the high-
energy (low-momentum-transfer) side. The scattering angle 0' is 170 . The experimental results for sample thicknesses of 0.6 mm (6),
0.25 mm (0), and 0.025 mm (), are obtained using 59.54 keV photons. The dashed, the solid, and the dashed-dotted curves are the
theoretical results for the photon energies 279.1, 59.54, and 35 keV, respectively.
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the quantity E/q. (Under typical experimental condi-
tions, the quantity c/q is not particularly small for a 1s
electron of an atom with many electrons. ) However, we
can make an exception for an atom with many electrons.
In fact, we might allow c/q to be close to 1 for the inner-
most electrons, even if this means that the first correction
J&(p, ), and maybe also the impulse approximation, do
not work well for these electrons. The reason is simply
that the Compton profile for the outermost electrons is
bigger than the Compton profile for the innermost elec-
trons near p, =0, and that the asymmetry is only irnpor-
tant near p, =0. Thus the asymmetry seems to be an ade-
quate test of our correction term J& (p, ).

Let us now compare our result with experiments. Fig-
ure 1 shows a comparison between experiments and
theory for aluminum. Here, we have simply put our
theoretical results in a figure, which shows experiments in
aluminum for the energy 59.54 keV of the incident pho-
ton and scattering angle 170'. The figure is taken from
Ref. 3. (Note: Here, we have used the simpler notation
(J+ —J ) /J (0), taken from Ref. 3, instead of
[J(p, ) —J( —p, )]/J(0). ) We have put three theoretical
curves in the figure. Two of them, the dashed one which
shows the theoretical result for the energy 279. 1 keV and
the angle 170, and the dashed-dotted one which shows
the theoretical result for 35 keV and 170, have been add-
ed to illustrate the energy dependence of the asymmetry.
The solid curve, which shows the theoretical result for
the energy 59.54 keV and the angle 170, corresponds to
the experiments. This curve seems also to be the one that
gives the best agreement between theory and experi-
ments. On the whole, the agreement is very good.

The comparison between theory and experiments for
aluminum in Fig. 1 is the important matter in this paper.
However, one can make out an interesting point for
beryllium. Figure 2 shows theoretical results for berylli-
um. (Here, we have assumed a Fermi-Dirac gas for the
2s electrons. ) The solid curve is the result for the energy

Q

I

I
+

FICx. 2. The asymmetry (J+ —J )/J(0) in percent of J(0)
for beryllium. The solid curve shows the theoretical result for
the energy 59.54 keV and the angle 170. The dashed-dotted
curve is the result for 25 keV and 170'.

59.54 keV and the angle 170', and the dashed-dotted
curve is the result for 25 keV and 170. The interesting
thing here is that the asymmetry has changed sign.
Furthermore, the asymmetry is not particularly large for
the energy 59.54 keV, which may be the reason why
Manninen and co-workers ' failed to reveal any asym-
metry for beryllium.

V. VALIDITY OF THE IMPULSE APPROXIMATION

Let us start this section by considering a second
correction term to Jo for a hydrogenlike 1s electron. A
second correction term can be found by using expression
(19) for the operator Xz in Eq. (25), instead of X, . For a
1s electron, we can show that this term, denoted by J2',
can be written as

2

—4Ep, arctan(p, /E )

2 26c. p,+
2 2

+—p
g +p,

We cannot be certain using J2' as a second correction
term, since this term belongs to an infinite series, where
all terms contribute in second order with respect to 1/q.
However, the interesting point here is that c./q, and
~p, ~ /q as well, must be small, if J2' shall be smaller than
Jo'. (Considering J,', it is enough to require that ~p, ~/q
is small. ) Thus, to be sure that J&(p, ) is a good first
correction to Jo(p, ), we have to stipulate that ~p, ~ /q && 1

and c/q ((1. We can always choose a region where
~p, /q is small. The critical quantity is c, /q. When E/q is
close to 1, we must consider more correction terms to
Jo(p, ) than J&(p, ). Of course, if we choose a region
where ~p, /q is close to 1, we must also consider more
terms than J, (p, ), even if E/q «1. This can be an
overwhelming task. It might be better to only consider
Jo(p, ), since the impulse approximation has turned out to
work extremely well. In other words, one cannot say for
sure that the impulse approximation is bad, when c/q is
close to 1, and/or ~p, ~/q is close to 1. However, when
the impulse approximation works badly, either ~p, ~ /q or
c /q must be close to 1. On the other hand, when
~p, ~ /q && 1 and E/q && 1, the impulse approximation
must work well.

The critical quantity is apparently c/q. Figure 3 shows
the maximal deviation in percent of J(0) between the ex-
act expression derived by Eisenberger and Platzman,
and the impulse approximation. The figure shows practi-
cally a straight line. The maximal deviation in percent of
J(0) can be written as about 10m/q. Furthermore, it also
turns out that the maximal deviation was practically in-
dependent of the energy of the incident photon and
scattering angle. However, the curve in Fig. 3 is the re-
sult for the energy 59.54 keV and the angle 90. If we
make the same calculation for our first 1s-correction
term, i.e., calculate the maximal deviation between the
first 1s-correction term and the impulse approximation,
the maximal deviation in percent of J(0) can also in this
case be written as about 10Elq. (Note: The maximal de-
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lier calculated results. ' [Note: In this case, we have as-
sumed that E can be written as E=(2mE~)', i.e., that
Eq. (49) is valid. The reason is simply that we can ex-
press the Compton defect in the binding or ionization en-
ergy. Of course, if we calculate e according to Jo(0) be-
ing equal to the tabulated value, ' we will get a Compton
defect that differs from ez/6. In Ref. 11 one can also
deduce that different Compton defects are obtained for
screened hydrogenlike wave functions and Hartree-Fock
wave functions. ] The result Es/6 may be rewritten as
hA, =A. c,z/6hc with AA, as the shift in wavelength be-
tween the two Compton profile maxima. Here, A, is the
wavelength for the incident photon, and h and c are, re-
spectively, Planck's constant and the velocity of light.

FIG. 3. The maximal deviation expressed in percent of J(0)
between the exact expression derived by Eisenberger and Platz-
man, and the impulse approximation as a function of the bind-
ing parameter c./q. (Here, the choices of the energy of the in-
cident photon and scattering angle 0' are, respectively, 59.54
keV and 90.)

viation for our first 2s-correction and 2p-correction terms
are approximately 20e /q and —20E /q, respectively. )

Thus the magnitude of c/q ought to be an adequate quan-
tity to study if one wants to know the accuracy of the im-
pulse approximation.

Let us complete this section by mentioning the Comp-
ton defect, " ' i.e., the deviation of the Compton profile
maximum from the prediction of the impulse approxima-
tion. If we calculate the Compton defect for our first 1s-
correction term, we obtain the deviation E~/6 towards
higher (photon) energies with es as the ionization energy
for the 1s electron. This result is in agreement with ear-

VI. SUMMARY

We have made an operator expansion of the nonrela-
tivistic double differential cross section for Compton
scattering of photons for hydrogenlike wave functions.
The basic tools are commutator combinations between
the potential V(r) and iq pt/m with p equal to the
momentum operator and q equal to the scattering vector
for the photons. Results for the asymmetry are calculat-
ed for aluminum and beryllium. Good agreement is
achieved for aluminum when compared with experimen-
tal results. For beryllium we predict an overall positive
asymmetry. We also obtain a simple rule for the maximal
deviation between our calculated differential cross section
and the impulse approximation. This maximal deviation
is proportional to c/q. The practical result of this is that
the maximal error when using the impulse approximation
is proportional to the square root of the binding energy
divided by the absolute value of the scattering vector.
This relationship is valid for 1s, 2s, and 2p hydrogenlike
wave functions and is expected to be valid approximately
even for an arbitrary wave function.
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