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Sojourn time, sojourn time operators, and perturbation theory
for one-dimensional scattering by a potential barrier

Wojciech Jaworski and David M. Wardlaw
Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L3N6

(Received 5 July 1989)

We show that a useful concept of the time spent by a quantum-mechanical particle in a given spa-
tial region can be expressed in terms of a Hermitian sojourn time operator. Mean values of this
operator give the mean sojourn time (dwell time) of the particle. We show that the sojourn time
operators occur in a natural way in first-order perturbation theory for the barrier perturbed by any
finite-range potential. The perturbed S operator, and also the effect of the perturbation on the
change of observables due to the scattering, are, to a first-order approximation, fully expressible in
terms of sojourn time operators. We anticipate that this result can be generalized to the case when
the translational motion of the tunneling particle is weakly coupled to additional degrees of free-
dom. As a specific example of such a system, we explicitly reconsider the Larmor clock, originally
proposed as a device measuring interaction times. We show that the change of the spin com-
ponents, to a first-order approximation, is indeed fully expressible in terms of a sojourn time opera-
tor. In particular, when set as a clock, the system measures mean values of the sojourn time opera-
tor or real parts of some of its matrix elements.

I. INTRODUCTION

Let 4 be a wave function describing an initial state of a
quantum-mechanical particle with Hamiltonian H. If 0,
is an arbitrary spatial region and (t „tz ) an arbitrary time
interval (with —~ (tl (tz ( co ) then the quantity

r(fl, t, , tz, +)=f dt f dx ~[exp( —itH)+](x)~ (1.1)
n

is usually interpreted as the mean sojourn time of the par-
ticle in II during the interval (t, , tz ) (we put 6=1). Simi-
larly, the quantity

and reAection in one-dimensional scattering by a poten-
tial barrier. In the context of temporal aspects of one-
dimensional scattering the sojourn time (1.1), usually re-
ferred to as dwell time in the literature on tunneling
times, has also been recognized as relevant.

In this paper we want to further elucidate the role
played by the sojourn times (1.1) and (1.2) in one-
dimensional scattering. It seems that considering insight
into the nature of these quantities can be gained by intro-
ducing Hermitian sojourn time operators T(Q, t I, tz ) and
T'(x, tl, tz) defined in the subspace of scattering states by
the requirements

E2

r'(x, t, , tz;4)= f dt's[exp( —itH)4](x)~
I

(1.2)

and

r(Q, t, , tz;0 )=( P~T(A, t, , tz)'0) (1.4)

can be interpreted as the mean local sojourn time at x,
i.e., the mean sojourn time per unit volume. C1early, ~'(x, t, , tz; % ) = ( 0

~

T'(x, t, , t, )%' ), (1.5)

(Qr, tt 0z)= f dxr'(x, t, , tz;%) .

If + is an eigenstate of the Hamiltonian H, then

r(A, t„t„.% )=(t, t, ) f ~%(x)izdx . —

(1.3) respectively. We will show that the operators
T (Q, —~, Oo ) and T'(x, —oo, ~ ) occur in a natural way
in the first-order perturbation theory for the scattering
problem with the Hamiltonian

A more interesting situation arises when 4 is a scattering
state and 0 a bounded region containing the scattering
center. Then r(A, —oo, ~;4 ) can be finite and gives a
measure of the duration of the collision. The time delay
can be rigorously defined as, essentially, the difference be-
tween two sojourn times —one for the interacting particle
and one for the reference free particle. The standard so-
journ time based definition refers, in the case of two-body
scattering, ' to the delay averaged over all scattering an-
gles, and in the case of many-body scattering to the delay
averaged over all angles and all channels. Recently, we
have shown how the sojourn time definition can be ex-
tended to include separate time delays for transmission

iS = M x Q+T'x, —~, ~ 0+dx,~ &as
(3X

(1.6)

where 0+ is the Moiler operator. Moreover, if 3 is an
observable which is a constant of motion with respect to
free (asymptotic) motion, then the change of its expecta-
tion value due to the scattering reads

Ej'

H(k)= —
—,
' + V(x)+AM(x),' dx2

where AM(x) is the perturbation potential. If S(k) is the
corresponding scattering operator, then in the first-order
approximation we have S (X ) =S (0)+ A i3S /BA (0), and
our result is
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( 5 A &;„(A ) = ( S ( A )4'"
~
AS ( A )4'"

&
—( '(P'"

~
A 4'"

&

=(()A);„(0)—i).(4'" S (0)AS(0),(S (0) (0) 4'" +O(i~) . (1.7)

We believe Eqs. (1.6) and (1.7) can be generalized to
more complicated scattering systems, in particular to the
case when the translational degree of freedom of the par-
ticle is weakly coupled to some additional degrees of free-
dom, e.g., to the internal degrees of freedom of the parti-
cle, and the coupling is treated as a perturbation. An
easily tractable example of such a system is the Larmor
clock, or spin clock, proposed as a device measuring tun-
neling times. ' ' We reconsider this example from a
more general perspective. Here the additional degree of
freedom is the spin —, of the particle, which is coupled to
the translational motion via a homogeneous magnetic
field extending over a bounded spatial region. In this
case an appropriate generalization of (1.6) and (1.7) is
straightforward and allows one to compute changes of
the spin components. In particular, when set as a clock
the system actually measures mean values of the sojourn
operator (1.4) or real parts of some of its matrix elements.
In general, the example shows that a generally useful con-
cept of interaction times is probably not expressible
directly in terms of numbers, real or complex, but rather
in the language of linear operators.

It should be realized that the origin and interpretation
of formula (1.1) in quantum mechanics is not as self-
evident as it may appear at first sight. The diSculty is
that formula (1.1) cannot be derived in the way one can
derive its analog in classical mechanics or, more general-
ly, in the theory of stochastic processes. These deriva-
tions explicitly rely on the existence of a trajectory of the
particle. The concept of the sojourn time operator was
originally introduced by Ekstein and Siegert in connec-
tion with the theory of decay of unstable states. They
constructed the sojourn time operator T(A, t„t2) as a
quantum-mechanical image of the corresponding classical
trajectory-dependent quantity [this construction is
equivalent to (1.4)]. Both the sojourn time and the so-
journ time operator have rather unexpected properties.
For example, when the particle moves freely in n )2 di-
mensions (i.e., H = —

—,
' g,".

, 8 /Bx, ), and when 0 is a
bounded region then the sojourn time r(Q, —(x), ()0;(p) is
bounded with a bound independent of the initial state 4
of the particle (provided ~~%~~ =1). Correspondingly, the
sojourn time operator T(Q, —0(), oo ) is bounded. One
can also generally show that the usual Born probability
interpretation of the spectral measure associated with the
sojourn time operator yields rather strange, if not para-
doxical results resembling the mell-known quantu~-
mechanical Zeno paradox. ' These questions as well as
some of the mathematical aspects of sojourn time opera-
tors are discussed in Ref. 11. In the present context,
however, they are not of immediate concern, since here
we consider the sojourn time and the sojourn time opera-
tor rather from the point of view of their potentia1 useful-
ness in scattering theory.

II. SCATTERING THEORY; UNPERTURBED SYSTEM

We consider a one-dimensional quantum-mechanical
system with Hilbert space A=L (R) and the Hamiltoni-
an H= —

—,'d /dx + V(x). The potential V(x) is as-

sumed to be constant outside a bounded interval (a, b),
i.e., V(x)= V, for x ((2 and V(x)= V& for x) b. By
&b C L (IR) we denote the subspace of all bound states of
H. We put Pi=1 throughout.

We introduce two "free" Hamiltonians

1
HO" = ——

2
+ V, F+ + V2F

2 dx

1 dHQUt, +V F +V F
dX

(2.1)

where F+ and F are projections onto positive and nega-
tive momenta, respectively. The Hamiltonian Ho" de-
scribes the asymptotic time evolution of our system for
t ~—ao, while Ho"' describes the asymptotic time evolu-
tion for t~ ao. More precisely, Ho" and Ho"' define the
Moiler operators

0+ =s — lim exp(itH)exp( —itH'0" ),
(2.2)

0 =s — lim exp(itH)exp( —itHO"') .

The asymptotes 4'" and +'"' are related by the scattering
operator S =Q Q+, %""'=S+'", which is a unitary
operator from L (R) onto L (IR).

It is convenient to introduce a (two-valued) energy rep-
resentation employing the Hilbert space L ((0, ~ ), C )

which consists of pairs F =(f„f, ) of square integrable
functions defined on the half line (0, ~). The scalar
productofF=(fi, f2) and G=(gi, g2) isgivenby

(FIG &
= J [f i (E)gi(E)+f 2 (E)g&(E)]dE, (2 4)

and the unitary correspondence U:L (R)
~L ((0, ~),C ) between the usual position representa-
tion and our energy representation reads

(U(P)(E)=(2E) '~ (4(v 2E ), 4( &2E )), E )0—
(2.5)

These operators map A=L (IR) isometrically onto the
orthogonal complement &„of&b. Every state vector
(I(H&b represents a scattering state, i.e., possesses in and
out asymptotes 4'" and 4""', 0+4'"=4 =0

lim ~~exp(
—itH)% —exp( itHD" )(P'"ii =0-

t —+ —oo

lim ~~exp( itH)4 exp—( itHO—"')%""'~~ . —
t~+ oo

(2.3)
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where tI/ denotes the Fourier transform (momentum representation) of tI/. Correspondingly,

[U '(tp„tp2)](x)=(2m) ' f dk&k exp(ikx)tp, (k /2)+ f dk& —k exp(ikx)C/2(k /2)
0 oo

= f dEsz(x)tp, (E)+f dEEE( x) pt2(E),
0 0

(2.6)

where

Ez(x)=(2') ' (2E) ' exp(+ix t/2E ) (2.7) ( tI/outIF tI/out) dEItpout(E)I2
0

1

are the two linearly independent continuous spectrum
eigenfunctions of the free Hamiltonian —

—,'d /dx, nor-
malized so that

d«E ~ c~E ~ —5, 5 E —E' ~j=+,—

(2.8)

In the above energy representation, the free Hamiltoni-
an —

—,'d /dx acts simply as multiplication by E. The
momentum operator p and the projections F+ take the
form

( tI/out IF tI/out ) f dE I/pout(E) I2
0

d2
h (x) =2[ V(x) —

/Lt]h (x),
dx

(2.1 1)

respectively.
The Moiler operators 0+ and the scattering operator S

can be expressed in terms of the continuous spectrum
eigenfunctions of the Hamiltonian H = —

—,'d /dx + V.
These are solutions of the differential equation

p(tp, , tp~)(E)=v 2E (tp, (E), —tp2(E)),
where /tt) min( V&, V~), @%max( V&, Vz). We define solu-
tions g„—and f„by the requ—irements

F+( p, t, tp2)=(tp„0),

F (tp, , tp2)=(0, tp2) .

(2.9) g„—(x)=e„+:t,(x)= (2~) '
[2(/tt —V, )]

Xe px[+ix+2(p —
V& )] for x & a,

Hence for the asymptotic Hamiltonians H0" and H0"' we
have

Ho" (tpt, tp2)(E) =((E + Vt )tpi(E), (E + V~)tp~(E)),
(2.10)

Ho"'(tp„tp2)(E)=((E+ V ) p2,t(E), (E+ V, )tp2(E)) .

The state vectors ( p&t, 0), (0, pzt) HL (R, C ) describe
states (wave packets) with positive and negative momen-
tum, respectively, cf. (2.6) and (2.7). If the actual state of
the system at t =0 has an in asymptote of the form (in
the energy representation) tI/'"=(/pe, 0), then this means
that the particle (wave packet) approaches the potential
barrier from the left before colliding with it. Long before
the collision the time evolution is essentially the free time
evolution

(exp[ —it (E + V, )]tP't"(E), 0)

f„(x)=E„:~(x)= (2vr) '~ [2(p —Vz)]

Xexp[+ix +2(p —Vz ) ] for x ~ b .

~»(v)f„+ =g„++~»(u)g„,

~22(v )g„=f„+~12(c )f„+

where

(2.13)

(2.14)

(2.12)

It is to be understood that v —IEI =iv'IEI, (
—

IEI )'~
= IEI' exp(in/4)

The functions g
—constitute a pair of linearly indepen-P +dent solutions of (2.11) and so do the functions f . With-

W(h, , hz) denoting the Wronskian, one has
W(f„+,f„)=W(g„,g„)= i/n, and —W(f. „+,g„)%0.
One can thus write

determined by H'". Long after the collision the time evo-
lution is essentially the free time evolution

(exp[ it (E + V2 )]tp—;"'(E),exp[ it (E + V,—)]tp2"'(E) )

o t t(p) =o 22(p) =o(/M ) = [vari W(f„+,g„)]
tr2t(p) = W(f„+,g„) 'W(g„+,f„+ ),

~12(c )= W(f„+,g„) 'W(g„,f„)
(2.15)

determined by H'"' and the out asymptote
=(tp;"', tpz"') =S%'". tl/'"' is the superposition
tI/out —F tI/out +F tI/out —

( C/out Q ) + ( Q tP out
) of

corresponding to the particle moving to the right
(transmitted) and to the left (reflected). The probabilities
of transmission and reAection are

We note that the matrix cr; (/M ) is unitary for
p & max( V&, V2 ), while for min( V, , Vz ) &/M & max( V, , V2 )

we have Io„(p)I = I/~2t(/M)I =1.
Using the solutions f„+ and g+, the Molle—r operators

can be expressed as follows:
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[0+U(41, 42)](x)= f dE I [gV) +E (x)+%21(Vl +E)gV) +E(x)]@1(E)+[fV~+E(x)+~12( V2+E}fV~+E(x)]C z(E) I

(2.16)

[0 U(4„42)](x)=f dE[ffv +z(x)+o i2(V2+E)fv++~(x)]*@i(E)+[gi+, +z(x)+o'zi(Vi+E)gz +z(x)]*@2(E)I .

(2.17)

The scattering operator satisfies 0 S =0+, and it can now be directly checked that in our energy representation S
acts as follows:

[S(4„4~)](E)= (Si,(E)4,(E + V2
—V, )+S,~(E)42(E),S~, (E)4,(E)+S22(E)4~(E + V, —V2 ) ),

where the S; (E) matrix is given by

o(E+ V2) for E+ V2) V, , S,z(E)=o,2(E+ Vz)
S E)='

0 otherwise,

o(E+ V, ) for E+ V, & Vz, Sz, (E)=oz,(E+ V, )

S E='
0 otherwise .

(2.18)

(2.19)

Similarly, for the adjoint S we have

[S (4i, +2)](E)=(Sii(E) 4i(E+ Vi —V2)+Si2(E)42(E),S2i(E)4i(E)+S22(E)&q(E+ V2
—Vi )),

with

g~(E+ Vi) for E+ Vi ) Vz, Si2(E)=o2i(E+ Vi }
St E=

0 otherwise,

o'(E+ Vz) for E+ Vz) V, , Sz, (E)=cr',2(E+ V2)
St E='

0 otherwise,

(2.20)

(2.21)

III. SCATTERING THEORY: PERTURBED SYSTEM

Let M(x) be a potential vanishing outside a bounded
interval (a,P). We want to study first-order perturbation
theory for scattering by the perturbed Hamiltonian
H ( A, ) =H +XM, where A, is a small real parameter.
Without loss of generality we can assume that
(a,P) C(a, b)

Clearly, the mathematical apparatus outlined in Sec. I
is applicable to the Hamiltonian H(A. ). Now the Moiler

I

operators, the scattering operator, and the continuous
spectrum eigenfunctions are dependent on k. First-order
perturbation theory means that we want to find the
derivative of the scattering operator BS(k)/M evaluated
at A, =O. This derivative will be abbreviated as/aX. We
will also write S for S(0), H for H(0), f„,g„ for the
eigenfunctions of H(X) at A, =O, etc. , and 8/BA, will al-
ways denote the partial derivative evaluated at A. =O.

Explicitly, the operator as/aA, is described in the ener-
gy representation as follows:

(@i,@p) (E)=as BS„(E) BS, (E) BS,(E) BS22(E)
N, (E+ V2

—V, )+ %2(E), 4,(E)+ %2(E+ V, —V2), (3.1)

cf. (2.18).
Since the S matrix is fully expressible in terms of the Wronskians W(f„,g ~ ) (with i,j = +, —), the problem amounts

to computation of the derivatives (8/Bk) W(f„,g„). This can be accomplished using standard methods of the theory of
second-order ordinary difFerential equations (see the Appendix). We obtain

lV(f„',g'„)=2f dgM(g')f„'(g)g'„(g)=2 f d(M(g)f„'(g)g'„(g) .

BS„(E)
0 otherwise,

The above, via (2.15) and (2.19), directly yield

—2mia (E+ V2) f dgM(g)fz+z (g)gz+v (g) when E+ Vz & V, ,

(3.2)

(3.3}

BS2~(E)
aA,

2~io (E+ V—, ) f dgM(g)fF++v (g)go+i, (g) when E+ V, ) V2,

0 otherwise, (3.4)
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aS„(E)
aA,

BS2,(E)

= —2tritr (E+ V2) f dgM(g)[gz+v (g)]

2—bio (E+ V, )f dgM(g)[fF+v (g)]
a

(3.5)

(3.6)

The significance of the operator aS/ak lies in the following. Suppose A is an observable which is a constant of
motion with respect to the free asymptotic Hamiltonians Ho" and Ho"'. The change of the expectation value of this ob-
servable due to scattering of a fixed in-asymptote +'" reads

( g A ) (g ) hm ( e itH(k)Il gin
l Ae

—itH(k)II )I)in ) hm ( e itH (A')II (I)in
l
Ae & &H(k)'II &I)in )t~ oo f ~ —oo

= lim (exp( itHO"—')S(A, )&Ir'"l A exp( itH('—)"')S(&) ))I)'")
f —+ oo

lim (exp( itHO"—)4)'"l A exp( itHO—" ))p'") = (S(A, )%'"l As(A, )'li'") —(0""lA &I)'") . (3.7)

As first-order approximation we have

&sx&;.&&&=&so&,„&o&+&. s'" wsq'" + se'" a q'")
aA.

=&so &„.&o&
—&(e'" s'gs, s' s'"), (3.8)

where to obtain the last line we used the identity S (&3$/BA, )+ (Bs /Bk)s =0, which is a direct consequence of the uni-
tarity of S. Note that this identity also implies that the operator is (Bs/BA, ) is Hermitian.

In our energy representation we have
r

iS (&I&), @2) (E)gas

with

iS (E)&I&((E)
1I

+;st as
12

(E)&I&2(E —V2+ Vi ), iS y as
21

(E)&I&)(E —V, + V2)+ iS. tas
. 22

(E)&I&2(E) (3.9)

is' (E)=2~l ~(E+ v, ) l' f 1 ( M (g) l f,+, (g) l',
lX

(3.10)

S' ~S (E)=2
l

(E+ V, ) I' f dgM(g) lg, (g)l',
aA 22

a

2trltr(E+ Vi )l'f'dgM(g)fF+ v (g)g&+i, (p) when E+ Vi & V2,

(3.11)

iS (E)=
ak 0 otherwise, (3.12)

s~ as
ak

2~ltr(E+V, )l'f'dgM(g)fE+v (g)g~+~ (g) when E+V, & V, ,

0 otherwise .E = (3.13)

IV. TIME OF SOJOURN
AND THE OPERATOR rS'(aSZazi

In Sec. I we defined the sojourn time r(Q, t„t2;)Ir) gen-
erally for arbitrary spatial region Q, and arbitrary time
interval (t, , tz). Here we will only need the case when II
is a bounded interval, Q=(xo, x, ), and t, = —oo, t2= oo,
and )Ii is a scattering state, i.e., %H&b =0+&. We will
write r(xo, x ); &P ) for r((xo, x, ), —oo, oo; f1+&I) ), i.e. ,

r(x, ,x(;+)=f dt f dg l(e ""II++)(g)l' .

Similarly, the sojourn time per unit interval
r'(x, —oo, oo; 0+4') will be denoted by r'(x;)I) ):

r (x;&I))=f dt l(e ""n,)Ii)(x)l',

r(x, ,x(;%)=f der'(g;%) .
Xp
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r(xo, x, ;4}=( 4I T(xo,x, )0'), (4.3)

The sojourn time oPerators T((xo,x, ), —~, ~ ), corre-
sponding to r(( xo, x& ), —ao, ~;4) and r'(x, —~, ~;4),
respectively, are defined in the subspace &b of scattering
states. It will be more convenient to introduce operators

T(xo x&)=Q+T((xo xi) oo ~)Q+

and

T'(x) = f1+ T'(x, —~, ~ )0+

defined in &. Clearly, T(xo, x, ) and T'(x) satisfy

r (x;4)= ( Pl T'(x)%) (4.4)

The sojourn times and the sojourn time operators can
be effectively dealt with using the energy representation
and the Moiler operator 0+ in the form (2.16) with Eqs.
(2.13) and (2.14) applied to the integrand. Writing
4= U(@~,42), we evaluate r'(x;4) of Eq. (4.2) by
applying the intertwining relation exp( itH—)Q+
=0+exp( itH—o" ), then the energy representation (2.10)
of H'o", and finally the formula J dt e
=2~5(E E'):—

r'(x;4) =j dt J dE e " fo (E)fE+(x)4,(E —
V& )B(E—V, }+o(E)gE (x)4 (E —V )B(E—V )]

= 2m f dE Icr(E+V, )fE+v (x)N, (E)l +2m. J dE Itr(E+ V2)gE+v (x)N~(E)l

+277J, ,
dE ll7(E+ V2)I2fE+V (x)gE+V e,(E+ V2 —v] )42(E)

1 2

+277 J dE Ia(E+ V, )I fE+v (x)gE+ v e", (E)e~(E+ V, —V~) y (4.5)

where 0(p) =0 for p ~ 0 and 1 for p & 0.
From the above relation it is inferred that in our energy representation the operator T'(x) is given by

(4.7)

[ T'( x)(4„4&~)](E)=(T'„(x,E)4,(E)+T', ~( x, E)4&~( E+V, —V2), Tz, (x,E)4,(E+ V~ —V, )+ T~z(x, E)4z(E)), (4 6)

T'ii(»E) =2~1~(E+ v)) I IfE+ v, (x}l

T22(x, E)=2~I ~(E + Vp ) I'IgE+ v, (x)I',
2m la'(E + V) ) I'fE+ v, (x)gE+ v, (x) when E + V, & V2,

T' x, E =
0 otherwise,

2~I~(E+ v, )I fE+v «)gE+v (x} when E+ v2 & vl
T' x, E =

0 otherwise .

(4.8)

(4.9)

(4.10)

The sojourn time operator T'(x) is related to the sojourn
time operator T(xo,x) by the formula

T(xo,x)= J dg T'(g), (4.1 1)
Xp

and the significance of T'(x) for the perturbation theory
of Sec. III lies in the fact that

iSt = f M(g)T'(g)dg= J M(g)T'(g)dg . (4.12)

I

(b, A );„(A)= (b, A );„(0)
iX J' M(g—)(0'"I[StAS,T'(g)]%'")dg.

(4.14)

Thus formulas (4.12)—(4.14) indicate that the effect of the
perturbation M is closely related to the sojourn time of
the unperturbed particle in the region where the pertur-
bation is localized.

Note that in the particular case when M(g) =Mo =const
on (a,P} and zero outside, then the operator iS (aSZaz)
is simply proportional to the time of sojourn operator
T(a, /3): iS (BS/M, )=MoT(a, P), and thus this operator
is directly relevant for the calculation of ( b, A )~ in the
first-order perturbation theory, cf. (3.7) and (3.8). In gen-
eral,

S AS, iS = J M(g)[SEAS, T'(g)]dg, (4.13)
a

or

V. THE SPIN CLOCK REVISITED

The scattering theory of Sec. I describes translational
motion along the x axis of a particle interacting with the
potential V. We now assume that the particle has spin —,

'

as its internal degree of freedom, and that a weak homo-
geneous magnetic field pointing in the z direction extends
over a bounded interval (a,P) of the x axis. As in Sec. I,
the potential V is constant outside a bounded interval
(a, b), and without loss of generality we may take
(a,g) L:(a,b).

The Hilbert space is now &=L (R)@C =L (R, C ),
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i.e., consists of two-component spinors,

q/, (x)

q/z q/2(x )
(x)=

Denote by o.„,o,o, the Pauli matrices, by ~ the Larmor
frequency inside the field, and let M (x) be the function

The sojourn times and the sojourn time operators for
the spin- —,

' particle can be constructed in the obvious way.
It is easy to find that the sojourn time operator T(a, /3)
for the particle with the Hamiltonian H(0) in (a, /3) reads
T(a, /3) = T(a,P)$ T(a, /3) and thus (5.4) can be written
as

for a &x &/3, iS = —,
' g.,T(a, /3) =

—,
' T(a,P)cr, . (5.5)

0 otherwise .

The Hamiltonian
+ coM (x)cr„

H(co)
2

reads H(co)= —
—,'d /dx + V(x)

Formula (5.3) applies, in particular, to the spin opera-
tors —,

'0.;. Nate that in this case S o.;S=o, , because
S =S(0) and g s are constants of motion with respect to
H(0) [cr, is a constant of motion with respect to H(co)
for any co]. Applying formula (5.3) to the operator
g =

—,'(g +ig ) one obtains

1 d + V(x)+coM(x) q/, (x)
GX

1 + V(x) —coM(x) q'2(x)
clx

(5.1)

(Acr ),„(co)= (S(co)q/'"I, crS(co)q"") —(q'"icrq '")

=ico(q/'"Icr T(a, /3)q/'")

=i co(q/', "~ T(a, /3)q/z"),

where

(5.6)

S(co)
2 S( —co)q/2

(5.2)

where S(co) is the scattering operator of Sec. II acting in
L (IR) and corresponding to the perturbed Hamiltonian
H(co)= —

—,'d /dx + V(x)+coM(x).
When co =0, then S=S(0)=S(0)eS (0}=SOS.

For small co, in the first-order approximation, we
have S(co)=S(0)+co(aS/c}co)(0}=S+S+co[(c}S/c}co)
6( —Bs/c}co)]. The analog of Eq. (3.8) can be derived as
before: When A is an observable commuting with the
asymptotic Hamiltonians, and

gin
1

EL (lR, C )

The scattering theory can be constructed as in Secs. I
and II. The asymptotic Hamiltonians have still the form
(2.1) but now they act on the two-component spinors.
The structure of the Hamiltonian H(co) and the asymp-
totic Hamiltonians immediately imply that the scattering
operator S(co) reads S(co)=S(co)s( —co), i.e. ,

S(co)q/,

yln
@in

]

AD)1112 .

(Sq/'"
~
g Sq/'" ) = ( q/'"

~
g q/'" ) c

' ~ (5.7)

defines a time t which for infinitesimal co can be obtained
from Eq. (5.6):

( q/'"
~
o T(a, /3}q/'" )

( q/in
~

q/in )
(5.8)

In particular, when q/'" is an eigenstate of g. (or of any
spin component in the xy plane), then one finds

7= (q '"~ T(a, /3)q '"), (5.9)

and noting that g q""=+0""implies q""=(I/&2)[~]q',
one also has

and the scalar products in the third line of (5.6) are scalar
products in L (R).

Once in the field region, i.e., in (a, /3), the spin under-
goes precession around the z direction with the Larmor
frequency co. The equation

is an in-asymptote, then

(/5, A );„(A,)= (b, A );„(0)

—i' +'" S AS iS
ak.

with

(5.3)

t = ( q/~ T (a, /3)q/) . (5.10)

Thus when 4'" is an eigenstate of o.„ then the system
works as a clock measuring the mean sojourn time
(q '"~ T(a,P)q '").

It has been also proposed to use the clock to define
separate transmission and reAection times. ' The quan-
tities

S ~ as = 'St as St as
aA,

'
a~

+ '
aA

=
—,
'

[ T(a, /3)e [ —T(a, /3)]], (5.4)

(F+S(co)q/'"~crF+S(co)q/'")
&cr )",„(co)=

(S(~)q'"IF S(~)q'") (5.1 1)

where T(a, /3) is the sojourn time operator (4.3) for the
spinless particle with the Hamiltonian H = —

—,'d /d~
+ V(x).

(F S(co)q/'"IcrF S(co)q/'")
(g )",.(~) =

&S(co)q/'"iF S(co)q/'")
(5.12)
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are mean values of the operator o. corresponding to
transmitted and reflected particles, respectively. Let 0'"
be an eigenstate of o„with the eigenvalue (e.g.) 1. The
transmission time t„and the reAection time t„are defined

by the equations
Formulas (5.3) and (5.5) yield

(5.13)

(o )";„(co)= —,'exp(idiot„), (o )",„(co)=—,'exp(icot, ) .

(S(co)qr'"~F+S(co)qr'") —('0'"~F+4'") = (S4'"~F+S+'")—( 4'"~F+4'") — (+'"~ [S F+S,o, T(a, /3)]%'" &

2

=(Sq'"~F Se'"& (e'—"iF q'"&

(F+S(co)'4r'"~o F+S(co)%"")—(F+'Ir'"~o F+'I"")= (S(co)4'"~Io F+S(co)%'")—('0'"~io F+%"")

=(Se'"~aF Se'") (e'"—~aF, e'"&

(5.14)

( 4'"
~ [S cr F+S,o, T(a,P ) ]4'" )

=(S4'"~crF+SV'")—(4'"~crF 4'")

+ Re(%'" S F ST(a, /3)%"") . (5.15)

To obtain the final equalities in (5.14) and (5.15) we used
the fact that the spin operators commute with
F+, T(a, /3) and S=S(0), and that 4'"=(1/&2)[i]%.
For infinitesimal co we can now easily find t„and t, :

APPENDIX: DERIVATION OF EQ. (3.2)

If h, and h2 are any functions of x E.R, then their
Wronskian W(h, , h 2 )(x) is defined by

Re(%'"~S F+ST(a,/3)%"")

( Spin ~F S@in )

Re(4'"IS F ST(a,/3)'0'")

( SiiP~FnS@in)

Note that

(Se'"~F Se'"&t„+(Se'"~F Se'")t, = t .

(5.16)

(5.17)

dhz dh,
W(h, , h2)(x)=h, (x) (x)—h2(x) (x) . (Al)

When h] and hz are solutions of the differential equation
(d /dx )h (x)= A (x)h (x), then their Wronskian is in-
dependent of x and we write W(h „h z ).

To derive Eq. (3.2) note that for any x HIE,

Formulas (5.16), (5.17), and also (5.9) can be further
developed, and their asymptotics for a~~, /3~ —an

can be found. But this in fact was done elsewhere. In
the present context we only wanted to show that what the
spin-clock measures are matrix elements of the sojourn
time operator T(a, /3) or T(a, /3).

In general, the example shows the usefulness of the
concept of the sojourn time operator. The e6'ect of
scattering on the spin of the particle can be, in the first-
order approximation, fully described in terms of it. Gen-
eralization to the case of an inhomogeneous magnetic
field is straightforward by applying the local sojourn time
operator. We anticipate that other interesting models in
which the translational degree of freedom of a tunneling
particle is coupled to additional degrees of freedom can
be also treated using the concept of sojourn time and so-
journ time operator.
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W(f„',g'„)= W ",g'„(x)+ W f„', " (x),

(A2)

and that the functions (c)f„'/c)A, )(x) and (c)gJ„/c)A, )(x)
satisfy the differential equations

q2 af„af„"(x)=2[V(x) —p] "(x)+2M(x)f„'(x),
Bx

(A3)

Bgp Bgp" (x) =2[ V(x) —p, ]
"(x)+2M (x)g„'(x),

Bx

and the initial conditions

df„' a af„' ag'„a ag'„" (b) =0= " (b), "(a)=0= "-(a) .
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Hence we can find that the Wronskians W(c)f„'/
c)A, ,g~&)(x) and W(f„', dg~ /c)A, )(x) satisfy the differentia
equations
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a'
W ",g~ (x)= 2M—(x)f„'(x)g'„(x),

W f„', " (x)=2M(x)f„'(x)gj (x),
(A4)

I

W ",g~ (x) =2f dg M(g)f „'(g)g'„(g),

. ag~
W f„', " (x)=2f dgM(g)f„'(g)g&(g) .

(A5)

and the initial conditions W(Bf„'/BA, ,g J„)(b)=0
= W(f„',r)g'„ IM. )(a). Integrating (A4) yields

Adding the above equations and taking into account the
fact that M(x) is zero outside (a,P)L(a, b), we arrive at
(3.2).
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