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Quasiatomic contributions to molecular-scattering form factors
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The scattering form factors for excitation of H2+ in fast collisions are calculated in a sequence of
approximations revealing their dependence on details of the initial- and final-state wave functions.
Each approximate calculation is compared directly to the "exact" results obtained with separable,
fixed-nuclei wave functions. Even for interproton separations larger than those for which the
united-atom limit applies, the quasiatomic character of the final-state orbital dominates transition
amplitudes to low-lying dissociative states. Possible applications to molecular dissociation by
charged-particle impact at high energies are considered.

I. INTRODUCTION

The interpretation of electron-molecule collision exper-
iments is often hindered by the complexity of existing
methods of evaluating wave functions of electrons mov-
ing in anisotropic molecular fields. It is generally recog-
nized, however, that the highest-occupied and lowest-
unoccupied molecular orbitals, which dominate low-
energy electron-molecule and atom-molecule collisions,
often resemble simple atomic orbitals and can be approxi-
mated by superimposing a few spherical waves centered
on the molecular center of mass. The purpose of this ar-
ticle is to demonstrate that the quasiatomic character of
these molecular orbitals determines their excitation am-
plitudes in high-energy processes, such as dissociation by
collision with fast charged particles.

This work may be regarded as an extension of the re-
marks by Dunn, ' who noted that angular distributions of
dissociation products in fast collisions reflect the depen-
dence of the scattering amplitudes on the orientation
K R=cosO of the momentum transfer K relative to an
axis of the molecule R. Dunn used symmetry arguments
to determine which molecular orbitals had nonvanishing
amplitudes for parallel (0 = 0 ) and perpendicular
(8=~/2) molecular orientations. Here, the entire K and
0 distributions of the "exact" scattering amplitudes are
examined and then quantitatively reproduced using a
suitably scaled Coulomb wave function for the final-state
orbital. The calculations are performed for H2+, since it
is the only system for which comparison with exact re-
sults is possible. The calculation of the "exact" Hz+
form factors was outlined earlier by Peek (for discrete)
and by Kimura (for continuum transitions).

In Sec. II A, I briefly review the approximations used
in calculating amplitudes for the process

in process (1) is fast compared to molecular vibrations
and rotations. The scattering amplitudes at fixed inter-
proton separation R are then calculated in first Born ap-
proximation. These are the so-called "exact" results to
which all subsequent calculations will be compared.

In Sec. II B, the K dependence of the "exact" scatter-
ing amplitudes for each of the low-lying dissociative
states is shown to vary slowly with interproton separa-
tion. In particular, the qualitative K dependence of the
form factors is the same at the united-atom limit (R =0)
as at the equilibrium ground-state separation (R =2 a.u. ).
In part, this reflects the symmetry arguments of Ref. 1,
which hold at any internuclear separation, R. It also
reflects the adiabatic R dependence of both the initial-
and final-state orbitals.

Section III presents scattering form factors obtained in
a sequence of approximations based on a quasiatomic
model of the molecular orbitals. Some of the R depen-
dence of the form factors is incorporated in Sec. III A by
replacing the united-atom limit wave functions with
scaled Coulomb wave functions, where the scaling pa-
rameters are adjusted at each R to correctly represent the
initial- and final-state binding energies. Most of the
remaining features of the form factors are then accounted
for in Sec. III B, where the scaled Coulomb approxima-
tion is retained for the final state, but the initial state is
accurately represented. The concentration of the ground
1so. state electron density at the protons is seen to be
essential for quantitative predictions. Angle-averaged
scattering probabilities are presented in Sec. III C to fa-
cilitate quantitative comparisons. This is followed by a
brief discussion and summary in Sec. IV.

II. SCATTERING FORM FACTORS

e +Hz+( iso )~Hz+(N)+e

H(n1m)+p+ .

Following Peek, I assume that the molecular-ion states
are correctly represented by Born-Oppenheimer (fixed-
nuclei) wave functions and that the electronic excitation

A. Born approximation

Peek ' has expressed Born's approximation to the to-
tal cross section for excitation of the Nth electronic state
of Hz+ in terms of a fixed-nuclei cross section Q&(R)
averaged over the nuclear probability distribution in the
initial vibrational state v
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Figure 7(a) is the exact result, while Fig. 7(b) was ob-
tained using a scaled Coulomb final state [orthogonalized
to the ground state, as in Eq. (9)]. Clearly, this form fac-
tor is nearly independent of 0 over a wide range of K.
Note that Is~I /K is plotted versus ln(K ) in these
figures, as in Sec. III C, to emphasize the contribution to
the cross section, Eq. (3), from small momentum
transfers.
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C. Quantitative comparisons

The 3d illustrations in the previous sections reveal the
full K and 0 distributions of the form factors, but are not
easily used for quantitative comparison. Accordingly, I
present here a few results of 0-averaged probabilities,
which enter Eq. (3). Defining
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The integrand in Eq. (11) is plotted as a function of

lnK in Figs. 8(a) and 8(b) for the 2po and 2pvr excita-
tions, respectively. The shape and magnitude of the re-
sults obtained using scaled Coulomb final states (dashed
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1so.-2po. and (b) 1so-2p~ transitions at R =2 a.u.
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curves) are again quite comparable to the exact values
(solid curves). Differences of roughly 5 —10% remain in
the optical limit, K ~0. I emphasize, however, that these
remaining differences need not reflect contributions from
higher partial waves in the Anal states, since I have not
attempted to optimize the radial parts of the scaled
Coulomb wave functions. Use of a formally exact single-
center expansion is beyond the scope of this preliminary
investigation.

IV. DISCUSSION

FIG. 7. (a) The exact 1so.-2so. scattering probability at R =2
a.u. (b) The same as Fig. 5 for the 2so final state.

The primary electronic excitation amplitudes leading
to the dissociation of H2 in fast collisions can be ap-
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proximated by Born matrix elements coupling the ground
molecular orbital to scaled atomic orbitals representing
the final states. At interproton separations near the
rninirnum of the 1so. potential well, this approximation
reproduces the dependence of the amplitudes on both the
magnitude and direction of the momentum transfer for
2s o, 2p o., 2p ~, and 3d cr final states.

The results reported here indicate the degree to which
a single spherical wave component of the final state dom-
inates excitation amplitudes in impulsive collisions. Ap-
plications to larger neutral diatomic molecules await the
use of a more accurate single-center expansion and are
left to future investigations. I simply note that few
theoretical calculations of molecular generalized oscilla-
tor strengths are presently available. The use of quasi-

atomic orbitals in analyzing the contribution of low-lying
molecular states to dissociative cross sections and angular
distributions of dissociation fragments, even on the 10%
level, would greatly enhance such efforts.
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