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A rapid fully relativistic distorted-wave method for calculating collision strengths for highly

charged ions is described. A more rapid quasirelativistic approximation in which the average over j
value —1 is used for the relativistic quantum number a for the free electrons is also discussed. Very

rapid, but accurate, procedures for obtaining results for a given class of transitions for a large por-

tion of an isoelectronic sequence by using fits to Z after making detailed calculations for only a few

values of Z are described. Results by the present methods are compared with more elaborate rela-

tivistic distorted-wave calculations by other workers, principally for neonlike and nickel-like ions,

but also comparisons for He-like, Li-like, and Na-like ions are discussed. In addition, comparisons
with a few experimental results for neonlike barium could be made. Generally very good agreement

is obtained with all these data.

I. INTRODUCTION

The purpose of the present paper is to develop a very
rapid, but accurate approach for calculating electron-
impact cross sections or, equivalently, collision strengths,
for excitation of highly charged ions with moderate to
very high values for the nuclear charge number Z. The
motivation for the work is to provide the immense
amount of collision data needed for applications to very-
high-temperature plasmas. In such plasmas, often ions of
very high Z are of interest, especially in the plasmas in-
volved in research to develop x-ray lasers. ' For Z 30,
relativistic effects have a significant effect on the radial
functions, so that a relativistic approach, i.e., an ap-
proach based on the Dirac equation, is desirable, rather
than simply treating all relativistic effects as a perturba-
tion. However, due to the dependence of the radial func-
tions on j in a fully relativistic treatment, there is about
an order of magnitude more scattering radial matrix ele-
ments than in a nonrelativistic treatment, and it is the
number of these quantities that principally determines
the length of the calculations. Even in a nonrelativistic
treatment the calculations tend to be lengthy, because in
order to determine the collision rate, the cross section or
collision strength must be known for several impact-
electron energies, and for each energy one must deter-
mine the scattering matrix elements for many initial and
final values for the angular momenta of the free electron.
In addition, particularly for relatively high-density plas-
mas, such as the laser-produced plasmas used in x-ray
laser research, transitions between excited states are im-
portant so that collision rates for thousands of transitions
are sometimes needed for treating a particular case (sin-
gle Z value) and many values of Z are of interest. Thus
there is an acute need for the development of very rapid,
accurate relativistic collision-strength approaches, as we
attempt to do here. It should be mentioned that several
rather elaborate fully relativistic distorted-wave pro-

grams now exist. A new, very rapid program using a
relativistic treatment of the bound electrons and a nonre-
lativistic treatment of the free electrons is most like the
present one in the emphasis on speed and similarity of
some techniques. The present approach is designed for
moderate to very high-Z ions satisfying Z )2N, where N
is the number of bound electrons per ion. It uses the
atomic structure provided by the program described in
the accompanying paper. We note that some prelimi-
nary results for neonlike ions obtained with the quasirela-
tivistic version of the present approach have been report-
ed in Ref. 7.

In Sec. II the theory of the present approach is out-
lined. Then in Sec. III, results obtained with it are com-
pared with results calculated by more elaborate pro-
cedures. These comparisons are made principally for
neonlike and nickel-like ions, but comparisons for He-
like, Li-like, and Na-like ions are also discussed. In the
case of neonlike barium, comparison could also be made
with a few experimental results.

II. OUTLINE OF THEORY

A. General features

In outlining the theory of the present work we will
sometimes refer to equations in the closely related accom-
panying paper on relativistic atomic structure. In doing
so Eq. (X) of that paper will be called Eq. (I.X).

The relativistic cross section Q(i f) for the transition-
i-f can be expressed in terms of the collision strength
Q(i f) by the relati-on

where ao is the Bohr radius, k is the relativistic wave
number of the impact electron, and g, is the statistical
weight of the initial level of the ¹ lectron target ion.
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The relation between k, the relativistic momentum p, and
kinetic energy c of the impact electron is

2 2
P a0 CX

k = =c 1+ — c
g2 4

(2)

where K and K are the initial and final relativistic quan-
tum numbers for the free electron. Since the customary
procedure of using unsubscripted quantum numbers for
the free electron is being followed here, K is related to the
initial orbital and total angular momentum quantum
numbers I and j for the free electron by Eqs. (I.3). Simi-
larly, the relations

i~'=I', j '=I' —
—,', a.'= —(I'+1), j '=I'+ —,

' (4)

apply for the final state of the free electron. The 4, and

4f in Eq. (3) are the initial and final antisymmetric wave
functions for the total (N+ 1)-electron system consisting
of the target ion plus the free electron. For example,

( 1)N+1 —P

(N+ I)'~

X g C(JjM, m; JM)4& J (x ')
M, , m

Xu, i. (x ),
with an analogous expression applying for 4f in which

pI, J,'; M,', s', I', j', and m' replace the corresponding
unprimed quantities. Here x designates the space and
spin coordinates for electron p and x ' means the space
and spin coordinates of all the X electrons other than p.
The 4& J and 4, , are the initial and final target-ion

I I

wave functions of the kind given by Eq. (I.4). The J, and
J,' indicate the initial and fina1 total angular monientum
quantum numbers for the target ion, so they play the role

where a is the fine-structure constant e /(Pic) and E is in
rydbergs. For the highly charged ions of interest here,
unitarization should be unnecessary. Then the relativis-
tic distorted-wave expression for the collision strength
can be written

1
)V+1

II(i-f)=8 + (2J+1)g 0'; g +f, (3)
J q, k

q&k

previously played by J in Ref. 6, while here J designates
the total angular momentum quantum number for the en-
tire (N+1)-electron system. The P, and PI represent all
quantum numbers, in addition to J, and J,', that are re-
quired to specify the initial and final states, respectively,
of the target ion. The u, i in Eq. (5) is the distorted-
wave Dirac spinor or orbital for a free electron in a cen-
tral potential V(r) due to the target ion. In particular,
analogous to Eq. (I.1),

cljm ( ) = ccm

P,„(r) y, (O, g, o )

r iQ,„(r) X, (H, g, o )

where the g are the usual spin-angular-momentum
functions given by Eq. (I.2), and the large and small com-
ponents P„and Q„satisfy the coupled Dirac equations

d K 0,' 4+ —P,„=—E —V+ Q,dl I' 2 2

and

d K
Q, = ——(E —V)P,

dr r ' 2
(8)

These are like Eqs. (I.10) and (I.l 1) for bound orbitals, ex-
cept that E is positive and is the kinetic energy of the elec-
tron in rydbergs when r ~ oo.

We note that the 4, given by Eq. (5) has the same form
as the wave function for an (N+1)-electron ion with an
¹ lectron core and a single electron in a high subshell.
An analogous statement applies for 4'f. Thus, as far as
the angular part is concerned, the matrix element in Eq.
(3) is of the same form as occurs in atomic-structure cal-
culations for an (N +1)-electron ion when one deter-
mines the off-diagonal matrix elements of the electron-
electron electrostatic interaction prior to the diagonaliza-
tion of the Hamiltonian. Therefore, in evaluating the
right-hand side of Eq. (3), we could simply use the angu-
lar part of the relativistic atomic-structure code of Grant
et al. , except that a few modifications had to be made,
such as allowing the outer electron (free electron in our
case) to have much larger angular momenta than occur in
ordinary atomic-structure calculations. Also the radial
part is similar to that of atomic-structure calculations
and takes the form of Slater integrals similar to Eq. (I.9).
Specifically, there are "direct" terms

D (n, l,j,EIj;n,'I'j,'E'Ij'') = f f [P„ I (r& )P, , , , (r& )+Q„& (r& )Q, , , , (r& )]
0 0 a aja a aja a a ja na la ja

7 (X z+, [P«~(r2)P, ,
I &.(r2)+Q«j(rz)Q ij (cr& )]dr, dr2,A+1 (9)

and "exchange" terms

F- (n. l,j.slj;n.'I,'j,'e'I'j')= [P„,, (r, )P. .., (r, )+Q„, , (r, )Q, , , (r, )]
0 0 "a aja "a a~a

7 (X &+, [Pc&j(r2)P, &, , (r~)+Qclj(r2)Q, I, . , (r2)]dr, dr&,A+], EJ
a aja alaJa

(10)
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B. Numerics of the free-electron radial functions

One can use Eq. (7) to substitute for g„ in Eq. (8),
thereby obtaining a second-order differential equation for
P„analogous to Eq. (I.12). However, for the continuum
radial functions it is convenient to go a step further, fol-
lowing Hagelstein and Jung, and make the substitution
for P„

where

a 4
ap(r) =—E —V(r)+

2 02 (12)

Then one obtains

d F, (r)+co(r)F, (r)=0,
dr

where

co(r) = az(r)a (r) — —— az(r)
l(1+1) a 1 d

r az(r) dr

(13)

ap(r) + — aI, (r),3 1 d 1 1 d~

4 az(r) dr 2 az(r) gr2

(14)

in which

ag(r) =—[E—V(r)] .

In writing ihe second term on the right-hand side of Eq.
(14), we used the fact that x(~+1)=l(l +1). The advan-
tage of solving Eq. (14) rather than the analog of Eq.
(I.12) for the free electrons is that co(r) does not depend
on F„, in contrast to the effective potential in Eq. (I.12),
which does depend on P„~ For bound orbitals, use of Eq.
(I.12), rather than the analog of Eqs. (13) and (14), does
not tend to increase the difficulty in obtaining a solution
because the bound orbitals also enter the Dirac-Fock-
Slater potential given by Eqs. (I.16)—(I.18), which must
be determined self-consistently with the solution of Eq.

where r& (r& ) is the lesser (greater) of r, and r2. Here
we made the dependence on I and j explicit partly be-
cause an approximation that removes the dependence of
the free-electron radial functions on j, and hence reduces
the number of radial integrals of the form given by Eqs.
(9) and (10) by a factor of 4 (except when l and/or 1' =0),
will be considered later in Sec. II D.

In the evaluation of Eq. (3) it is assumed that all orbit-
als bound and free are orthogonal. This and a completely
consistent treatment of exchange between bound and free
electrons are automatically obtained in the present ap-
proach because the central potential used in Eqs. (7) and
(8) is exactly the same as that used in Eqs. (I.10) and
(I.ll) for the bound electrons. That is, we use the same
Dirac-Fock-Slater potential given by Eqs. (I.16)—(I.18)
coupled with use of a mean configuration, such as the one
given by Eq. (I.19), for both bound and free electrons.

(I.12) anyway.
As in the solution of Eq. (I.12) discussed in the accom-

panying paper, we separate out the nuclear contribution
—2Z/r to the central potential and evaluate its contribu-
tion to dV/dr and d V/dr, analytically. Also, we start
out with the mesh size given by Eq. (I.15) and double the
mesh size every 40 points until we stop at the largest hr
by this procedure that satisfies

1
liight r

4ITlaX
(16)

where E,„ is the largest energy (in rydbergs) being con-
sidered in the calculations. Then we continue with this
fixed Ar, usually for a total of 1800 points. Although
only every fourth point is used in calculating the radial-
scattering matrix elements, Eq. (16) ensures that we have
a sufficient number of points per cycle to obtain accuracy
at large r, where the radial functions are approximately
oscillatory. The appropriate normalization for the free-
electron radial functions is considered in the Appendix
and is given by Eq. (A20).

C. Procedures for minimizing the number of radial integrals

For most cases the length of the calculations of col-
lision strengths is principally determined by the number
of radial wave functions and radial matrix elements or in-
tegrals. Hence it is important to keep this number to a
minimum. In addition to the other convenient aspects of
using the same potential in determining the orbitals of all
the electrons, this helps to minimize the number of radial
integrals in treating complex ions. This occurs because,
in contrast to some multiconfiguration treatments, the
bound-electron contribution to Eqs. (9) and (10) is then
the same for all transitions in which the same orbital
transition n, l,j,-n,'I,'j,' enters, which can be very large
for complex ions. Of course, the free-electron contribu-
tion to Eqs. (9) and (10) differs for each different initial
and final free-electron energy. In order to minimize this
effect we use the following procedure: In considering a
given class of transitions, such as all the n =2 to n =3
transitions in neonlike ions, we calculate results for a
fixed set of scattered-electron energies (usually six) begin-
ning near zero and spanning the range needed to obtain
accurate collision rates. For each of these we calculate
results for three impact-electron energies spanning the
range of transition energies for the class of transitions be-
ing considered. Then we interpolate on these three sets
of results for Eqs. (9) and (10) to get the values for the
correct transition energy for each particular transition in
the complex ion. When the factorized form for the col-
lision strength discussed in Sec. II E below is used, the in-
terpolation is done on the Q, see Eq. (17) below. Since
the radial integrals and the Q vary smoothly and quite
slowly with energy, this procedure works very well and
leads to a large reduction in the number of radial in-
tegrals occurring in the treatment of complex ions. This
procedure, which was briefly described in Ref. 7, is simi-
lar to that used in Ref. 5. However, our interpolation
method, which was taken from the program by Bottch-
er, ' is a nonlinear scheme that may be superior to the
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one used in Ref. 5 because, in contrast to Ref. 5, we never
find it necessary to use more than three energy points to
obtain numerical accuracy.

As is well known, the partial-wave contributions to Eq.
(3) can be significant for very large values for the initial
and final angular momenta of the free electron, especially
for high impact-electron energies and optically allowed
transitions with An =0. Our procedure for optically al-
lowed transitions, those for which the electric-dipole os-
cillator strength is nonzero, is to make detailed calcula-
tions out to some value I = lo and use the rapid
Coulomb-Bethe approximation" for I ) lo, where Io is
chosen to be about 10 for near-threshold energies for ex-
citation from levels with n ~ 2 and slightly higher for ex-
citation from higher levels. The value used for lo is in-
creased as energy is increased, with a maximum value of
40 being used for very high impact-electron energies. In
this approximation lo is assumed to be suKciently large
that exchange contributions can be neglected for I ) lo,
and only the first nonvanishing matrix element of the ex-
pansion of the interaction between bound and free elec-
trons, that is, the matrix element of the r & /~ & term,
needs to be retained. Moreover, it is assumed that r & is
the radial coordinate of the bound electron and r & is that
of the free electron. Then the contribution from I ) lo
factors into a part proportional to the oscillator strength
or line strength and a free electron part, e.g. , Eqs.
(38)—(48) of Ref. 12. For the former part we use the rela-
tivistic results calculated with the program of the accom-
panying paper, but for the latter part we use the nonrela-
tivistic result of Ref. 11. In order to test the accuracy of
this procedure we did test cases in which results for col-
lision strengths were calculated using appreciably
different values for lo and compared. In addition, com-
parisons were made with results by the much more ela-
borate relativistic method of Refs. 3 and 13, in which the
Coulomb-Bethe approximation is not used. Both of these
kinds of comparisons indicate this procedure is accurate;
however, eventually we expect to replace the nonrelativis-
tic free-electron part of this procedure with the analogous
part calculated relativistically. For transitions that occur
only through exchange, the contribution from large I is
insignificant. For other non-optically-allowed transitions,
the ratio of partial wave contributions for successive I
values becomes nearly constant for large l, so that we
could use this ratio to estimate the contribution from
1) lo as described in Ref. 14, e.g. , Eqs. (10)—(12) of Ref.
14.

D. Quasireiativistic approach with z= —1

for the free electrons

Using the quasirelativistic (QR) approach discussed in
Sec. IID of Ref. 6 for the atomic-structure input and
making the analogous QR approximation for the free
electrons, we can calculate collision strengths in what we
call the QR approximation. In this approximation the
second term in each of the square brackets of Eqs. (9) and
(10) is dropped and the P's are normalized as though they
were the total radial functions. This normalization is
that given by Eq. (I.21) for the bound electrons. The

analogous, appropriate normalization for the free elec-
trons is given in the Appendix by Eq. (A23) if no addi-
tional approximations are made. However, for reasons
analogous to those discussed in Sec. IID of Ref. 6, this
QR approach only saves about 10% in computing time,
and hence is of little practical value unless we make an
additional approximation for the free electrons. In this
approximation we use the average over j value, ~= —1,
for the s. in Eq. (14). Then the free-electron radial func-
tions become independent of j, which reduces the number
of free-electron radial functions by approximately a fac-
tor of 2 and the number of radial integrals by approxi-
mately a factor of 4, and leads to a reduction in comput-
ing time by about a factor of 2.5. As discussed further in
Sec. III, this procedure is quite accurate. One might ex-
pect that this would be the case because a summation
over ~ and ~' is, of course, equivalent to a summation
over l, I', j, and j'. Thus, since j and j' are summed over
in Eq. (3), one should expect that using the average over j
value, ~= —1, would be a good approximation for the
free electrons. The appropriate normalization for the
free-electron radial functions in this case is given by Eqs.
(A24) or (A25).

E. Factorization method and fitting to Z

Recently Bar-Shalom et al. have made the important
observation that, in general, the various 6-j and 9-j fac-
tors entering the exchange and direct scattering matrix
elements can be arranged so they contain a common fac-
tor that can be factored out and summed over J. The col-
lision strength then factors into the convenient form

XB (J J J 1J 1)Q (j j j iJ 1)
Ja ~Ja

. I

Jai Ja&

where we have used the abbreviations j, =n, l,j„
j,'=n,'I,'j,', j„=n,&l, &j, &, and j,'& =n,'&I,'&j,'&. Here the
j,] and j, represent orbitals in the initial target-ion wave
function, and j,', and j,' orbitals in the final target-ion
wave function. A convenient feature of Eq. (17) is that
B is a function only of the target-ion quantum numbers
and the mixing coefficients plus A. , while the Q contains
the radial contribution and depends only on A. and the
bound and free orbitals with the summations over the
free-electron momenta performed within it.

Thus far, we have coded up the factorization technique
only for excitation from the ground-state level of ions
such as neonlike and nickel-like ions with closed-shell
ground-state configurations. Then the B factors in Eq.
(17) take the very simple form of a product of mixing
coefficients for the upper level times a 5, factor. For ex-

1

ample, for excitation of neonlike ions from the ground-
state level to an upper n =3 level, U;

B (j,j,',j, ij,', ) = b [U, , (21, . 31', ),]
&Ja

xb[U, , (21„, 31', )Jt]5, , (18)
Ja1

where b [U, , (21, 31', ),] is the mixing coefficient givingJa QJ J
the contribution of the state (21, 31'., ), to level U, , and

~Ja aj J,
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we have used the abbreviations of Eqs. (I.25)—(I.27). Ac-
tually for cases such as this, where the angular part of the
calculation is small, we found no improvement in speed
using the factorization technique as compared with the
usual treatment. However, Bar-Shalom et al. em-
phasize that the value of the factorization technique is in
treating cases, such as transitions between the excited lev-
els with n =4 in Ni-like and Cu-like ions, where there is a
huge number of transitions involving a relatively small
number of orbital transitions n, l,j,-n,'I,'j,'. Then in the
usual treatment the calculations become very lengthy due
to the lengthy angular part.

In addition to the great convenience and increase in
speed by using the factorization method for such transi-
tions, Eq. (17) is very convenient for another purpose not
pointed out in Ref. 5. This is for making very rapid cal-
culations of results for a given class of transitions for
many members of an isoelectronic sequence simultane-
ously with the use of fits to Z. One cannot ordinarily
make accurate fits of results for 0 to Z in the case of
complex ions because the results can vary suddenly and
abruptly as Z changes. The problem is with the mixing
coefficients. However, when the factorized form is used,
the mixing coefficients are separated off into the B term,
which can be treated as part of the atomic-structure part
of the calculation. This part of the calculation is very
rapid and, in addition, the Z fit procedure discussed in
Sec. IIE of Ref. 6 can be used. The remaining radial
part, the Q part, is much more lengthy to calculate, but
the Q 's vary in a smooth way with Z. In fact, in the ap-
proximation used in much of our earlier work based on
use of hydrogenic basis states, e.g. , Ref. 15 and references
therein, Z Q would be independent of Z, and also N.
Thus one would expect that fits of the Q to N and Z
could readily be made. Recently, ' in work too lengthy
to be included here, we have demonstrated that the latter
can be done by considering the n =2 to n = 3 and 4 tran-
sitions in neonlike ions. In that work, for each of the six
values Z =22, 30, 42, 56, 74, and 92, detailed calculations
are made for the same six scattered-electron energies e~
in the range 0.008 c& 0.75, where c& is in units of Z, ff

Ry with Z, s.=Z —7. 5. In each case the Q 's are calcu-
lated for the three impact-electron energies c; in the same
units c., =c.&+0.13, c.,- =vI+0. 197 and c, =c&+0.264,
where 0.13 and 0.264 span the range of transition ener-
gies. Then each Q" is fit to a power series in Z. These re-
sults are then used in Eq. (17) to compute values for II for
all 71 values of Z in the range 22 ~ Z ~ 92. In doing this,
the values of the Q for the exact energy of each transi-
tion are obtained by interpolation, as discussed in Sec.
II C. In order to determine the accuracy of this fit pro-
cedure, we have made separate detailed calculations for
the other Z values, Z =26, 36, 47, 64, 79, and 82. These
indicate that this procedure is accurate to better than
1%. Since the fit procedure requires essentially no com-
puting time, the time required for the calculations is
essentially that required for the detailed calculations for
the six Z values, and the length of the calculations for the
71 Z values is reduced by over a factor of 10 by this pro-
cedure.

III. NUMERICAL RESULTS AND DISCUSSION

Probably the most elaborate and accurate fully relativ-
istic cross-section or co11ision-strength program presently
operating is that of Kim and Desclaux and Kim. ' We
have compared our fully relativistic (FR) results with
theirs for numerous transitions involving the valence
electron in Li-like ions with Z =28 54, and Na-like ions
with Z =54, for a wide range of impact-electron energies
up to 10 eV. The agreement is very good, usually within
1% or 2% and the maximum discrepancy is 5.7%. Also,
we could make comparison with relativistic distorted-
wave results near threshold for excitation from the
ground-state level to the n =2 levels in He-like iron and
krypton, calculated by Pindzola and Carter. In this case
the agreement is to within 5.8% and 3.4% for iron and
krypton, respectively. Also, it is interesting to note that
our oscillator strengths are to within better than 1% of
either their length or velocity results for both iron and
krypton. In all of these cases the agreement of our
quasirelativistic results with those of these other workers
is also good, almost as good as that of our FR results, the
maximum discrepancy being about 7%.

By far the most extensive fully relativistic calculations
of collision strengths or cross sections that have been
published, and with which we next make comparisons,
are the relativistic distorted-wave results for neonlike and
nickel-like ions obtained with the program of Hagelstein
and Jung. In these cases there are large groups of upper
states that mix, so the accuracy of the results depends on
the accuracy of the mixing coefficients, as well as that of
the radial-scattering matrix elements. This is in contrast
to the simpler cases we have discussed, where there is no
mixing at all in the case of Li-like and Na-like ions, and
only the relatively simple mixing of the ( ls, /z2p, /z ), and

(Is&/$2p3/g)f states (or the ls2p P, and ls2p 'P, states)
in He-like ions. We note that the program of Ref. 4 uti-
lizes a mean configuration in determining the potential
like we do, but otherwise uses a multiconfiguration rela-
tivistic Hartree-Fock or Dirac-Fock atomic-structure ap-
proach, rather than the simpler Dirac-Fock-Slater ap-
proach of Ref. 6 used here. Thus it is intermediate in
complexity between our program and those of Refs. 2, 3,
and 13, which use structure data from the elaborate
multiconfiguration Dirac-Fock programs of Grant et al.
or Desclaux' and a rather sophisticated potential for the
free electrons.

A. Results for neon-like ions

Results with the program of Hagelstein and Jung have
been given for neonlike ions with Z =36, 34, 39, 42, and
47 in Ref. 4, and for Z =56 in Ref. 18. In Table I a com-
parison is made between our results for collision
strengths and those of Ref. 4 for Z =26 and 47. Also, for
the higher Z values of 74 and 92, a comparison is made
between our QR and FR results in order to establish the
degree of validity of our QR approach for very high
values of Z. The first and second entries for each transi-
tion are our QR results with v= —1 for the free electrons
calculated using the normalizations for the free-electron
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radial functions given by Eqs. (A24) and (A25), respec-
tively. The third entries are our FR results and the
fourth entries are the relativistic distorted-wave results of
Ref. 4. The largest discrepancies tend to occur either
near threshold or for relatively large energies. Thus, al-
though a complete set of comparisons for all final elec-
tron energies cf considered by Hagelstein is available
from the authors, in the interest of brevity only the re-
sults for the lowest and highest values of cf are given
here. Also for similar reasons only results for two final
electron energies, one very small and one rather large, are
given for Z =74 and 92. Moreover, in order to conserve
additional space the transition energies for Z =26 and 92
are not included because they are given in Tables II and
IV of Ref. 6.

In making the calculations of the FR and QR values
given in Table I, the mean configuration given by Eq.
(I.20) was used in determining the potential. Perhaps Eq.
(I.19) would have been a better choice, but it would have
made little difference. Test calculations for Z =26,
where the effect should be largest, indicated use of Eq.
(I.19) leads to collision strengths within 1% of those ob-
tained with Eq. (I.20) in most cases. Considerably the
largest deviation was about 4%%uo near threshold for the
fairly weak optically allowed transition to the
(2s&&z3p3&z), level. We note that QR results without the
further approximation ~= —1 for the free electrons are
not included in the table. The reason for this is that this
method is of little value because it saves only about 10%
in computing time compared with the FR approach, and
it is no more reliable than the QR approach with the ad-
ditional approximation of ~= —1 for the free electrons,
which saves about a factor of 2.5 in computing time com-
pared with the FR approach. Thus, hereafter, when we
discuss QR results we mean those obtained with the addi-
tional approximation of using x = —1 in Eq. (14) for the
free electrons.

Inspection of Table I indicates that the results are
essentially as one should expect. Except for a very slight
effect on mixing coefficients due to inclusion of the Breit
interaction in the atomic-structure part of the programs
of Ref. 4, the differences between their collision strengths
and our FR results should be a consequence of the use of
different electron-electron contributions to the potentials
used in determining the radial functions. The importance
of this should decrease as Z increases, and the magnitude
of the electron-electron contribution decreases relative to
the nuclear contribution. Indeed, the maximum
discrepancy between our FR results and those of Ref. 4
decreases from about 11% for Z =26 to about 7% for
Z =47, and the agreement of our FR values with those of
Reed' obtained with the program of Ref. 4 for Z =56
appears to be even somewhat better. In fact, the compar-
isons shown in Fig. 1, in which our FR results are hardly
distinguishable from Reed's, are typical.

Also in the figure recent experimental results of Marrs
et QI. ' are included. In addition, they give results for
the sum of the three transitions to the even-parity levels
with J=0 for impact-electron energies of 5.7 and 8.2
keV. Our estimates by interpolation to these energies are
that our FR values are about 2% above Reed's and are
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about 6% above and 12% below the experimental values
for 5.7 and 8.2 keV, respectively.

With regard to QR results, we expect them to be close
to the FR values for low Z, where relativistic effects are
not very important, so that use of QR approximations to
these effects should introduce little error. As Z increases
one expects the deviations of the QR values from the FR
values to increase. Inspection of the results given in
Table I indicates that this does generally occur. Never-
theless, the QR results with the normalization given by
Eq. (A25) are seen to still be quite close to the FR values
for Z =74 and they are even within 25% of the FR re-
sults for Z =92. In fact, for Z =92 they are within 15%
of the FR results for all but four transitions, three of
which are very weak. The most significant deviations are
from about 20 to 24% for the moderately strong transi-
tion to the (2s, zz3s»z )p level.

We note that the QR results with the normalization of
Eq. (A25) were not included in Fig. 1 because they are
too close to the FR values. However, in one exceptional
case for neonlike barium the QR results do differ by a
large factor from our FR results and the relativistic re-

..... ~ ~ "(2p, 3d, )

suits of Reed. ' This is for excitation to the (2p, zz3s, zz ),
level, where the QR results are about 30% or 35% lower
near threshold and approach a value more than 50%
lower for high energies. As discussed in Sec. III A of the
accompanying paper, the upper level of this weak transi-
tion lies between the upper levels of two strong transi-
tions. Hence, slight differences in the method of calcula-
tion can affect the mixing of the upper level of the weak
transition with those of the strong transitions suSciently
to have a large effect on the oscillator strength and col-
lision strength for the weak transition. In fact, probably
our FR results and Reed's results are also appreciably in
error for this transition, although less so than the QR re-
sults, because the corresponding oscillator strengths
given in Table I of Ref. 6 differ appreciably from the re-
sult of the program by Grant et ai. with inclusion of the
Breit interaction.

Finally we mention that our earlier results for neon-
like ions based on the use of hydrogenic basis states and
screening constants are mostly within 15% or 20% of the
present values for iron, with discrepancies of 30% or
slightly more in a few cases. As Z increases and the nu-
clear contribution to the potential becomes more dom-
inant, the agreement improves, but then, for Z ~ 50, it
decreases due presumably to the neglect of relativistic
effects on the radial functions in Ref. 20. Thus, although
the agreement is, for the most part, still quite good at
Z =74, the earlier results of Ref. 20 differ from the
present FR values by amounts up to a factor of 2 or more
in a few cases.

I/2 3/2 I

B. Results for nickel-like ions

IO
~ ~ - (2p 3p )

IO

0

'"(2p 3p )
3/2 3/2 I

(2p 3s )3/2 I/2 2

lO
I

I/23 I/2)I
i I

6 7

FIG. 1. Comparison of collision strengths as a function of
impact electron energy in threshold units X for various transi-
tions in neonlike barium. Present FR results, ; present QR
results using Eq. (A24) for the normalization of the free-electron
radial functions, ———;relativistic distorted-wave results of
Reed (Ref. 18), . . . ; experimental results of Marrs et al. (Ref.
19), X.

We can also compare our results with those of Hagel-
stein ' for nickel-like gadolinium (Z =64). This is done
in Table II, where the four entries for each transition are
obtained by the same approaches as the corresponding
entries in Table I. In this case the potential used in our
FR and QR calculations was determined using the mean
configuration given by Eq. (I.29). Again, and for similar
reasons to those discussed in connection with Table I, we
give results only for two energies. Also, in the interest of
brevity, we have given results only for excitation of a
3d3/2 or 3d»z electron, which are the cases of most prac-
tical interest; however, the comparisons for excitation of
3s»2, 3p, &z, and 3p3&2 electrons to n =4 levels and for all
the energies considered by Hagelstein ' are available
upon request from the authors. It should be mentioned
that here, as in the calculations discussed previously for
neonlike ions, we have only included all the mixing
among states in a complex, i.e., having the same set of n

values, parity, and J value, in order to be consistent with
the calculations with which comparisons were being
made. However, as noted by Goldstein et al. , the n =4
levels with holes in the 3s and 3p subshells overlap in en-
ergy the n =5 levels with holes in the 3d subshells. Thus
it may be necessary to include mixing with the latter in
order to obtain accurate results for excitation to some of
the n =4 levels.

One sees that the agreement between the present re-
sults and those of Hagelstein is generally good and is
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about like that for neonlike iron given in Table I, for
which the value of Z/N is similar to that for nickel-like
gadolinium. However, there is one transition (not shown
in Table II) for which our FR results differ appreciably
from Hagelstein s. This is excitation to the (3s»24p»z),
level, for which our FR results approach a value about
1.5 times the results of Hagelstein, for large energies. In
the case of this weak optically allowed transition, it is our
value for the oscillator strength that agrees approximate-
ly with that of the program by Grant et al. , as seen
from Table V of Ref. 6. Hence we think our results for
the collision strength are the preferred ones in this case.

Similar to the situation for neonlike ions and for the
same reasons, we expect that the differences between FR
results, and those obtained with the programs of Ref. 4,
would decrease as Z is increased. Also, in the present
case involving one step higher in n values than for neon-
like ions, one would expect relativistic effects to tend to
be smaller. Hence the QR results should be accurate for
higher Z. In order to test this and help in establishing
the range of validity of the QR approach, we have com-
pared QR and FR results for nickel-like ions with Z =92
in Table III. Here the three entries for each transition
are calculated by the same methods as the first three en-
tries for each transition in Table II. One does see that
indeed even for Z =92 the QR results are mostly in very
good agreement with FR values, especially the QR values
obtained using the normalization of Eq. (A25).

IV. SUMMARY AND CQNCLUSIC)NS

A very rapid, fully relativistic distorted-wave approach
and corresponding computer program have been
developed for the purpose of calculating collision
strengths for highly charged ions and providing the cross
sections needed for applications to very-high-temperature
plasmas, such as those in x-ray laser research. Results by
this method are compared with those by several more ela-
borate programs and with a few experimental values. It
appears that for Z ~2.5N the approach gives results
essentially as accurate as the most elaborate fully relativ-
istic programs available. A quasirelativistic approach
that is still more rapid by about a factor of 2.5 is also de-
scribed. This QR approach gives results close to the FR
values for neonlike ions with Z ~74 and nickel-like ions
with Z ~ 92. A procedure is described for readily and ac-
curately obtaining collision strengths for a large portion
of an isoelectronic sequence, when detailed calculations
have been made for only a few members by making use of
fits of the radial part of the collision strength to a power
series in Z.
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APPENDIX

The appropriate normalization for the free electron ra-
dial functions is

f [P; (r)P,„(r)+Q,. (r)Q, (r)]dr =m5(e —e') .
0

In order to determine what this implies for the asymptot-
ic form of the functions we follow a procedure that is
essentially the relativistic analog of that given in Sec. 18-3
of Ref. 23. Specifically, we multiply Eq. (7) from the left
by Q, , and subtract from this the analogous equation
with c, and c' everywhere interchanged. Then we solve
for Q, ,Q„ to obtain

2 1
EK CK

d
QEK vr EK QEK ~E EKdr dr

+ —(Q, P„—Q„P, )
r

(A2)

By applying analogous procedures to Eq. (8) we get

2 1

a (e —e')
d d

EK & QEK EK QEKar dr

——(P, Q, P;Q„)— (A3)

Thus adding Eq. (A2) to Eq. (A3) we obtain a perfect
differential, which we integrate from 0 to any value of r
to obtain

P, , r'P, r' +,, r', r' dr'
0

2 1
[P, (r)Q, ,(r) —Q„(r)P;„(r)] . (A4)

In the limit of r~ Eo, Eqs. (7) and (8) reduce to

(A5)

Hence, in this limit,

d P
dr

(A6)

which has the solution

P„= ~C( )csin(kr +5 ) .

Then from Eqs. (A5),

(A7)

Q„=C&(e)cos(kr +5„)=——Cp(e)cos(kr +5„) . (A8)
a c

P, =—e+ Q,„, Q„=— eP, —d a 4 d
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Applying this to Eq. (A4),

lim f [P, „(r')P, (r')+Q, . (r')Q, „(r')]dr'
r~oo 0

Cp(e)Cp(e')
, sin(kr +5,)cos(k'r +5„)

(E —e'

and
1/2

ap(r}

( )j/2

1/2
2

1/2
2

cp .

1/4
—1/4

4

(A17)

——cos(kr +5„)sin(k'r +5,) Thus C =(a/2)'/ . Now for large r in the vicinity of ro,
the unnormalized large-component radial function will be

(A9)
P,",(r) =B sing(r), (A18)

The part in parentheses can be expressed as
(e/k)sin[(k —k')r] plus a part that oscillates infinitely
rapidly as r ~ ~ and contributes nothing. Thus using

lim, sin(k —k')r =m5(k —k'),1

r- k —k'

we have

f [P; (r)P„(r)+Q, (r}Q, (r}]dr
0

(A10)

k —k'
=mC (e)C (E')— 5lk —k')

k c.—E'

=mCp(E) —5(E—e') . (Al 1)

Hence, comparing this with Eq. (A 1), one sees that
1/2 1/4

k 1 ac.
C (e)= — = 1+1/4 4

(A12)

' 1/2
ap(r)P„(r)=C

r
sing(r), P(r) = f g(s)ds

0
(A13)

should apply. Using Eq. (A13) in Eq. (11), and then sub-
stituting into Eq. (13), gives

+co(r)=rl (r) .1/2 d —1/2

dT
(A14)

Since g should be a slowly varying function of r for large
r, one would expect the zeroth-order approximation
ri(r)=co(r)' would be quite a good approximation. In
fact, we found no improvement by going to a higher-
order approximation as in Ref. 4. Thus we use

1/2
ap(r)

( )1/2P„(r)=C sing(r), r ) ro (A15)

with co(s)' replacing g(s) in the second of Eqs. (A13) for
this region. In the limit r~ ~, one sees from Eqs. (12),
(14), and (15) that

In practice one does not evaluate P, to such large r
that Eq. (A7) applies. Instead, one simply goes out to
some large value r0, somewhat greater than that for
which the bound functions have significant values, and
where, following Hagelstein and Jung, the Wentzel-
Kramers-Brillouin solution

where B is the amplitude of P," at r =r0. Hence, collect-
ing results, the properly normalized large-component
continuum radial function is

aap(ro) P,"„(r)

2'(ro )'
(A19)

Actually it is Eq. (13) for F,„ that we solve numerically.
If the amplitude of F,", the unnorrnalized solution of Eq.
(13), is B' at r =ro, then from Eq. (11), B =B'ap(ro)'
and P,",(r) =ap(r)'/ F,",(r) Hence. , in place of Eq. (A19),
we can write

P„(r)=
aap(r) F," (r}
co(r )

(A20)

When the QR approach described in Sec. IID is used,
one cannot obtain the analog of Eq. (A20), rigorously.
However, one would expect the appropriate replacement
for the coeScient Cp in the analog of Eq. (A7) to be

Cg (e)= [Cp(e)+ C&(E)]' =Cp(E)

2 1/2
1+ c.

2

1+ c4'
(A21)

1/2

c~ =—
2

2 1/2
1+

2
2

1+ 4'
(A22)

Hence, in the QR approach, Eq. (A20) is replaced with
1/2

E,K 2

2

1+ c

2

1+ c

ap(r)

(r )1/2

F," (r)
B'

(A23)

where use was made of Eqs. (2) and (A8). Then PO for
r ) ro is given by Eq. (A15) with C replaced by CO given

by

a 4
co(r) =apag = c+ e =k

a
(A16)

When the additional approximation ~= —1 is made in
Eq. (14), so that the radial functions for the free electron
become independent of j, Eq. (A23) is replaced with
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P, t (r)=

2

1+ E2'
2

1+ E
4

ap(r)
~i(r )1/2

1/2

Fu2(r)
B'

(A24)

PQR3(r) cz

2

CX1+ (e —V)
2

1+ (e —V)
4

ap(r)
t(r )1/2

' 1/2

Fu2(r)

values, that improved QR results with tc= —1

tained if Eq. (A24) is replaced by

where co'(ro ) is given by Eq. (14) with tc= —1 and evalu-
ated at r =ro, while F,"t (r) is the unnormalized solution
of Eq. (13) with co(r) replaced by co'(r) given by Eq. (14)
with ~= —1. Actually we have found empirically, by
comparing results for collision strengths with the FR

(A25)

which reduces to the same value as that given by Eq.
(A24) in the limit r~ oo.
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