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Eigenvalues of the Schrodinger equation via the Riccati-Pade method

Francisco M. Fernandez
Diuision Quimica Teorica, Instituto de Inuestigaciones Fisicoquimicas Teoricas y Aplicadas, Sucursal 4,

Casilla de Correo 16, 1900La Plata, Argentina

Q. Ma and R. H. Tipping
Department of Physics and Astronomy, Uniuersity ofAlabama, Tuscaloosa, Alabama 35487-0324

(Received 8 June 1989)

A method described previously for obtaining upper and lower bounds for the eigenenergies of the
Schrodinger equation for parity-invariant and central potentials is extended and applied to asym-
metric one-dimensional potentials. The procedure consists of transforming the Schrodinger equa-
tion into a Ricati one for the logarithmic derivative of the wave function. The solution of the latter
equation is approached by a series of Pade approximants. Approximate eigenenergies are obtained
from the roots of associated determinants, and such roots are proved, in some cases, to be upper or
lower bounds to the actual eigenenergies. The method is illustrated by calculations for several mod-

el potentials and the results compared with those obtained by alternative procedures.

I. INTRODUCTION II. PARITY-INVARIANT POTENTIALS

Recently, a method has been presented for obtaining
upper and lower bounds to the eigenvalues of the
Schrodinger equation. ' It consists of transforming the
Schrodinger equation into a Riccati one and approaching
the solution of the latter by means of a sequence of Pade
approximants. The bounds are obtained from the roots
of a sequence of related determinants. The method has
been successfully applied to several one-dimensional and
central-field problems, ' and a proof for the occurrence of
bounds has been proposed for the case of polynomial po-
tentials. However, a more careful investigation shows
that such a proof is limited to polynomials of degree less
than or equal to 4.

The purpose of the present paper is to discuss the
Riccati-Pade method in more detail and to give a more
complete explanation for the occurrence of bounds. In
addition to this, the method is applied to one-dimensional
asymmetric potentials which have not been treated before
in this way. The paper is organized as follows: the main
equations are developed in Sec. II for parity-invariant po-
tentials, and results are shown for the harmonic oscillator
as an introductory example. A proof of the bounds is
presented in Sec. III for the case of parity-invariant, one-
dimensional, and central-field potentials. Asymmetric
potentials are discussed in Sec. IV. In every case, the
analytical conclusions have been verified by means of
symbolic algebraic (REDUCE) calculations.

where V(x)= V( —x). It is convenient to define a new
function &P(x) =x 'P(x), where s =0 or s =1 for even or
odd states, respectively. In this way, the logarithmic
derivative

f (x ) = [ —@(x) ]' IC&(x)— (2)

is regular at the origin for all eigenstates of (1). It follows
from Eqs. (1) and (2) that f (x) satisfies the Riccati equa-
tion

[f(x)]' f (x) +2sf (x)—Ix =F. —V(x) . (3)

Although the Riccati-Pade method applies to quite gen-
eral potentials V(x), in this section we restrict ourselves
to the simple forms:

K
V(x)= g v, x ', vx. ) 0 .

j=]
The logarithmic derivative (2) can be expanded in a Tay-
lor series around the origin

f(x)= g fx'
j=0

where the coefficients f are found to satisfy

To begin with, we consider the time-independent
Schrodinger equation

t/)(x)" = [ V(x) E]g(x), —
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j —1 Kf =(2j+2s+1) ' g ff;,+E5,o . —g v;5;.
i =0 i =1

(6)

The function f (x) can be approximated by a sequence of
rational functions

g (x) = A (x)/B (x),
where

M N

A(x)= g a, x '+', B(x)= g b x ', ho=i .
j=0 j=0

(8)

If g (x) is exactly a Pade approximant, then

f (x) —g (x)=0 (x ' + '+ ). However, since the energy
eigenvalue E is unknown, we can consider it as an adjust-
able parameter and obtain an approximation to it accord-
ing to the following procedure. It seems reasonable to
choose the energy such that f (x) g(x)=—O(x ' + '+

)

because, in this way, g (x) approaches the solution of the
Riccati equation more accurately around x =0. Under
such conditions, the coefficients a and b satisfy

J

g b,f,=a, j=0, 1, . . . , M,
i=0

(9a)

J
g b, f, , =0, j =M+1,M+2, . . . , M+N+1, (9b)

i =0

where it is understood that b; =0 if i & N. The N
coefficients b, , b2, . . . , bz cannot satisfy the N +1 linear,
homogeneous equations (9b) unless

cracy of each root increases with the order of the deter-
minant has an important consequence when nonexactly
solvable problems are treated. In such cases, it is found
that the number of roots in the neighborhood of a given
eigenvalue increases as D increases. In practice, this
problem can be overcome by looking for nested pairs of
upper and lower bounds' as one increases the value of
D.

III. UPPER AND LOWER BOUNDS

The existence of upper and lower bounds can be
rigorously proved in some cases. To this end, we follow
the procedure proposed in Ref. 2 and define the ansatz
for the Schrodinger equation

G (x)—x'exp[ —f g (x')dx'], (12)

where g(x) is given by Eq. (7); V is the corresponding
potential

Vg(x) = W+ G (x)"/G (x)—:V(x)+R (x), (13)

where R (x) is determined below. Therefore, it is clear
from the Schrodinger equation that if R (x) )0 for all x,
then W )E. On the other hand, if R (x) (0 for all x,
then HG(x)/G(x)= W —R (x)) W, where H is the
Hamiltonian operator. It follows from theorems 3 and 4
in Ref. 3 that W ~ inf[HG (x )IG (x), G (x) ] ~ E. One of
the main advantages of the Riccati-Pade method is that it
leads to simple functions R (x) as shown now. It follows
from Eqs. (7), (12), and (13) that

R (x)B(x) = A (x) —A(x)'B(x) —A (x)B(x)'

HD

fd+1

fd+2

fd+2

fd+3

fd+D

fd D+1+=0, (10)

—2sA (x)B (x)Ix +[W —V(x)]B(x)

(14)

H2 =(E 1) (E —25)/4725, —

H ~
= (E 1) (E —25 )(E +—3 ) /297 675,

(1 la)

(1 lb)

H3=(E —1) (E —25) (E —81)/46414974375,

(1 lc)

etc. These results suggest that HL", =(E 1) (E—
—5 )

' [E (4D —3) ]PD(E), w—here PD(E) is a
polynomial with no real roots. The fact that the degen-

fd+D fd+D+1 fd+2D —1

where d =M —N ~0 and D =N+ 1. It has been found
previously' that the roots W of the D XD determinant
(10) converge very quickly towards the actual eigenener-
gies E as D increases, thus yielding increasingly tight
upper and lower bounds. ' Such behavior has been
verified for several potential models' although it is not
clear why or if the bounds occur in general. The proof
that has been proposed only applies when K ~ 2 as
shown in Sec. III.

It is instructive to show first how the method applies to
the harmonic oscillator (v, =5, , ) because in this case all
the eigenvalues are exactly obtained. The first few deter-
minants for the even parity states are

Therefore
J

R(x)B(x) = g r x J,
j=0

where

(15)

J =max(2M + 1,2N +K), (16)

because M ~N as stated above. Since the coefficients a
and b, and the approximate eigenvalues W have been
chosen so that g (x) satisfies the Riccati equation as accu-
rately as possible around the origin, we conclude that

r =0, j =0, 1, . . . , M+N+1 . (17)

In other words, the M +N +2 parameters a, ,
i =0, 1, . . . M, b, j =1,2, . . . , N, and W have been
chosen in order to satisfy Eq. (17). This procedure is
closely related to the ~ method, except that in the
present case, the eigenvalue is also considered to be an
adjustable parameter. As a result, the function R (x) can
be written in the form

J
R(x)= g r x 1/B(x), I=M+N+2. (18)

j=I
If 2M+1~2N+K, then J=2M+1 and J —I
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& (K —3)/2. On the other hand, if 2M+1 &2N+K, it
is found that J I—&(K —3)/2. Therefore R (x) can be
reduced to only one term provided that K ~3. When
K =2 (quartic oscillator), it is found that

and

R(x)= u2—b~x + /B(x), M=N

R(x)=aMx + /B(x)2, M=N+1 . (20)

For this reason, the roots of the determinants HD and HD
yield lower and upper bounds, respectively. ' When
K =3 (sextic oscillator), it can be easily proved that R (x)
has only one term provided that M=N+1, in which
case

R (x) =(aM —v 3b~ )x + /B (x) (21)

Therefore, IV & E (W &E) when a~ & u3b~ (aM & v3b~).
Explicit numerical results for the sextic oscillator are dis-
cussed in Ref. 1.

The analysis becomes more difficult as E increases.
For instance, when K =4 (octic oscillator), it is found
that

R (x)= —(u4b~x + u, bz+2u4b~b~, —a~+, )/B (x)

(22)

quickly toward the actual eigenvalues as D increases. A
quite unexpected result is the absence of roots of H5 for
the ground state, and the same situation is found in the
case of the first excited state as shown in Table II. In
some cases, the form of R does not allow us to draw any
definite conclusions concerning the nature of the roots;
these are indicated by dashed lines in Table I. In other
cases, especially for the low-order determinants, the
corrections R are so large that the bounds are meaning-
less (e.g. , H3 and H5 in Table I), although in others, R
is very small (e.g. , H6) and tight bounds can be deter-
mined. Notwithstanding the problem of determining
bounds, in all cases (except H5 as noted above), the roots
themselves yield good approximations to the actual
ground-state eigenvalues. Another type of difficulty is
encountered when one attempts to determine the higher-
state eigenvalues, especially from low-order determinants;
viz. , the Newton-Raphson method employed to find the
roots is unstable and, independent of the initial guess, the
method converges to a lower-order eigenenergy. These
cases are indicated in Table II by dashed lines. No at-
tempt was made in the present study to improve the
search routine because this problem can easily be circum-
vented by considering higher-order determinants.

The conclusions drawn above for one-dimensional
parity-invariant potentials also apply to central-field
models with potentials of the form

when M =N+1, and

R (x) = (a~+ zx +2a~+ &a~+, —u4b~ )x /B (x)2 2 2 4)V+ 8 2

Z
L

V(r)= ——+ g u r'
Jj=1

(24)

(23)

when M =N +2. Other choices of M and N lead to more
complex functions R (x) and, therefore, we discuss here
only the bounds obtained from (22) and (23). When argu-
ing as before, we conclude that W —R & E in the former
case and that O' —R )E in the latter one, where
R =max(„l[R (x)]&0 and R =min(„~[R (x)) &0, re-
spectively. Results are shown in Table I for the ground
state of the octic oscillator V(x)=x . As can be seen
from Table I, the roots of the determinants HD converge

IV. ASYMMETRIC POTENTIALS

We now consider the Schrodinger equation (1) where

2K
V(x)= g u~xj, vz~ &0 .

J =2
(25)

because the Riccati equation for both problems is simi-
lar. ' Upper and lower bounds have also been found in
the case of nonpolynomial potentials such as the Yukawa
potentia1. ' However, the theoretical proof of such
bounds has not been rigorously given.

TABLE I. Upper bounds (UB) and lower bounds (LB) to the ground state of the octic oscillator
V(x)=x .

H'
H

H4
H',
H,'
H

H6
Exact'

8'
1.227 705 428 6
1.216 262 341 2
1.219 052 323 5
1.223 672 404 3
1.226 062 376 9
1.226 659 815 4
1.225 917075 3

See text
1.225 667 863 6
1.225 807078 5
1.225 820 1176
1.225 820 1138

0.316749 1914
—11 915

211 672

0
—0.000 017464 0

8 —8
0.910956 327 2

11 916

1.223 672 404 3
1.226 062 376 9

—211 671

1.225 807 078 5

1.225 837 581 6

Type of
bound

LB
UB

LB
UB

LB
UB

'Reference 5.
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TABLE II. Roots of HD for the first few excited states of the octic oscillator V(x) =x'.

H'
H

H4
H',
H,'
H2

H6
Exact'

'Reference 5.

First excited state

4.763 829 353 2
4.721 128 224 2
4.731 511 903 8
4.748 297 378 9
4.756 715 104 4
4.758 829 269 6
4.756 230 356 6

See text
4.755 324 415 7
4.755 828 862 7
4.755 874 1154
4,755 874 410 40

W
Second excited state

10.668 558

10.292 610
10.093 381
10.166 598
10.224 287
10.246 916
10.253 533
10.246 266
10.247 179
10.244 946 977 2

Third excited state

17.547 572 984
16.404 143 995
17.108 356 368
17.288 621 094
17.346 810 762
17.366 467 188
17.347 684 170
17.346 897 995

The Riccati equation for H"=H +'=0
D D (32)

1s

f (x)=[—P(x)]'/g(x)

[f(x)]'=f (x) +E—V(x) .

(26)

(27)

where D =N+1 and d =M —N«0. These two equa-
tions determine E and fo approximately. As in the case
of the parity-invariant potentials, we define the approxi-
mate potential V (x) = V(x)+R (x). A straightforward
calculation shows that in the present case we can write

Since f (x) is regular at the origin, it can be expanded in a
Taylor series

f(x)= g f,x'
j=0

where

J
R (x)B (x) = g r,x',

j=I
where

I =M +N +2, 7=m xa(2M, 2N +2K) .

(33a)

(33b)

f„+,=(n +1)
j=0

2K

v, 6,„+E6„O
J=2

(29)

When M «N+K, it follows that J —I «K —2. There-
fore, the simplest nontrivial case is K =2, and we will dis-
cuss this in what follows. When M =N +2, R (x)
reduces to just one term,

M N

A(x)= g a,x', B(x)= g b,x'.
j=0 j=0

(30)

Since in this case there is an additional adjustable param-
eter fo, we require that f (x) —g (x) =O(x M+ +3),

which leads to the conditions
M

b f =a, m=01, . . . , M
j=0

(31a)

In this case, both E and fo=[ —p(0)]'/hatt(0) are un-

known and treated as adjustable parameters. The ap-
proximate solution to the Riccati equation (27) can be
written as in Eq. (7) where

R (x) =(a~+2 u~b~)x —+ /B (x) (34)

and the arguments in Sec. III enable us to conclude that
IV & E (IV & E) if a~+/ & U2b~ (a/4+/ & U2b~), where IV
is a root of the determinants in Eq. (32).

As a specific example, we consider the Hamiltonian

H= —
—,'d /dx +x +0.01(x3+x ), (35)

and upper and lower bounds to the lowest eigenenergy
are compared in Table III with results obtained by other
methods. Similar results are obtained for other choices
of the anharmonicity coefficients.

Before concluding, there are several points which we

and

b f =0, m =M+1,M+2, . . . , M+N+2
j=0

TABLE III. Upper and lower bounds to the lowest eigenval-
ue of the Hamiltonian (35) obtained from the roots of
H2 =HD3 =0.

D

(31b)

where, as before, b =0 if j )N. If the N unknowns 6,
j= 1,2, . . . , N are to satisfy the N +2 homogeneous
linear equations (31b), it is required that

3
4

Exact'

'Reference 6.

0.528 025 67
0.506 952 452
0.507 136887

0.007 203 16
0.009 765 128 8
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would like to emphasize. First, the use of a rational func-
tion approximation to g(x), in contradistinction to a
power series, is necessary in order to ensure convergence
of the approximate eigenenergies. Second, the accuracy
of both the eigenenergies and the corresponding bounds

can be improved by considering higher-order deter-
minants. Finally, to avoid algebraic or round-off errors,
all results shown in this paper are accurate up to the last
digit because the calculations have been carried out by
means of the algebraic program REDUCE.

~F. M. Fernandez, Q. Ma, and R. H. Tipping, Phys. Rev. A 39,
1605 (1989).

2F. M. Fernandez, G. I. Frydman, and E. A. Castro, J. Phys. A
22, 641 (1989).

3M. F. Barnsley, J. Phys. A 11, 55 (1978).
4W. Fair, Math. Comput. 18, 627 (1964).

5F. M. Fernandez, A. M. Meson, and E. A. Castro, J. Phys. A
18, 1389 (1985).

F. M. Fernandez, A. M. Meson, and E. A. Castro, Mol. Phys.
58, 365 (1986); D. A. Estrin, F. M. Fernandez, and E. A. Cas-
tro, Phys. Lett. A 130, 330 (1988).

7F. M. Fernandez and E. A. Castro, J. Phys. A 20, 5541 (1987).


