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The universality classes and critical exponents of the unbinding transition in a model of
semiflexible membranes (or polymers) in (1+1) dimensions are determined for wall potentials
that fall off with distance z as z ~. For p) —, the unbinding transition is first order, and for at-
tractive potentials with p & —', the membrane is always bound. The marginal case p —', is quite
similar to the intermediate-fluctuation regime in (1+1)-dimensional wetting.

The fluctuations of membranes are governed by their
bending energy, in contrast to the fluctuations of inter-
faces, which are controlled by surface tension. ' Continu-
um models for both fluid and crystalline (or polymer-
ized) membranes have recently been proposed. The
analysis of these models is rather difficult, even for free
membranes. In studying unbinding transitions, it is useful
to consider simpler solid-on-solid (SOS) models, which
neglect configurations with overhangs. Membranes with
dimension d —1 are believed to be crumpled for all tem-
peratures T & 0 in spatial dimension d & 3, and to have a
crumpling transition at finite temperatures for d & 3. In
the crumpled phase the SOS approximation breaks down
at large length scales. It is still useful to study SOS mod-
els, because the persistence length, which defines the
average size of regions with a well-defined orientation,
may be very large, in particular for membranes near an
attractive wall.

The adsorption of semiflexible polymers or membranes
in (1+1)dimensions has recently been studied by Maggs,
Huse, and Leibler for short-range wall potentials. They
find that the unbinding transition is first-order. In this pa-
per we determine the universality classes and critical ex-
ponents as a function of the range of the interaction po-
tential and recover their results as a special case. Some
strong similarities with critical wetting in (1+1) dimen-
sions "are found.

A natural generalization for membranes of the SOS in-
terface Hamiltonian in (1+1) dimensions is given by

H g[»(h;~t —2h;+h; —t) +V(ht)),

interacts with the boundary via the potential V(h). We
consider potentials of the form

—UB'i, g
—8'h ~, h )0,V(h)-

~, h~0. (2)

Continuum models are often easier to analyze than lat-
tice models. In a continuum version of the above model
the partition function is defined by the path integral

Zt (Z, V i Zp, Vp)
r t 2I'z

Dz exp& — dx — + V(z)
dx

(3)

a a 1 a'+ v — + V(z) Zt(z, v i zp, vp) 0.
al az 2» av2

The prefactor (2») ' of the a /av term can be eliminat-
ed by rescaling z, v, and V and will be omitted below. In
analogy with Eq. (2) potentials of the form

—wz, z&ap,
V(z) ' —(u+wap ~), 0~z (ap,

~, z&0,

At x 0 and x l the position and slope of the membrane
are fixed at the values z, v and zo, vo, respectively. The
path integral implies the Schrodinger-type equation '

where the h; are integer height variables. The membrane
I

will be considered. We will need the Markov property

z, ,( ...]..,..)-„, d. , „I d. , z,,(...,(..,., )z, (.. ., [..,..). (&)

Three different scaling regimes ' can be defined by comparing the asymptotic decay z ~ of the potential V(z) and
the fluctuation-induced repulsion ' Vs —z ', with r —2(d —1)/(d —5). The conditions p ) r, p r, and p ( r, with

for d 2, correspond to the strong, intermediate, and weak-fluctuation regimes, respectively.
Equation (4) can be solved' for a free membrane using Fourier transforms, with the result

Zt(z, v ( zp, vp) l exp[ —3l [(z —zp vpl) l(z zp vpl)(v vp)+ 3 l (v vp) ]J . (7)

This implies (v ) 2l and (z ) —', 1 for zp vp 0. Below we only consider systems with one end of the membrane
pinned close to the wa11 and suppress the zo and the vo dependence of ZI. The results for the free membrane motivate the
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scaling ansatz 4, i i «
~

~ 1 i I

[
I I I 1 I ~

ZI(z, v) z'I "g(zl, ul ' ) (8)

for wall potentials V that decay as z ' or faster and are
not strong enough to bind the membrane. In Eq. (8), the
exponents a and yr are defined by the condition g(0,0)

const.
The Markov property (6) can be used to relate the ex-

ponents a and y. Expressing the partition function of a
membrane of length 21 with both ends near the wall in
terms of the partition function of a membrane of length 1
with one end close to the wall and making use of Eq. (8),
we obtain

I " dz dvz ~g(zi, vi ' )40 4

x g(zl —ul ' )—I

which implies

p~2+3a. (9)

This holds for a & —2, so that the integral converges for
z~ 0.

The exponent a can be determined from the differential
equation (4). Being interested in unbound solutions, we
set ao 0 in (5). In the large-I hmit with z, u fixed, we
look for solutions

g(zl '' ul ' ')~H( z ' ') (10)

First we consider the intermediate-fluctuation regime.
For potentials with p —,', Eqs. (4) and (10) lead to the
differential equation

M(3 —a, r~, —9y )
+ ( & 3) 1/3

r(- a)r(-', )
(12)

where a 6 +n, with n 0, ~1,~2, . . . . It will be ar-
gued below that in fact n 0. For wWO no special func-
tion seems available, and we proceed numerically as de-
scribed below. The resulting function a(w), for p —,', is
shown in Fig. 1. For all potentials with p & 3, a 6, and

y —', , just as for w 0.
We have also studied numerically the restricted solid-

on-solid (RSOS) model considered by Maggs, Huse, and
Leibler. The partition function satis6es the recurrence

H"+
& y H' —(ay w)H 0, —

where y vz ' . For v« —z'i or y —~, H(y)

constant

( y ~, and the z dependence in Eq. (8) cancels
out. Due to the bending energy (1), configurations with

steep positive slopes are energetically suppressed near the
wall. This is compatible with an exponential decay of
H(y ) for y ~ + eo, i.e., v &&z ' . These boundary condi-
tions determine the possible values of a. In the special
case w 0 considered in Ref. 8, 0 is a linear combination
of Kummer's confluent hypergeometric functions, '

M( —a, Y, —9y )2 I

H(y)-
r(-,' -a)r(-', )
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FIG. 1. Dependence of the exponents a and P, defined in Eqs.
(8) and (16), with 1+3a —(1+3P),on the potential parame-
ter w. The solid line shows the solution to the differential equa-
tions (11) and (16). The triangles and circles indicate values of
a and of P, respectively, for the RSOS model with w 1.6W.
The uncertainty in a is of the size of the symbols. The uncer-
tainty in P, about +' 0.025, is larger.

relation

Zl+~(z, v) [0.5ZI(z —v, u)+0.25ZI(z —v+ 1,v —1)
+0.25ZI(z —v —l,v+1)lexp[ —V(z)) .

(13)
The RSOS model (13) allows calculations with much
larger lattice sizes than the SOS model (1). Iterating Eq.
(13) with the initial condition Z~-~(z, v) 0 except at
z 1, v 0 for systems with 0&z &L with L up to 2000,
we have determined y from the 1 dependence of ZI(1,0),
for U=O. The results for a, calculated using Eq. (9), are
shown in Fig. 1. A direct determination of a by compar-
ison with Eq. (8) gave consistent but less precise results.
The value of a for w 0 corresponds to the n 0 branch
of solutions (12). According to Fig. 1 the potential pa-
rameters of the continuous and discrete models are related
by w = 1.6W.

The results in Fig. 1 have a simple physical interpreta-
tion. As the amplitude w of the asymptotic form
—wz of the potential increases, the probability of
6nding the free end of the membrane near the wall also
increases, and y and a decrease correspondingly.

The effect of the short-range part of the potential can
be easily inferred from the necklace model for wet-
ting. ' ' As U is varied, there is an unbinding transition
at a critical value U U, (W). For 1 & y & 2, the transi-
tion is continuous, with critical exponents determined by
y. [For example, the exponent vt of the longitudinal
correlation length gt is given by vt (y —1) '. ] For
y & 2 the transition is first order (with v~~ 1). The re-
sults presented in Fig. 1 imply the three subregimes' A,
8, and C of unbinding transitions indicated in Fig. 2. For
w & w, =0.32114 or W& W, =0.20, the tail of the
potential is strong enough to bind the membrane, and the
short-range part of V is irrelevant. As w —w, 0+
with —eo & u & M, (subregime A ), one expects an essen-
tial singularity in the correlation length, in analogy
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FIG. 2. Phase diagram for the RSOS model (13) with the po-
tential (2). The phase boundary between the bound and the un-

bound states has three distinct subregimes A, 8, and C. The
value of U, is a rough extrapolation.

FIG. 3. Scaling function p of Eq. (15) for w —0.16. The
solid line is the solution to the diff'ercntial equation (16) with the
horizontal axis rescaled by the factor 0.625. Predictions of the
RSOS model for four diferent values of z are also shown.

with wetting. " In the subregime B of continuous
transitions, corresponding to w, (w (w „with w,
=0.170245 or W, =0.105,

gt —lu —u, (w)) "' with v~~ (1+3a) (i4)

For w & w „vt—(w~, —w) ' . Finally, in subregime
C, corresponding to w & w„ the transition is first order.

Let us take a closer look at subregime C. Since the
transition is first order, there is a zero-energy bound state
right at the transition, " i.e., (Bj81)Zt 0 for l~ ~ and
u u, . Inserting the scaling ansatz

Zi(z, v) zPP(vz ' )

for 1» ~ into (4), we find

0+ y0 (py

(is)

where y vz ' for z & ao. This is the same as the
differential equation (11) for the scattering states. Since
the boundary conditions as y ~ ~ are also the same,
P(w) is determined in exactly the same way as a(w).
Ho~ever, a diN'erent branch of solutions now applies. The
integral in Eq. (6) only exists for p(w) & ——,', which ex-
cludes the branches n~ 0. Comparison with the RSOS
results for 8' 0 leads to the identification n —1 or
P(0) —

6 . Numerically we find that

p(w)- —-', —a(w) & —-', ,

which implies 1+3P(w) —[I+3a(w)) (see Fig. 1).
Here we have only determined the large-z behavior of

ZI(z, v). We have not used the short-range part of V,
which, however, must be taken into account in calculating
the phase boundary, i.e., u, (w).

We have also calculated the shape function p for vari-
ous values of w. The result for w —0.16 is sho~n in Fig.
3. Predictions of the RSOS model with W —0.1 are
also indicated, and the agreement is excellent.

The power-law decay of the bound state (15) leads to

an unusual behavior ' "of the moments

„dv dzz"Zt(z, v)ZI(z, —v)(z")- lim
"

Jl dv& dzZI(z, v)Zt(z, —v)

The integrals in (18) contain a short-distance cutoff for z,
corresponding to the underlying lattice model. Thus there
are no divergences at the lower limit of the z integration.
Substituting Eq. (15) into Eq. (18), one sees that (z") is
finite at the transition for p(w) & ——,

' (4+ 3n ) and
diverges continuously for ——,

' (4+3n) & p(w) & —
3 as

the transition is approached. This situation can occur
when the long-range part of the potential is attractive, in
contrast to the interface case with z potentials, ' "
where the long-range part has to be su%ciently repulsive.

Finally, we consider potentials that fall oN' more slowly
than z . The membrane is bound to the wall for all
w & 0. %'e expect scaling of the form

ZI(z, v) -z'1 ~g(zl ', vl ' ', wl )exp(ol), (19)

with a 6 and y 2+3a —', , which is identical with (8)
for w 0. For w & 0 in the limit l~ ~, Eq. (16) implies
the scaling form

Zt(z, v) z'w"t g(zw, vw't )exp(ol),

for the bound state. The relations

cr const& w'~, a-1 ——,
'

p

(20)

(2i)

follow from Eq. (4). One finds (z) —w t2 for w~ 0+.
The unbinding transition of semifiexible fiuid mem-

branes in (2+ 1) dimensions has been argued to be in the
same universality class as wetting in (1+1) dimensions. '

Together with our results, the following picture emerges:
For all d & 5 there is an intermediate-fiuctuation regime
with subregimes A, 8, and C for potentials that decay as
z ', where r —2(d —I )/(d —5). In d (1+1) dimen-
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sions the short-range potentials belong to subregime C,
and the transition is first order. As d increases, the fluc-
tuations become less violent, and at a critical dimension
d, & 2 the short-range potentials move to subregime 8.
Renormalization-group studies' and Monte Carlo simu-
lations both indicate that d, &3. For d, &d &5, the
transition should stay in subregime B.

In closing we note that for a "true" polymer (self-
avoiding walk without the SOS restriction) subject to a
z ~ potential, the strong, intermediate, and weak-
fluctuation regimes correspond to p &p„p p„and
p(p„where in d 2, p, —', instead of —', . This follows
from an independent-blob picture and also from the
equivalence with the O(n) model of magnetism ' in the

limit n 0 and the result p, v ' for magnetic systems
with inhomogeneous coupling constants. For attractive
potentials with p &p, the polymer is always bound. For
p&p, the polymer unbinding transition corresponds to
the "special" transition ' of the magnetic system. At
p p, the surface magnetic exponents are known to be
nonuniversal, but the magnetic analog of the polymer
unbinding transition has not yet been studied in detail.
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