PHYSICAL REVIEW A

VOLUME 40, NUMBER 10

NOVEMBER 15, 1989

Freedericksz transitions in nematic liquid crystals:
The effects of an in-plane electric field

B. J. Frisken* and P. Palffy-Muhoray
Liquid Crystal Institute, Kent State University, Kent, Ohio 44242
(Received 17 May 1989)

We have studied the effects of perpendicular electric and magnetic fields on a liquid-crystal sam-
ple aligned between glass plates. One field is applied to stabilize the initial alignment, and the other
is applied in order to drive the transition; the field and initial alignment directions define six possible
geometries. We find that, in each case in which an electric field is present parallel to the glass
plates, the Freedericksz transition from a uniform to an elastically deformed state can be first order
irrespective of whether the electric field drives or stabilizes the transition. Using material parame-
ters characteristic of the liquid-crystal 4-cyano-4'-n-pentylbiphenyl (5CB), we show that two of the
transitions should be first order for this material in all values of stabilizing fields and that two
should exhibit a tricritical point as the stabilizing field is increased.

INTRODUCTION

A transition from a uniform to an elastically deformed
state can occur in an aligned liquid crystal sample be-
tween parallel glass plates due to the action of electric or
magnetic fields. This transition was first studied by
Freedericksz and Zolina.! Three different sample
geometries can be distinguished, depending on whether
the initial distortion of the sample takes the form of a
splay, twist, or bend deformation. This transition is gen-
erally considered to be second order>?® although it has
been found to be first order in some instances under the
influence of an optical field.* !° In a recent paper,!! we
have shown that the electric-field-induced bend and the
electric-field-induced twist transitions can be first order
due to the novel form of the electric field contribution to
the free energy if the electric field is applied parallel to
the glass plates. In these cases we considered the
Freedericksz transition in the presence of both electric
and magnetic fields, with one field applied parallel to the
direction of initial alignment to stabilize the alignment
and one applied perpendicular to the direction of initial
alignment to drive the transition.

If we consider Freedericksz transitions involving static
fields and materials of positive susceptibility anisotropies,
the transition can be induced by either a magnetic or an
electric field perpendicular to the direction of initial
alignment and there are, in fact, six possible geometries
which should be considered to complete this picture.
Here we would. like to present the results of Landau ex-
pansions of the free energies associated with each
geometry to show the qualitative behavior of these sys-
tems.

THEORY

The six geometries under study are shown in Fig. 1.
Initial alignment is either parallel or perpendicular to the
glass plates and two fields are applied to the sample. The
director fi describes the direction of the eigenvector of
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the dielectric permittivity tensor associated with the larg-
est eigenvalue. The director is assumed to be confined to
the plane of the two fields so that it can be expressed in
terms of only one angle, the angle between the director
and the direction of alignment at the glass cell walls.
(This angle will be called 8 for splay and bend transitions

=l /‘7

FIG. 1.
Freedericksz transitions. (a) Magnetic-field-induced splay, (b)
electric-field-induced splay, (c) magnetic-field-induced twist, (d)
electric-field-induced twist, (e) magnetic-field-induced bend, and
(f) electric-field-induced bend.

Diagrams of the six geometries considered for
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and ¢ for twist transitions. In the case of twist, 6 should
be replaced by ¢ in all of the following expressions.) It is
assumed in all six cases that the distortion depends only
on the coordinate z. The cell area in the x-y plane is 4,
the thickness (along Z) is / and the width (along X) is d.
At the center of the cell, (z =1/2) the deformation angle
is a maximum (6=60,, or $=4¢,, ).

The total free energy of the system contains three
terms associated with elastic distortions and with interac-
tion of the sample with the two fields; that is,

F=F;+F,+F, . (D
F is the Frank free energy'? given by
Fr=1 [[K,(V0)+K,(H-VX7)
+K,(AXVXi)]dr . )
K|, K,, and K; are the splay, twist, and bend elastic con-
stants of the liquid crystal and the integral is over the
sample volume.

Because of the large difference in the magnitudes of the
elastic and magnetic susceptibilities of liquid crystals, the
two field energy terms have different forms. In the case
of the magnetic field, the diamagnetic susceptibility is
small (y=~10"7) so that the sample does not significantly
perturb the applied field. In the case of the electric field,
both the permittivity and the permittivity anisotropy are
large (e=~Ae==10¢;) so that the electric field and the dis-
placement can be significantly altered by the presence of
the sample. The free energy due to the magnetic field is
given by

F,=—1[B-Hdr. (3)

The orientation-dependent free energy -associated with
the magnetic field can be written'3 as

_ Ay a2
F,=—1—/7 [(B1n)4dr, (4)
1o f

where 4 is the permeability of free space, B~u,H, and
Ay is the anisotropy of the diamagnetic susceptibility.
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The free energy due to the electric field is of the form
F,=—1[D-Edr. (5)

The application of a voltage across the sample results in
an electric displacement D,

D,=ey E, teol€e,—€)nngEg, (6)

where ¢ is the permittivity of free space and €, and € are
the principal values of the bulk dielectric susceptibility
tensor, transverse and parallel to the director. The sam-
ple volume is enclosed by one pair of conducting surfaces
across which the voltage is applied, and two pairs of non-
conducting surfaces. Assuming that D and E vary only
in the Z direction, i.e., the direction perpendicular to the
glass plates which enclose the sample, V-D=0 implies
that D, is a constant. The requirement that VXE=0
implies that E can be expressed as the gradient of some
potential U. When the voltage is applied across the glass
plates, E, is the only nonzero component of E as
U =U/(z). The free energy due to the field is then®3

A ! A 1 A
Fe=—TIODZEZdz=—TszoEzdz=——i-DzV :

(7
D, can be found from the constitutive relation [Eq. (6)].
In this case, the electric field term does not depend on the
thickness / of the sample. When the voltage is applied to
conductors perpendicular to the glass plates, D, is zero if
there are no free charges. The surviving term in the free
energy is given by

__Ari
F,=—- foDxExdz. (8)

Here E, is a constant and is equal to ¥V /d and D, is a
function of z. It is interesting to note that the electric
field term is now dependent on the ratio of / /d. This re-
sult was first obtained by Arakelyan, Karayan, and Chil-
ingaryan'* to describe the free energy of the electric-
field-induced bend transition. The detailed forms of these
expressions for specific geometries are given in Table L.

TABLE 1. Free energy terms for geometries (a)(f). The geometries are shown in Fig. 1. u =Ae€/€), w =A€/€, k=1—K, /K3,
y=1—K,/K,, h =AxB21*/u,K;7*, and the free energies are expressed in units of 7> 4K /4l, where i =1 for geometries (a) and (b),

i =2 for geometries (c) and (d), and i =3 for geometries (e) and (f).

Geometry f F, F, F, .
(a) (c0s6,0,sin0) f(l—y sin20)6"? — [ hsin’e ~f 1+ew/:i)n29 e(;l{vl::zfn
() (c0s6,0,sin6) [ 1~y sin9)0” — [ hcos0 —f_"_/‘;L._ E‘;:l_"z
1+w sin%@ .
© (cosg, sing,0) [ ¢? — [ hsin’ ~f 1+i)/:i)n29 e(;?:;; i
(d) (sing,coss,0) J¢? — [ hcos’y ~f l—fl/sl;nzqs G%:ZZ?
© (5in6,0,cos6) [ (1—ksin20)0 — [ hsin®6 —_f__i/‘l‘__, %
1—u sin®6 .
0 (5in6,0,c0s6) J (1—«ksin?9)67 — [ hcos6 —f l_e;/;nze e;a:; ; d
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A Landau free energy can be constructed by assuming
a deformation of the director field of the form

6=0,, sinl’I£ ©)
and expanding the free energy F in terms of the order pa-
rameter 0,,. In order to investigate whether the transi-
tion is first or second order, the expansion must include
powers of 6,, up to sixth order. In this way, the dimen-
sionless Landau expansion obtained is

By €

2 3
where the free energy units and the coefficients are given
explicitly in Table II for the six cases considered. Minim-
izing F with respect to 6,, results in three solutions for
6,,, whether or not they have physical meaning depends
on the parameters of the system. Minimizing F yields an
expression for 8,, in terms of the coefficients of the free
energy expression,

F=AG, + 20 +-=65 , (10)

g2 — —BE[B—4AC]
m 20 ’

(11)

and the null solution (6,, =0) is always an extremum.
The transition is second order for B, @ >0 and the transi-
tion occurs when A =0. A first order transition will
occur for B<0, @>0 when A =38B2/16C. At the first-
order transition, the value of the order parameter is given
by

6, =V —3B/4C .

The third solution corresponds to a local maximum of
the free energy and occurs when A =B2/16C.

Using material parameters for 5CB, at room tempera-
tures B is positive and the magnetic-field-induced bend
transition and the electric-field-induced splay transition
are second order. B is negative and the transition is pre-
dicted to be first order (1) when the bend transition is in-
duced by an electric field; (2) when the twist transition is
induced by a magnetic field in the presence of a
sufficiently strong stabilizing electric field, or when the
twist transition is induced by an electric field; or (3) when
the splay transition is induced by a magnetic field in the

(12)
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presence of a sufficiently strong stabilizing electric field.
The tricritical point occurs at A,B=0 and should occur
in the magnetic-field-induced splay and twist transitions
as the stabilizing electric field strength is increased. The
results in materials characterized by other material pa-
rameters will be different. The general requirements for
the transition to be first order are given in Table II.

Several details indicate that the quantitative predic-
tions of Landau theory may not be entirely accurate. The
Landau expansion is expected to be most accurate near
the tricritical point and less accurate as the transition be-
comes strongly first order. The value of the order param-
eter at the first-order transition is large, suggesting that
the transition is strongly first order and that Landau
theory may not provide a good description. The results
are unsatisfactory in other ways; 0,, has values greater
than /2, which is unphysical but is not surprising as
there are no constraints on the magnitude of the order
parameter 6,,. In addition, when solving the equations
describing the twist deformation, ¢ becomes negative for
u >0.6, which indicates that the expansion should in-
clude higher-order terms. Nonetheless, numerical solu-
tions!' of the Euler-Lagrange equations which result
from minimizing the exact free energy are in good quali-
tative agreement with results obtained from the simple
Landau formalism.

CONCLUSIONS

We have examined the Freedericksz transition in
nematic liquid crystals driven by static electric and mag-
netic fields using Landau theory. Explicit expressions are
given for the Landau coefficients in the case of perpendic-
ular electric and magnetic fields in all six possible
geometries. We have shown that when an electric field is
present parallel to the cell walls, the transitions may be
first order. These results suggest that nematic cells may
be useful in applications requiring bistability.
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TABLE II. Coefficients of the Landau expansion for geometries a—f. The geometries are shown in

Fig. 1 and the symbols are defined in Table I.

Criteria for

Geometry A B G first order
a I+e—h —y+h—eGuw+1]  Ly2h+e(15w+10w +2] ele”wT’—
b I+h—e H—y—h+ew+D] iy+ih-eGuitdw+i] hs—I1ZE
¢ I+e—h Llh—eGw+1)] H=3hte(Swi+10w+3] o>
d I+h—e [—h—eGu—1)] 2k —e(15u>—10u +2] hz A
e I+e—h L—k+h—e(l—w)]  Lx—2h+e(Bu—dw+2] eSK;1
s 1+h—e M—k—h—eGu—1)] ‘x+2h—e(15u?—10u+2] h>1Z34"K

3u
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