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Photon-number distributions for fields with Gaussian Wigner functions

S. Chaturvedi and V. Srinivasan
School of Physics, Uniuersity of Hyderabad, Hyderabad 500134, India

(Received 27 April 1989)

We compute the generating function for the photon-number distribution for single-mode fields
described by a gaussian Wigner distribution considered previously by Agarwal and Adam [Phys.
Rev. A 38, 750 (1988)] and obtain simpler formulas for the photon-number distribution than those
given by them. We also give analytical results for the factorial cumulants of the photon-number dis-
tribution and consider some limiting cases.

I. INTRODUCTION

In a series of papers Agar wal' and Agarwal and
Adam ' have shown that a very large class of systems in
nonlinear optics can be described in terms of a density
matrix that corresponds to a Gaussian Wigner function
and have studied in detail, the properties thereof both
analytically as well as numerically.

The purpose of this Brief Report is twofold.
(i) We show that the density matrix investigated by

Agarwal and Adam can be obtained by applying a uni-
tary transformation on the density matrix for a harmonic
oscillator, the unitary transformation being the product
of a displacement and a squeeze operator. ' This per-

mits easy identification of the limiting cases.
(ii) We show that the analytical expressions for the

photon-number distribution given by Agar wal and
Adam can be considerably simplified by considering the
generating function for the photon-number distribution
rather than the photon-number distribution itself. This
not only yields simpler expressions for the photon-
number distribution but also permits us to obtain analyti-
cal expressions for all the factorial curnulants as well.

II. GAUSSIAN WIGNER FUNCTION
AND CORRESPONDING DENSITY OPERATOR

The Gaussian Wigner function investigated by
Agarwal and Adam is given by

4(z, z*)= 1

(
2 4I l2)1/

exp
p(z —zo) +@*(z*—zo ) +rlz —zol

r' —4lp I'
(2.1)

where the parameters z0, p, and ~ are related to the
lower-order moments of the annihilation and creation
operators a and a:

where

e ~=4(T —4lpl )=g (2.4)

p =—(sinhx)e
4

7 coshx
2

(2.2a)

(2.2b)

(a ) =zo, (a') = —2p'+ lzo2,
(2.2)

((a t)') = —2@+(z," )', (a ta ) =r—
—,'+ Iz, I' .

The positive definiteness of the density matrix corre-
sponding to (2.1) puts certain restrictions on p and r.
These restrictions can be taken into account through the
following parameterization of p and ~: D (zo) =exp(zoa —zoa },

S(a)=exp[ —,'a(a )
—

—,'a*a ],
(2.6a)

(2.6b)

]/2

The form of p in (2.3) suggests that it can be expressed in
terms of the density matrix p0 for the harmonic oscillator
at finite temperature in the following manner:

p=D(zo)S( —a)poS (
—a)D (zo), (2.5)

where '

with

The density matrix corresponding to (2.1) is
—P(e+ 1 )]

—1/2

(2.2c)
p

=- 2sinh—0

Indeed, if we write

a=re'

exp[ —/3(a a+ —,')] . (2.6c)

Xexp[ —2e ~cosh '(cothP)

X [p(a —zo} +p, *(a —zo )

then (2.3) and (2.5) may easily shown to be identical when
the following identifications are made:

+r(a —zo )(a —zo)+r/2]], (2.3) X =2l' (2.7a)
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e~=g=coth —.
2

(2 7b) where

This completes the decomposition of the density ma-
trix p corresponding to the Wigner distribution of (2.1) in
terms of the density matrix po for a harmonic oscillator at
finite temperature, the displacement operator D(z0) and
the squeeze operator $(a). The form (2.5) renders trans-
parent the various limiting cases of (2.3).

C&0(Z0 ) =

X exp
2r ~

—(v~ —
—,
' )v 2r—(v —

—,
' )v~

(3.6)

III. GENERATING FUNCTION
FOR THE PHOTON-NUMBER DISTRIBUTION

FOR THE FIELD CHARACTERIZED BY (2.1)

We compute the generating function G(A, )

G(X)= g A,"P(n),
n=0

(3.1)

1
g (x,z) = exp

&1—z

with

x+
V~ —2+

z —1
(3.7)

(3.8)

for the photon-number distribution P(n) corresponding
to the field characterized by (2.1) or (2.3) in two diff'erent
ways by choosing to work with (a) the Wigner function
given by (2.1) and (b) the form of the density operator
(2.3) as given in (2.5).

(a) Given the Wigner function N(z, z*), the corre-
sponding P(n) can be calculated using the well-known
formula

P(n)= f d z N(z, z*)2( —1)"L„(4~z~ )exp( —
2~z~ ),

(3.2)

2kxr

The quantities r+ are given by

0
r+ =r0cos

0r = r0 sin$0 ——

(3.9)

(3.10a)

(3.10b)

where L„'s are the Laguerre polynomials. For the gen-
erating function G(A, ) we then have

where r0 and p0 are, respectively, the amplitude and
phase of zo,

G(k)=2 f d z exp( —4Ai~z~ )4(z,z*),1

1+A,

where

(3.3)

i go
zo =roe (3.1 1)

The expression (3.6) for @0(z0) when reexpressed in terms
of p, ~, and zo becomes

1 (1 —
A, )

(3.4)
2 (1+1,)

Since the Wigner function (2.1) under consideration is a
Gaussian, the integral in (3.3) may easily be carried out.
The result is given in Agarwal and Adam. Expressing
their result for (3.3) in terms of A, we get

C 1
G (A, ) =@0(z0)g

@0(z0)= 1

[(7-/ '
)

—
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pz0+ p*(z0 ) + (r+ —,
'

) iz0 i

2

X exp ~ 1)2 4~ ~2

(3.12)
The function g(x, z) is readily recognized to be the gen-
erating function for the associated Laguerre polynomials

1—
v (v —1)' (3.5) g (x,z) = g z "L„' (x) .

n=0
From (3.5) and (3.13) we readily obtain
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The formula (3.14) is considerably simpler than that
given in Ref. 3 in that it involves a single summation.

(b) We now briefiy outline the derivation of the formula
(3.5) starting from the expression (2.5) for the density ma-
trix corresponding to the Wigner function (2.1}.

The generating function

Since po is given by (2.6c) we have

(yls( —a)pg'( —a) I5)

=(1—e ~)y[(mlS (
—a)I5)(ylS( —a)lm)

G(A, )= g (nlpln)k",
n=0

(3.15)
X(e ~) ] .

Using the results of Ref. 4, we find that

(3.21)

on using the resolution of the identity in terms of
coherent states may be rewritten as

G(&)=
z f d yd 5(g (n jy&&5ln &k")(ylpl5&

n

= ' fd'yd'5 exp[&y5' Iyl'—I5I'—]R (y', 5),

m/2

(mlS (
—a)I5) =(m!a)—&/2 b

2a

Xexp —
—,'I5I + 5

6
&2a.b

(3.22)

where

& (y*,5)= &xlpl5 &exp[-,' Ixl'+-,'151'] .

Using

f—d'5 exp[p5* 151—']& (y', 5)=& (y*,p },1

we get

(3.16}

(3.17)

(3.18)

G(A)= —f d /exp[ —
—,'(1 —

A, )lyl ](ylplky) . (3.19)
1

The next step is the calculate (ylplky). Since p may be
decomposed as in (2.5) we have

(glpl&g) = (&ID (zo)S( —a)poS (
—a)D (zo)lip)

=exp[ —
—,'(1 —

A, )(yzo =y*zo)]

X (y —zolS( —a)poS ( —a)lky —zo) .

(3.20)

where H are the Hermite polynomials and

a =coshr, (3.23a)

b = —e' sinhr . (3.23b)

H (z& )H (z2}exp( —
—,'z& —

—,'zz)1 1 2 1 2

2m mI

2z &z2t

(1 —t')'" (1 —t')
(z, +z2) (1+t')
2(1 —t')

(3.24)

we obtain

Using (3.22) in (3.21) and carrying out the summation
over m using the formula

& y IS( —a}pP'( —a)15& =exp —
—,.' I5I'+ 5'+ — +—ly I'+ (y*)'+-

2a 2 2ab 2 2a 2 2ab*

1X, exp
(1 t—25y*t

2g(bb*)'
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(3.25)

where
1/2

(n )f =—g n(n —1) . . (n —m)P(n)
n=0

e
—13 (3.26}

Putting y=y —zo and 5=Ay —zo in (3.25) and using
(3.20) we obtain (ylplky). The expression for (ylplig)
thus obtained has a Ciaussian form in g. Substituting it
in (3.19) and carrying out the Gaussian integral we obtain
(3.5).

a G(i)
BA,

(4.1)

Since G (A, ) is given explicitly by (3.5)—(3.7), we may com-
pute these analytically if desired.

Of greater interest are the factorial cumulants (FC)

IV. FACTORIAL CUMULANTS OF P(n)

G(A, ) defined in (3.1) or (3.15) generates factorial mo-
ments of P (n)

( )
8 lnG(A, )

Fc gym
A, =l

for which we obtain

(4.2)
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(n )Fc=(m —1)!
1 —v+

2v+ —1

1 mC+—+
2 (1 —v~ )(2v+ —1)

1 —v
+(m —1)!

2v —1

m

1 mC
X —+ (4.3)

2 (1 —v )(2v —1)

These are of interest in discussing sub-Poissonian statis-
tics.

V. LIMITING CASES

v+ =v =v, C+ +C
7"p

=C, Q =2r, (5.2)

and the expression for G (t(. ) becomes
—IzoI'

(r+ —,
'

) (r+ —,
'

)

1

1+1,(1—1/v)

We discuss two limiting cases.
(i) x =0. In this case the density operator (2.5) be-

comes

p D (zo)poD (zo) (5.1)

and describes a mixture of a coherent and an incoherent
field. Further, in this case, we have

2

t=A, Q + 1 —2Q coshx

Q +1+2Q coshx

(Q —1)
Z =

[(Q +1) —4Q cosh x]'
and hence gives

Q + 1 —2Q coshxPn=
(Q +1+2Q coshx)' Q +1+2Q coshx

(5.10a)

(5.10b)

n/2

XP„
Q2

[(Q +1) —4Q cosh x

F«Q =1, this gives the known results

P(2n +1)=0,

p(2 )= (2n —1)!!
2"n f Xcosh—

2

Xtanh—
2

2n

(5.1 1)

(5.12a)

(5.12b)

The factorial cumulants in this case are given by
m

(n ) =(m —1)!—1FC 2
Q 1—e
2 2

Q „1+ eX
2 2

G (A. ) = 1 1
(5.9)[(r+')' —4IpI']'" (1 —2tz+t')'" '

where
1/2

(r —
—,
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P (n) = exp
( + i)n+1

2

Izo I'
L„+ —,

'

Izo I'
1

(5.5)

C A, (1 —1/v)
v(v —1) I+X(1—1/v)

which is easily seen to be the generating function for
Laguerre polynomials,

n

G(A, )=Co(zo) g k" ——1 L„, (5.4)
1 C
v " v v —1

from which we readily obtain, after reexpressing v in
terms of

For Q = 1, this expression becomes
I

m

( m —1 )! sinh — cosh
X mx
2 2

m
x . mx

( m —1 )! sinh — sinh
2 2

CONCLUSIONS

(5.13)

m even

(5.14a)

) m odd
(5.14b)

The corresponding factorial cumulants are given by

mIzoI'
( n )Fc=(m —I )!(r——,

'
) 1+

(ii) zo =0. In this case the density matrix reduces to

P=S( —a)poS'( —a) . (5.7)
The corresponding G (k) becomes

G(A. ) = 1 1

[(7+—') —4Ip, I
]' [I+A(1—1/v )]'

(5.6)

X 1
(5.8)

[ I +A, ( I —1/v ) ]'i
which is easily seen to be related to the generating func-
tion for Legendre polynomials,

We have computed the generating function for the
photon-number distribution corresponding to a density
matrix with a Gaussian Wigner function of a fairly gen-
eral structure, considered by Agarwal and Adam. We
have shown that the density operator can be decomposed
into a form which makes the various limiting cases rather
transparent and have presented the formulas of Agarwal
and Adam for the photon-number distribution in a
simpler form. We also present analytical expressions for
the factorial cumulants which are easily obtained from
the knowledge of the generating function.
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