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The exchange-correlation potential of the Kohn-Sham density-functional theory has recently
been interpreted as the work required to move an electron against the electric field of its Fermi-
Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state
total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formal-
ism in the exchange-only approximation. The total energies, which are an upper bound, lie within
50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a
consequence of this interpretation, approximate well the experimental ionization potentials. In ad-
dition, the self-consistently calculated exchange potentials are very close to those of Talman and
co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M.
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Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].

In a recent paper, Harbola and Sahni' have provided a
physical interpretation for the local many-body
exchange-correlation potentia] of Hohenberg-Kohn-
Sham?® density-functional theory. As a consequence of
their interpretation, the potential can be determined
directly from the Fermi-Coulomb hole charge distribu-
tion of an electron in which all the many-body effects are
incorporated. In the Kohn-Sham theory? this potential is
derived by the application of the variational principle for
the energy to be the functional derivative of a universal
exchange-correlation energy functional. Neither the
universal energy functional nor the Fermi-Coulomb hole
charge distribution of interacting electron gas systems is
known exactly. In the exchange-only approximation,® in
which only Pauli correlations between the electrons are
assumed in the wave function, the universal exchange-
energy functional of the density of the Kohn-Sham
theory is also unknown, and thus so is its functional
derivative. However, the Fermi hole charge distribution
of an electron is known precisely in terms of the orbitals
which generate the electronic density, and consequently
the local exchange potential can be determined. Further-
more, according to Harbola and Sahni,' the asymptotic
structure of the exchange-correlation potential is that of
the Pauli-correlated approximation, and thus also known.
Now the highest occupied eigenenergy of the Kohn-Sham
equation, which has the interpretation* of being the nega-
tive of the ionization potential, depends principally on
the structure of the exchange-correlation potential in the
region beyond the inner shells. Thus the highest occu-
pied eigenenergies of Harbola-Sahni exchange-only
theory should approximate well the nonrelativistic ion-
ization potentials. In this paper we present results for
ground-state total energies and highest occupied eigen-
values of atoms as obtained by the Harbola-Sahni formal-
ism within the exchange-only approximation® of density-
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functional theory. We compare the energies with those
of Hartree-Fock theory, and the eigenvalues with experi-
mental ionization potentials.

According to Harbola and Sahni,” the exchange-
correlation potential W, (r) is the work required to bring
an electron from infinity to its final position against the
electric field of its Fermi-Coulomb hole charge distribu-
tion. Consequently, the Kohn-Sham differential equation
to be solved for the orbitals W,(r), which leads to the den-
sity p(r)=73,; ¥*(r)¥,(r), is

[~V V () + W, (0] (r)=¢,¥,(r),

where V(r), the Hartree electrostatic potential, includes
the nuclear Coulomb potential. The potential W, (r) is

W (n=— [ 6 dl,

where the electric field &,.(r) due to the Fermi-Coulomb
hole charge density p,.(r,r’) at r’ for an electron at r is
given by Coulomb’s law as

Prlr, ' Nr—r1")
& (0= [ R dr' .
The exchange-correlation energy is obtained as the ener-
gy of interaction between an electron and its Fermi-
Coulomb hole.

In the exchange-only approximation,® the work W, (r)
is replaced in the differential equation by W,, the work
done against the force field of the Fermi hole p (r,r’).
The Fermi hole can be explicitly defined in terms of the
orbitals as p,(r,r')=|y(r,r')|*/2p(r), where y(r,r’)
=3,V*¥(r)¥,(r') is the single-particle density matrix.
The corresponding exchange energy E,[p], obtained
from these orbitals as the interaction energy between an
electron and its Fermi hole satisfies the scaling law
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FIG. 1. The W, and optimized potential method (OPM) ex-
change potentials for the xenon atom in the interior of the atom.

E.[py]=AE.[p]l, where W, ,(r)=A%?W¥,(Ar), so that
pA(r)=2A%(Ar). The local exchange potential W, when
substituted for the functional derivative u,{p(r)}
=8E,[p]/3p, has also been shown' to satisfy the virial-
theorem-based sum rule’

Evil=y = [[
iJj

(parallel spins)

=— [ p(Or-Vu,fp(r)}dr .

‘l’}"(r)‘llf(r’)‘l’,v(r’)‘l/j(r)
lr—r'|

drdr

Since the exchange-correlation energy functional may
be written as a sum of its exchange and correlation ener-
gy components, we may similarly think of the Fermi-
Coulomb hole as being comprised of its Fermi and
Coulomb hole charge distributions. However, as both
the Fermi-Coulomb and Fermi hole charges are the
same®’ in magnitude as that of the electron, the total
Coulomb hole charge is zero. Thus the contribution of
the Coulomb hole charge distribution to the electric field
and potential for electron positions asymptotically far
from the nucleus vanishes. Therefore the asymptotic
structure of the potential W (r) for the fully correlated
atom is that of W,(r) alone and precisely determinable.
As such, the highest occupied eigenenergy values ob-
tained by solution in the exchange-only approximation
should constitute a significant fraction of the nonrela-
tivistic ionization potential which is the maximum eigen-
value in the fully correlated case. We note that the
asymptotic structure of the potential W, in atoms has
been shown! to be —1/r as is the case, and at metallic
surfaces® to be the image potential —1/4x, in agreement
with classical electrostatics.
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FIG. 2. The W, and optimized potential method (OPM) ex-
change potentials for the xenon atom in the region exterior to
the shells.

In Figs. 1 and 2 we plot the self-consistently deter-
mined local exchange potential W, for the Xe atom. Fig-
ure 1 corresponds to the interior region of the atom up to
the last subshell, and Fig. 2 corresponds to the region
beyond as well as to the asymptotic region. Observe that
the curve is monotonic with the shell structure of the
atom clearly evident. Asymptotically (see Fig. 2), the po-
tential varies as —1/r due to the fact! that the Fermi
hole stabilizes for these positions of the electron. The
graph is typical of all the other atoms considered in this
paper.

In Table I we present results for the ground-state ener-
gies of the first ten atoms of the Periodic Table that have
closed subshells, together with the Hartree-Fock values.’
With the exception of the Be atom, for which the W, for-
malism value differs by 0.014%, the results for the
remaining atoms lie within 50 ppm of those of Hartree
Fock theory. For Kr and the heavier atoms, these
differences are less than 10 ppm. Observe that the ener-
gies consistently lie above those of Hatree-Fock theory as
they must.> The self-consistency procedure for the deter-
mination of the local potential W, is also numerically
easier than that for the orbital-dependent potentials of
Hartree-Fock theory.

TABLE I. Ground-state atomic energies in the Pauli-
correlated approximation. The negative values of the energies
in atomic units are quoted.

Atom Hartree-Fock? Harbola-Sahni
Be 14.573 14.571
Ne 128.547 128.542
Mg 199.615 199.606
Ar 526.818 526.804
Ca 676.758 676.743
Zn 1777.848 1777.820
Kr 2752.055 2752.030
Sr 3131.546 3131.519
Cd 5465.133 5465.093
Xe 7232.138 7232.101

?See Ref. 9.
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TABLE II. Highest occupied eigenvalues of atoms in the
Pauli-correlated approximation and experimental ionization po-
tentials. The negative values of the energies in rydbergs are
quoted.

Atom Hartree-Fock® Harbola-Sahni Expt.
Be 0.619 0.626 0.685
Mg 0.506 0.521 0.562
Ca 0.391 0.402 0.449
Zn 0.585 0.646 0.690
Sr 0.357 0.369 0.419
Cd 0.530 0.583 0.661
Ne 1.701 1.713 1.585
Ar 1.182 1.178 1.158
Kr 1.048 1.035 1.029
Xe 0.915 0.899 0.892

?See Ref. 9.

°See Ref. 10.

In Table IT we present our results for the highest occu-
pied eigenenergies together with those of Hartree-Fock
theory’ as well as the experimental'® ionization poten-
tials. We group those atoms whose last closed subshell is
an s subshell separately from the noble-gas atoms. The
reason for the separation is that the experimental ioniza-
tion potentials for the former group lie below those of
Hartree-Fock theory, whereas for the latter they lie
above. Observe that with the exception of Ne, the W,
formalism eigenvalues also lie above those of Hartree-
Fock theory for the noble-gas atoms, and below those of
Hartree-Fock theory for the others, so that they more
closely approximate the experimental ionization poten-
tials. Of course, the experimental values include relativis-
tic contributions, but these are unknown. Also, the
highest occupied eigenenergies of Hartree-Fock theory
do not have the physical significance of being removal en-
ergies since Koopman’s theorem'! is valid!? only for ex-
tended orbitals. Nevertheless, the above comparison im-
plies that since the eigenenergies of the present work are
a fair approximation to experiment, the local exchange
potential W, is physically accurate not only asymptoti-
cally but also in regions much closer to the atom. Cer-
tainly, the comparison with experiment demonstrates
how principal the contributions of Pauli correlation are.

Finally, we compare our results with those of Talman
and co-workers!® as determined within the framework of
the optimized potential method.!>'* The Talman and
co-workers'? ground-state energies are superior to those
of the present work; they also lie above Hartree-Fock
theory, but differ from it by approximately half the
difference between the present and Hartree-Fock values.
However, the optimized exchange potential as pub-
lished'® does not satisfy' the sum rule given above. The
Talman highest occupied eigenvalues also generally ap-
proximate well the Hartree-Fock results, but their
differences are random in sign. For the purposes of com-
parison, we plot in Figs. 1 and 2 the optimized exchange
potential. Observe (see Fig. 1) that the two curves are
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essentially equivalent in the shell regions of the atom and
differ only in the intershell regions where the optimized
potential possesses bumps. These bumps have yet to be
interpreted physically. Asymptotically (see Fig. 2), the
optimized potential approaches — 1/r much more slowly
than the W, potential, which explains why the W, for-
malism eigenvalues are superior to those of the optimized
potential method. With the current definition® of the ex-
change energy of density-functional theory, the optimized
potential should, in principle,® satisfy the virial-theorem-
based sum rule. The fact that it does not! is a reflection
of the numerical complexity of the formalism. The exact
optimized potential is thus yet unknown. On the other
hand, the potential W, is the only physically derived po-
tential known to satisfy! the sum rule analytically. It
also satisfies! the sum rule numerically, thus demonstrat-
ing the numerical ease of these calculations. To show
this we compare in Table III the exchange energies
E,[¢;] as determined from the orbitals 1, with those ob-
tained from the potential W, employing the expression
from the right-hand side of the virial theorem sum rule.
Observe that the sum rule is satisfied to 6—8 significant
figures. Thus, even if the potential W, were not the exact
functional derivative of the exchange energy functional,
the results for the total energies and highest occupied ei-
genvalues presented, nevertheless, clearly demonstrate
the high accuracy of this potential.

We conclude by noting that the Hartree-Fock, Kohn-
Sham, and optimized-potential-method theories are all
founded in the variational principle for the energy. The
Harbola-Sahni formalism, on the other hand, is formulat-
ed entirely on the basis of physical considerations. The
accuracy of the results presented in this paper and those
for metallic surfaces given elsewhere,® together with the
fact that the exchange-only potential W, satisfies the
virial-theorem sum rule, is all the more remarkable in
light of this difference.

Work towards the determination of properties of non-
spherical atoms is in progress and is planned to be
presented elsewhere.

This work was supported in part by the Research
Foundation of the City University of New York.

TABLE III. Comparison of the exchange energies E, [¢;] in
atomic units as determined from the orbitals 1; with those ob-
tained from the potential W, as given by the expression on the
right-hand side of the virial theorem sum rule.

Atom —E,[¢,] + [ p(rr- VW, dr
Be 2.666 468 3 2.666 4679
Ne 121218322 121218313
Mg 16.003 442 4 16.003 441 3
Ar 30.188792 1 30.188790 5
Ca 35.214.0002 352139984
Zn 69.6218314 69.6218286
Kr 93.863478 6 93.863475 1
Sr 101.961 1276 101.961 1240
cd 148.879953 6 148.879949 7
Xe 179.092 056 4 179.092052 3
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