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It is pointed out that the rms fluctuation of the local energy encountered in variational Monte
Carlo calculations, together with the expected energy, can be used to produce a nontrivial lower
bound on the ground-state energies of atoms and molecules. This lower bound has the desirable
properties of general accessibility (via Monte Carlo calculations) and linear sensitivity to deviations
of the trial wave function from the exact wave function. These qualities of accessibility and sensi-
tivity are demonstrated with numerical data obtained from recent Monte Carlo calculations on the

helium atom and the hydride ion.

It is an often noted fact that most quantum Monte Car-
lo methods become statistically more efficient as the trial
wave function more accurately describes the ground-state
many-body wave function of the system under study.! >
This is true for standard variational calculations because
the variance of the sampled quantity, the local energy to
be defined below, is zero when the trial wave function
equals the ground-state wave function and is expected to
approach zero as the trial wave function approaches the
ground-state wave function. It is clear that a variational
calculation could be formulated upon the principle that
the fluctuation of the local energy be as small as possible
rather than upon the principle that the expected energy
be as low as possible.® % Here it is pointed out that the
expected energy less the rms fluctuation of the local ener-
gy typically provides a lower bound on the true ground-
state energy. The qualifier “typically” means that excep-
tional cases are possible. However, the conditions lead-
ing to such exceptions are pretty simple. In the typical
calculations on atoms and molecules, i.e., calculations on
the ground states of bound systems of finite spatial ex-
tent, it is not expected that the exceptions will be trouble-
some.

The importance of these results lies in the general ac-
cessibility of this lower bound and its sensitivity as a test
of the quality of a wave function. The numerical results
given exemplify these two aspects. With respect to acces-
sibility, we are able to use previously obtained data to for-
mulate lower bounds which were not recognized in that
previous work. It is important to note that the bound
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discussed here does not require explicit knowledge of the
energy of the first excited state as does the well-known
lower bound due to Temple,” which has been previously
utilized by, for example, Kinoshita.!? Additional infor-
mation of that type cannot be expected to be routinely
available. When it is available, a more stringent bound
on the ground-state energy might be formulated. Howev-
er, a bound that does not require information extraneous
to the wave function under consideration and that sensi-
tively highlights the inaccuracies of that wave function is
to be preferred as a test of the quality of the ground-state
wave function. The examples presented clearly display
this desired sensitivity: The lower bound discussed here
is more useful as a test of the quality of wave function
than is the customary Rayleigh-Ritz upper bound. This
provides a helpful perspective on the success of the recent
calculations of Umrigar, Wilson, and Wilkins.! An
analytical explanation of the observed sensitivity of this
lower bound is noted below.

The following notation. will be used to describe these
results. Denote by (W|R) a trial wave function under
consideration with R a point in the configuration space of
the system. The Rayleigh-Ritz upper bound on the
ground-state energy €, is then expressed as

(W|#H|W¥)
(¥|w)
in which # denotes the Hamiltonian for the system.

Variational quantum Monte Carlo approaches!! estimate
the left-hand side of this inequality by introducing the lo-

E(ﬁ)zso, (1)
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cal energy

(W|#|R)
(¥[R)
The Metropolis Monte Carlo algorithm is then used to

sample the configurations R according to the probability
density

e(R)= (2)

{YIR) 2
(vlw) -

For a sample of size n the desired value { #f) is estimated
by

P(R)= (3)

E{IO)=~ 3 eR,). @
j=1

Here E{ - -+ } means estimate of - - -.
The alternative bound considered here uses the vari-
ance o defined by

o?=(H*)—(H)*. (5)

It was established some time ago that the band (%) *o
must contain at least one eigenvalue of 7£.!>7'* If the
ground-state eigenvalue g, is the nearest eigenvalue to
(), then {¥£)— o provides a lower bound on ¢,. This
lower bound will therefore be obtained if the trial wave
function {( W|R) is sufficiently accurate and if the gap be-
tween g, and the next higher eigenvalue ¢, is sufficiently
large. These conditions are met often enough in applica-
tions to atoms and molecules that this lower bound typi-
cally should provide useful information. In that case the
true ground-state energy must lie between (%) and
(#)—o. Note further that (#)—o is a nontrivial
lower bound in that it approaches the ground-state ener-
gy as (W|R) approaches the exact ground-state wave
function.

This lower bound has not been put to much practical
use.'>1® The most likely reason for this is that {#?) is
not routinely accessible in most numerical approaches.
Within the Monte Carlo calculations, in contrast, an esti-
mate of { ##2) is always available. This can be recognized
by writing

(W #R) |
dR|(W|R)|? |~
<~Plﬁ2l\v>=f (¥[R) ’ ¢
(wlw) Jar[(¥[R)?

The ratio in the numerator is just the local energy e(R).
Therefore

S eAR,). ™)

j=1

E{{(#H*)}=

3 |-

The same sample of configurations can be used for both
Eqgs. (4) and (7). From those results an estimate of ¢ can
be formed from Eq. (5).

Recently, variational Monte Carlo calculations of just
the sort sketched above have been presented for several
light atoms with special emphasis on an efficient optimi-
zation of electron wave functions.® The data obtained
there and the unpublished quantum Monte Carlo results
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on the helium atom contained in Ref. 17 allow us to
demonstrate both the accessibility and the sensitivity of
the bound discussed above. The combined results of
Refs. 8 and 17 were used to prepare the upper and lower
bounds shown in Fig. 1. Notice that the upper bounds
appear to converge more rapidly than do the lower
bounds. For example, the upper bounds change rather
slowly for changes of the wave function among functions
¢ through k. However, the lower bounds show that func-
tions ¢ through g are less accurate than are functions 4
through k. This supports McDowell’s suggestion that
the fluctuation in the local energy is a key test of the
quality of a wave function.® This can be understood
analytically by noting that the lower bound differs from
the ground-state energy at linear order in the deviation of
the trial wave function from the exact wave function. In
contrast, the upper bound differs from the ground-state
energy first at quadratic order. It can be concluded that
the upper bound more quickly gives a close prediction of
the ground-state energy whereas the lower bound is to be
preferred as a figure of merit for a trial wave function.
Wave functions that are optimized to give a reasonable
lower bound can be expected to provide an accurate ex-
pectation value for the energy. It is interesting to note
further that the least value of o is known a priori. There-
fore it can provide an absolute scale for the relative im-
provement achieved by modification of a wave function.
The hydride ion H™ can be considered a second exam-
ple. Variational quantum Monte Carlo calculations were
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FIG. 1. Upper and lower bounds on the ground-state energy
of the helium atom obtained from variational quantum Monte
Carlo calculations. Energies are in hartree units. Wave func-
tions c, e, and k are functions (2), (3), and (4) of Ref. 8. A statist-
ical uncertainty was not reported for the rms local energy fluc-
tuation for those functions so no error bars are provided for the
lower bounds shown in those cases. All other results shown are
taken from Ref. 17. Those wave functions are as follows: a, the
hydrogenic wave function (R|W) xexp[—2(r,+r,)[a(1)B(2)
—a(2)B(1)]; b, the Hartree-Fock wave function of Clementi
and Roetti, Ref. 19; d, function 13 of Green, et al., Ref. 20; f,
function 15 of Green et al., Ref. 20; g, the six-term function of
Schwarz, Ref. 21; A, the ten-term function of Kinoshita, Ref. 10;
i, the 13-term function of Schwarz, Ref. 21; j, the 18-term func-
tion of Kinoshita, Ref. 10.
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reported for this species in Refs. 2 and 8. The calculation
of Ref. 2 was repeated for the Chandrasekhar wave func-
tion'® to obtain upper and lower bounds on the ground-
state energy in that case. The results are —0.5260(3) and
—0.610(3) hartrees. The correlated wave functions of
Ref. 8 provide the following bounds on the ground-
state energy of H™: [—0.5155(3), —0.5975],
[—0.5199(2), —0.5899], and [ —0.527751(3), —0.5298],
respectively, for functions (2), (3), and (4) of that work.
(A standard error was not reported for the rms local-
energy fluctuation for those functions so no statistical un-
certainty is given here for these lower bounds.) These re-
sults exemplify the possibility that the wave function
which yields the lowest expected energy compared to
several other wave functions may yet predict significantly
less accurate values for other properties than does anoth-
er of the wave functions under consideration. The Chan-
drasekhar function yields a remarkably accurate upper
bound. It is a rather simple function and constructed on
a physical basis to give a low energy. However, the lower
bound indicates that considerable improvement is possi-
ble in describing the electron wave function of the H™
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ion. Although the expected energy of function (2) here is
higher than that of the Chandrasekhar function, it is like-
ly to be preferable for purposes other than the prediction
of the electronic energy. In such a case, the lower bound
discussed here is especially helpful.

The foregoing results indicate an important advantage
of Monte Carlo methods for the analysis of explicitly
correlated wave functions. These results also indicate
that the determination of o and both upper and lower
bounds can help considerably in pursuing variational
quantum Monte Carlo calculations where the necessity of
obtaining a compact description of a correlated wave
function and of optimization with noisy data are often
important concerns. Moreover, it is clear that a low
value of o is more directly relevant to the utility of these
wave functions in providing importance sampling func-
tions in more complicated quantum Monte Carlo
methods than is a low value of (#).

I thank Keith McDowell for allowing me to use the re-
sults of his unpublished Monte Carlo study of the helium
atom.
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