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A Dirac-Fock-Slater approach to atomic structure for highly charged ions

Douglas H. Sampson, Hong Lin Zhang, and Ajaya K. Mohanty*
Department ofAstronomy, The Pennsylvania State University, University Park, Pennsylvania 16802

Robert E. H. Clark
Los Alamos National Laboratory, Applied Theoretical Division, X-6, Los Alamos, New Mexico 87545

(Received 26 October 1988)

A very rapid, but accurate, fully relativistic method for calculating the atomic-structure data
needed in determining collision strengths for highly charged ions is developed. A more rapid
quasirelativistic approximation to this approach is also described. Results for oscillator strengths
and energies are compared with those by mostly more elaborate programs for neonlike and nickel-
like ions and generally good agreement is obtained.

I. INTRODUCTION

Ions with large values for the nuclear-charge number Z
are becoming of increased interest in the study of high-
temperature plasmas, partially due to the quest to devel-

op ultrashort-wavelength lasers. In fact, soft x-ray lasing
has recently been achieved in high-temperature plasmas
using neonlike' and nickel-like ions. For such ions
with Z ~ 30 relativistic interactions have significant eA'ect

on the radial functions, so that they should be included
directly in the zeroth-order Hamiltonian in obtaining ac-
curate results. Several rather elaborate fully relativistic
atomic structure programs based on the use of the Dirac
equation now exist. These multiconfiguration Dirac-
Fock programs tend to be much more time consuming to
use than the corresponding multiconfiguration Hartree-
Fock programs. This occurs largely as a consequence of
the j dependence of the radial functions in a fully relativ-
istic treatment, which results in a factor of 2 (except for s
orbitals) more radial functions and typically an order of
magnitude more radial (Slater) integrals required in di-
agonalizing the Hamiltonian. Moreover, each radial
function has two components, the so-called "large" and
"small" components. Although the use of such elaborate
relativistic programs in determining quantities such as
the energy levels and radiative rates required for most
plasma applications may no longer be prohibitively time
consuming with the use of supercomputers; this is often
not the case for the analogous relativistic calculations of
collision rates. The reason for this is that, to determine a
collision rate, the corresponding cross section must be
calculated for several impact-electron energies, and for
each of these the scattering matrix elements must be
determined for many initial and final values for the angu-
lar momenta of the free electron. Moreover, collision
rates for many thousands of transitions are needed in
some applications. Thus there is a need for very eKcient,
high-speed approaches for relativistic calculations of col-
lision cross sections. The purpose of the present work is
to develop approximate relativistic and quasirelativistic
atomic-structure approaches and corresponding comput-
er programs for providing the appropriate atomic-

structure input for the rapid cross-section programs de-
scribed in the accompanying paper. These programs are
designed to make very rapid, but accurate, calculations
for ions that have 1ost at least half their electrons, i.e.,
that satisfy Z )2X, where Ã is the number of bound elec-
trons per ion. This appears to be satisfied for the plasmas
of principal interest for x-ray-laser research, as well as for
many other plasmas.

In Sec. II the theory of the present approach for atom-
ic structure is outlined. Then in Sec. III results for neon-
like and nickel-like ions by this method are compared
with those by other mostly more elaborate programs to
determine the accuracy of the approach.

II. OUTLINE OF THEORY

A. Summary of general features

As is standard in multiconfiguration relativistic pro-
grams, in treating an ion with N bound electrons we use
basis states 4,,(1,2, . . . , X) that are single-configuration-
state functions (CSF). These are antisymmetric sums of
products of N one-electron Dirac spinors u, that are
solutions of the Dirac equation for a central potential
V(r),

and the relativistic quantum number ~ has the values

~=1, j =1 —
—,'; a.= —(1+1), j =1+—,

' (3)

In forming the @,„ the standard jj coupling scheme is
followed, e.g. , Grant et al. In fact, the angular package

where P„andQ„,are the large and small components of
the radial function, respectively, the g are the usual
spin-angular-momentum functions

(O, p, o )= g C(1—,'mtm, ;jm) Yt (0, (h)5(m, ~tr ),
m&, m,

(2)
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of Grant et al. is used in the present program. In this
coupling scheme the j values of all the electrons in a sub-
shell n, l„j„arecoupled together to form the total angular
momentum J„ofthe subshell. Then these are successive-
ly coupled together starting with the lowest subshell to
form the total angular momentum J for the ion. By the
lower of the two subshells n, l,j, and nzlzj2, one means
the one with the smaller n value; or if n, =n2, the one
with the smaller l value; or if n, l, =n212, the one with
the smaller j value.

The approximate ion wave functions are given by

N N N
H = g HD(i) —g V'"(r, )+ g

i =1 i =1 ij iJr- (6)

where

HD(i)=HD(i)+ V"(r, ) .

In diagonalizing H given by Eq. (5) we add and sub-
tract the electron-electron electrostatic contributions
V"(r, ) to the central potentials V(r, ), so that H is writ-
ten

NcsFgb4 (4)
This HD(i) is the single-electron Dirac Hamiltonian with
the central potential V(r, ), where

where the mixing coefficients b are obtained by di-
agonalizing the Hamiltonian H. This is assumed to be
given by

N N

H = g HD(i)+ g
i =1 ij IJ

(5)

where HD(i) is the single-electron Dirac Hamiltonian for
a pure Coulomb potential —2Z/r, due to the nucleus of
the ion. In Eq. (5) energies are in rydbergs and distances
are in units of the Bohr radius ao. In general, the number

NcsF of single-configuration-state functions included in
Eq. (4) is at least all those in a complex, i.e., having the
same set of n values, parity, and J value; however, in
cases where there are states with additional n values that
are very nearby or overlapping in energy, these can be in-
cluded.

V(r, )=— +V"( )

Since the N are antisyrnmetric products of the Dirac spi-
nors u„„,which are eigenfunctions of HD, the first term
on the right-hand side of Eq. (6) contributes only to the
diagonal matrix elements and gives a contribution equal
to the sum of the N energy eigenvalues c., of the N spi-
nors contained in N, . Also the second term —g, V"(r, )

contributes only to the diagonal matrix elements, if we
restrict the mixing to the states in a complex. However,
if we include mixing with additional states, it contributes
to the off-diagonal matrix elements between states with
the same angular functions, but differing n values. Of
course, the final term contributes to both diagonal and
nondiagonal matrix elements, with the general form of
the contribution being given by sums over A, of products
of angular parts and so-called Slater integrals

R (ab, cd) =2I I [P„,(r, )P„,(r, )+Q„(r&)Q„,(r& )]

r
X &, [P„,(r2)P„„(r&)+Q„,(r2)Q„,(r2)]dr, dr2,

where r & (r & ) is the lesser (greater) of r, and r~.

B. Determination of the radial functions

The coupled Dirac radial equations determining the P„„andQ„,in Eq. (1) are

+—P„,=—e„—V+ Q„„,d ~ a 4
nK 2 nK (10)

and

d K Q
Q =—(V —c )Ptl K nK nK

where, as in Eq. (5), distances are in units of ao, and E and V are in rydbergs. One can use Eq. (10) to express Q„ in
terms of P„,and substitute this in Eq. (11) to obtain the second-order differential equation for the large component

d I(l+1)
V

a
( )2 a a

( V)
dr r 4 77K 4 4 tlK

dV
dr

dP„ +-
P, dr r Pnx enon+ (12)
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where use was made of the fact that

1~(~+I)=1(l + I ) . (13)
V(r) =— + V, (r)— 24

1/3

(16)

Equation (12) has an appearance like the usual nonrela-
tivistic Schrodinger equation, except that it has a much
more complicated effective potential. Thus, except for
special considerations for small r discussed, for example,
in Sec. 7-17 of Cowan, similar numerical procedures can
be used in solving it, as in a nonrelativistic approach.
The radial part of the Hartree-Fock relativistic (HFR)
version of Cowan's widely used program corresponds to
solving Eq. (12), with ~ replaced by its average over j
value —1, so that the large component becomes indepen-
dent of j. Then the small component is neglected and the
large component normalized as though it were the total
radial function. Our procedure has been simply to use
the radial part of Cowan's HFR program, modified so
that it does not make the approximation ~= —1 and also
modified to simultaneously obtain Q„„.The latter is
readily done because, as seen from Eq. (10), Q„,is essen-
tially given by the final term in the effective potential of
Eq. (12). Of course, we also use the correct fully relativis-
tic normalization

p2
0

(14)

In addition, in order to obtain Q„,with sufficient accura-
cy at large Z, we found it necessary to keep separate the
—2Zlr nuclear contribution to V(r) and determine its
contribution to dV(r)Idr analytically. Also we started
the calculations with a mesh size —,

' the value for the ini-

tial mesh size usually used with Cowan's program.
Specifically, we used

1/3

LagEp jnjt 3 1 25 X 10 7 p 4
2Z

7T'

C. Choice for the potential

For the central potential V(r) in Eqs. (10)—(12) we use
the Dirac-Fock-Slater potential. That is, we use the rela-
tivistic version of the Hartree-Fock-Slater potential intro-
duced by Slater' and discussed, for example, in Sec. 7-11
of Ref. 9, except that we use the Kohn-Sham" value for
the coefticient of the exchange term. Specifically, this po-
tential is given by

This did not add very much to the computing time be-
cause a linear mesh is used with a doubling of the interval
size every 40 points, which only added 120 points to a to-
tal usually of 640 points. Actually, in providing the
atomic-structure data for collision strengths, we stop the
doubling at the largest mesh size that satisfies Eq. (16) of
Ref. 8.

Except for the details we have just mentioned regard-
ing the numerical solution of Eqs. (10) and (11), the ap-
proach we have described is mostly quite standard. The
principal manner in which we obtain speed in our calcu-
lations is through our choice for the central potential
V (r), which we discuss next.

where the first term is the potential due to the nucleus,
and the remaining part is the electron-electron contribu-
tion previously called V"(r) in Eq. (8). The part of this
called V, (r) is the spherically averaged classical potential
due to the bound electrons,

V, (r)= g w„,f [P„,(r2)+Q„.„.(r2)]dr2, (17)

where w„~ is the occupation of subshell n '~' = n 'l' j '.
The summation in Eq. (17) is over all occupied subshells
and r & is the greater of r and r2. The final term in Eq.
(16) is the exchange energy of an electron in a free-
electron gas of density p averaged over all possible mo-
menta of the electron. Following Slater, ' we use for p
the number density of electrons at distance r from the nu-
cleus. The spherically averaged value for this is

p(r) = g w„,[P„',' (r)+Q„~(r)] .
1

4~r
(18)

We note that if m„, were replaced by w„—1 when
n'x''=nv, then the potential given by Eq. (17) would be
the relativistic version of the Hartree potential. The un-
desirable feature that self-interaction is included in V, is
at least partially cancelled out by the fact that self-
exchange energy is also included because Eq. (18) also in-
cludes the contribution from all the electrons, including
all those in subshell n~.

In addition, a single mean configuration with fractional
occupation numbers is used in determining the potential
given by Eqs. (16)—(18) for a given class of transitions.
The prescription we generally use in determining this
mean configuration is that the occupation of the active
electron is split approximately equally between initial and
final subshells. For example, in obtaining the structure
results required for calculations of collision strengths for
transitions in neonlike ions between the ground level,
which has the configuration 1s', /22s', /22p, /22p3/2 and
excited levels in which there is a single electron with
n = 3, an appropriate choice of the mean configuration is

1.9 1.9 3.7 0. 1 0. 1 0. 1 0. 1 0. 11s1/22s1/22p1/22p3/23s1/2 p1/2 p3/23d 3/23d s/2 (19)

Actually most of our calculations were instead done using

2 1.8 1.8 3.6 0. 16 0. 16 0. 16 0. 16 0. 161s, /22s, /22p, /22p 3/23s1/2 3p1/2 3p 3/2 3d 3/2 3d 5/2

The reason for this is that it was planned to also use the
same potential in treating n = 3 to n =3 transitions. How-
ever, as will be discussed further in Sec. IIIA, use of
slightly different choices for the mean configuration, such
as use of Eqs. (19) or (20), generally has a small eff'ect on
the results. The effect of using a slightly different distri-
bution among the upper subshells of a fixed total occupa-
tion of the upper subshells is almost undetectable; for ex-
ample, the effect of using a distribution proportional to
the statistical weights of the upper subshells instead of
equal distribution, as in Eqs. (19) or (20).
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We emphasize that, as discussed previously in connec-
tion with the diagonalization of the Hamiltonian and
determination of the mixing coefficients, our calculations
are generally multiconfiguration calculations in which at
least the mixing between all states in a complex is includ-
ed. The single mean configuration is used solely in deter-
mining the potential. However, this, coupled with use of
Eqs. (16)—(18), has many advantages. In particular, the
potential is then the same for all electrons, so all orbitals
are automatically orthogonal and the calculations are
much more rapid than with a program such as that of
Grant et al. or Desclaux in which full multicon-
figuration Dirac-Fock calculations are made. We also
use this same potential for the free electrons in collision-
strength calculations, as discussed in Ref. 8.

It should be pointed out that the relativistic code RE-
LIC of Klapisch et al. ' has similar advantages deriving
from use of the same potential for all electrons, in their
case a so-called parametric potential rather than a
Dirac-Fock-Slater potential. Also we mention that use of
a single mean configuration in determining the potential,
such as Eqs. (19) or (20), is frequently done at the
Lawrence Livermore National Laboratory in conjunction
with use of the relativistic programs of Refs. 6 and 7.

D. Quasirelativistic approach

In addition to the fully relativistic (FR) approach we
have described, we have a quasirelativistic (QR) option in
our program. This corresponds to simply solving Eq. (12)
for P„,normalizing it as though it were the total radial
function

f [P~, (r)] dr =1 (QR approach), (21)

and then omitting Q„,everywhere, such as in Eqs. (9),
(17), and (18). Thus this approach is similar to the HFR
approach of Cowan, except that the further approxirna-
tion of using ~= —1, which has the simplifying effect of
making the radial functions independent of j, is not
made. It was very easy to modify the radial part of
Cowan's program to obtain these QR radial functions
and this was the first version of our program that was ob-
tained. It was thought initially that this would be some-
what faster than a fully relativistic program, but it turns
out that the QR option is only about 5—10% more rapid
than the FR option of our program. This occurs because,
as noted previously, the small component Q„,is essential-
ly calculated anyway in determining the final term in the
effective potential of Eq. (12). Also, the angular part of
the calculations is unaltered and the same number of ra-
dial integrals occur; they are just slightly simpler when
the Q„part is omitted. Thus it would appear that there
is little point in using the QR approach, even though, as
indicated by the numerical results given in Sec. III, this
approach is rather accurate even for large Z when transi-
tions involving 1s orbitals are not of interest, as is the
case for Ne-like and Ni-like ions. However, it turns out
that the QR approach is useful in obtaining collision
strengths when it is coupled with an additional approxi-
mation for the free electrons discussed in the accompany-
ing paper.

E. Fitting to Z

In studying a large portion of an isoelectronic se-
quence; for example, all neonlike ions with 22 ~ Z ~ 92, it
is convenient to be able to obtain approximate mixing
coefficients and transition energies for all Z after making
detailed calculations for only a few Z values. We are able
to do this by using procedures like those applied previ-
ously by one of us (R.E.H.C. ) to Cowan's atomic-
structure code and used in Ref. 13. Specifically, the ma-
trix elements of the Hamiltonian are calculated in detail
for a few Z values. For the purpose of discussion, let us
say six, which is typical. Then the six values for each ma-
trix element are fitted to a power series in Z with six
terms. The results of the fits are then used in performing
the diagonalization of the Hamiltonian for each Z to ob-
tain the corresponding mixing coefficients and energy
roots. The procedure requires practically no more time
than that required for the detailed calculations for the six
Z values and is almost as accurate as direct calculations
for all Z.

In this connection it is of interest to note that on a
Cray XMP supercomputer at the MFE Computer Center
at Livermore, California, the CPU time in seconds, re-
quired for the present quasirelativistic and fully relativis-
tic options of the program to make the complete atornic-
structure calculations for the 36 n=3 excited levels plus
the ground level in neonlike ions, is given by

tcp„(sec)= l. 9+Nz X 3.5 (QR approach), (22)

and

t cp„(sec ) = 1.9+Nz X 3. 8 ( FR approach) . (23)

In these expressions the first term is the time required for
the angular part, which is the same for both QR and FR
approaches and is done only once in considering many Z
values. A'z is the number of Z values for which detailed
calculations are made. For the situation discussed above
this would be six. The final numbers are the time re-
quired to do the detailed radial part for each value of Z,
which is less for the QR approach. Since the fitting pro-
cedure takes essentially no time, the total CPU time re-
quired to do a very large portion of the isoelectronic se-
quence (assuming Nz =6) is only about 23 sec with the
QR approach and 25 sec with the FR approach. Further
improvements in speed are expected to be achieved in fu-
ture work.

Of course, with this fitting procedure one does not
have the orbitals for each Z, but this is often not neces-
sary. For example, this is the case for the applications to
inner-shell ionization of Na-like, Li-like, and Cu-like ions
considered in Refs. 14—16. It is also the case for oscilla-
tor strengths, if one makes similar fits of the radial transi-
tion matrix elements to a power series in Z; or for col-
lision strengths, if one uses the factorized form and fits
the radial part to a power series in Z. The latter is dis-
cussed in more detail in the accompanying paper.

III. NUMERICAL RESULTS AND DISCUSSION

In order to test the accuracy of the present approach
we have calculated the radiative oscillator strengths f
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with retardation effects ignored, that is, by the formula

EE,ff;, = g gf gr
gi Mf, M. a

(24)

where P; and t)/f are initial and final antisymmetrized ion
wave functions of the form given by Eq. (4), the sum is
over the initial and final magnetic quantum numbers of
the ion, AEf is the transition energy in rydbergs, and g;
is the statistical weight of the initial lower level. The re-
sults for f and hE are then compared with those calculat-
ed with the elaborate multiconfiguration Dirac-Fock pro-
gram of Grant et al. , considered as a standard. Also,
comparisons with results obtained by other programs are
included when available. In running the program of
Grant et al. , we generally used the average-level (AL)
option in which the average of the energies of the levels
in a complex was minimized in each run. In fact, all re-
sults compared in the tables were obtained with the in-
clusion of the mixing among all the states in a complex,
i.e., with a common set of n values, parity, and J value.

A. Results for neonlike ions

Values for the oscillator strengths for transitions be-
tween the ground-state level and the excited-state levels
with n = 3 in neonlike ions with Z= 26, 47, 56, 74, and 92
are compared in Table I. The transitions are indicated by
the upper levels ordered according to energy and labeled
by the basis state making the dominant contribution us-
ing the following abbreviations:

and

(2p3/$3lj )J (ls 1/22s )/q2p )/22p 3/23lj )j2 2 2 3

(2p, /23I& )1 =( Is &/22s &/22p&/z2p 3/&31~ )I,2 2 4

(25)

(26)

(2s&/23lj )z =( ls &/z2s&/22p &/22p3/23I& )1 . (27)

The unstarred QR and FR results are the present quasire-
lativistic and fully relativistic values obtained using Eq.
(20), while the starred energies are corresponding values
obtained using Eq. (19). By comparing FR and FR*
values one sees that the results are not very sensitive to
the precise occupation numbers used in the mean
configuration determining the electron-electron contribu-
tion to the potential, especially for high Z, where the
electron-electron interaction becomes less important rela-
tive to the potential due to the nuclear charge.

In addition to the results obtained by the program of
Csrant et al. obtained for a point nuclear charge and
with retardation omitted, which are labeled G in Table I,
we have included results labeled G*, which are obtained
with inclusion of retardation, i.e., without making the as-
sumption that the wavelength of the photon is very large
compared with the size of the ion. One sees that the
effect of retardation is rather small in all cases, but, as ex-
pected, is generally more important for large Z. Also re-
sults labeled G** by that program are included. In addi-
tion to retardation, these include the effects of the relativ-
istic two-body Breit interaction and the quantum electro-
dynamic (QED) corrections due to self-energy and vacu-

um polarization. Also, the effect of a finite nuclear size
with a Fermi charge distribution' is included. The most
important of these in affecting oscillator strengths is the
Breit interaction. This interaction is only included per-
turbatively in the structure calculations. That is, its con-
tributions to the matrix elements of the Hamiltonian are
included before the final diagonalization. Thus it affects
only the energies and mixing coefficients. Since the form-
er are always affected by less than 1%, usually much less,
the principal effect on f values is through the effect on
the mixing coefficients. However, the comparison of G'
and G** results in Table I indicate that this effect is gen-
erally small. It tends to be greatest for weak transitions
to an upper level that lies close in energy to the upper lev-
el of a strong transition, so that slight differences in the
method of calculation can affect the mixing of the two
levels sufficiently to provide an appreciable change in the
f value for the weaker transition. The best example of
this occurs for Z=56 for the weak transition to the
(2p &/23s&/2) &

level, which lies between the upper levels of
two very strong transitions.

Also included in Table I for Z=26 and 74 are results
by the semirelativistic so-called Hartree-Fock-relativistic
(HFR) program of Cowan, as given in Ref. 18, and the
results calculated using hydrogenic basis states plus
screening (HBS) constants, also given in Ref. 18. In addi-
tion, HFR values calculated the same way as in Ref. 18,
that is, using the same scale factors for the Slater in-
tegrals, are also given for Z=47, 56, and 92. Moreover,
for Z=56 we could include values labeled R that were
calculated by Reed' using the relativistic program of
Hagelstein and Jung, which includes the Breit interac-
tion, QED corrections, and finite nuclear size.

All of these results for f values are seen to be in quite
close agreement, except that the HFR and HBS results
differ appreciably from the other results for some transi-
tions when Z is very large. Presumably this is largely due
to omission of the j dependence in the radial functions in
those calculations. Also there is the noticeable trend
among the QR, FR, FR*, and G values that the agree-
ment between FR, FR*, and G results increases with Z,
while that between QR and FR results decreases with Z.
The former is expected because the difference in the phys-
ics of the FR, FR', and G calculations is solely in the
treatment of the electron-electron contribution V"(r) to
the central potential. Since V"(r) becomes smaller rela-
tive to the nuclear contribution as Z increases, the effect
of this on f values decreases as Z increases. Of course,
the quasirelativistic approximations made in the QR ap-
proach discussed in Sec. II D increase in significance as Z
increases and relativistic effects became more important.
Thus one expects the differences between QR and FR re-
sults to increase with Z. Nevertheless, one sees that, even
for Z=92, the QR results for oscillator strengths appear
to be quite good.

In Tables II—IV a comparison of energies relative to
the ground-state level is made for the 36 excited levels
with n=3 for a sample of neonlike ions with Z=26, 56,
and 92. Here the labeling is as in Table I ~ The energy or-
dering is according to FR, FR', and G results, which al-
ways agree in that respect. Of course, retardation, in the
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sense used previously regarding oscillator strengths, has
no meaning here. The results labeled HJ are from Ref. 6
and are obtained with the same program that was used
for the results labeled R from Ref. 19. As noted previ-
ously, that program includes the QED corrections, the
effect of a finite nuclear size, and the Breit interaction.

However, the latter is obtained for the limit co=0. All of
these effects increase with Z. In most cases the Breit con-
tribution is the most important, but for cases involving
holes in the 2s &z2 subshell the contribution from the QED
corrections is comparable. The effect of the finite nuclear
size is negligible for Z=26, is still small (less than about

TABLE'I. Comparison of oscillator strengths for neonlike ions. Upper levels are ordered according to energy and are designated

by the pure jj coupled state making the dominant contribution using the abbreviations of Eqs. (25)—(27}. The following labeling is
used: QR and FR are present quasirelativistic and fully relativistic results using Eq. i20) in determining the potential. FR differs

from FR only in that Eq. (19) is used in place of Eq. (20). G, G, and G**are results obtained with the program of Grant et al. (Ref.
5) without retardation; with retardation; and with retardation plus Breit interaction, QED corrections, and finite nuclear size; respec-
tively. HFR and HBS are results obtained using Cowan's (Ref. 9}HFR program and using hydrogenic basis states, respectively. R
are results of Reed (Ref. 19) obtained using the relativistic program of Hagelstein and Jung (Ref. 6).

3/2 1/2 1

Z= 26

1/2 1/2 1 3/2 3/2 1 3/2 5/2 1 1/2 3/2 1 1/2 1/2 1 1/2 3/2 1

QR
FR
FR*
G
G*
G**
HFR
HBS

0.1093
0.1081
0.1102
0.1051
0.1051
0.1047
0.121
0.116

0.0919
0.0922
0.0937
0.0890
0.0888
0.0896
0.103
0.099

0.0097
0.0098
0.0099
0.0076
0.0074
0.0072
0.010
0.010

0.6140
0.5900
0.6095
0.6049
0.6036
0.5900
0.682
0.659

2.5326
2.5516
2.5514
2. 3779
2.3743
2. 3844
2. 582
2. 651

0.0369
0.0358
0.0358
0.0342
0.0343
0.0337
0.039
0.041

0. 2875
0.2880
0.2868
0. 2648
0.2642
0.2638
0. 322
0.344

Z = 47

3/2 1/2 1 1/2 1/2 1 3/2 3/2 1 3/2 5/2 1 1/2 3/2 1 1/2 1/2 1 1/2 3/2 1

QR
FR
FR*
G
G*
G**
HFR

0.1262
0.1239
0.1250
0.1223
0.1222
0.1232
0.1238

0.1010
0.0971
0.0978
0.0957
0.0947
0.0947
0.1156

0.0003
0.0001
0.0001
0.0003
0.0004
0.0005
0.0005

2.0531
2.0460
2.0557
2.0013
1.9839
1.9897
2.0336

l.5905
1.5797
1.5828
1.5491
1.5420
1.5305
1.6826

0.1214
0.1210
0.1207
0.1165
0.1166
0.1166
0.1084

0.3273
0. 3253
0.3248
0. 3132
0. 3097
0. 3050
0.3647

Z = 56

3/2 1/2 1 3/2 3/2 1 3/2 5/2 1 1/2 1/2 1 1/2 3/2 1 1/2 1/2 1 1/2 3/2 1

QR
FR
FR*
G
G*
G**
R
HFR

0.1304
0.1268
0.1278
0.1256
0.1254
0.1267
0.1369
0.1217

0.0066
0.0057
0.0058
0.0065
0.0073
0.0083
0.0068
0.0079

2. 3117
2. 2688
2. 2798
2. 2320
2. 2026
2. 1624
2. 326
2. 2865

0.0214
0.0534
0.0508
0.0457
0.0452
0.0897
0.0564
0.0000

l.4733
l.4477
l.4511
1.4299
1.4208
1.4066
1.475
1.6042

0.1083
0.1128
0.1123
0.1086
0.1088
0.1114
0. 1050
0.0867

0.3268
0. 3232
0. 3229
0. 3138
0. 3084
0.3025
0. 312]
0. 3744

Z= 74

3/2 1/2 1 3/2 3/2 1 3/2 5/2 1 1/2 1/2 1 1/2 1/2 1 1/2 3/2 1 1/2 3/2 1(2p

QR
FR
FR*
G
G*
G**
HFR
HBS

0.1527
0.1451
0.1460
0.1441
0.1441
0.1456
0.127
0.078

0.0640
0.0599
0.0603
0.0611
0.0648
0.0704
0.064
0.065

2. 3918
2. 3787
2. 3847
2. 3413
2. 2827
2. 2783
2. 225
2. 474

0.0280
0.0266
0.0269
0.0269
0.0260
0.0256
0.062
0.028

0. 3962
0.4196
0.4186
0.4081
0.4068
0.4809
0.306
0.802

1.0370
0.9725
0.9759
0.9726
0.9600
0. 8756
1 ~ 319
1.047

0. 2899
0. 2829
0.2826
0. 2772
0.2676
0.2609
0. 364
0.534

Z = 92

3/2 1/2 1 3/2 3/2 1 3/2 5/2 1 1/2 1/2 1 1/2 1/2 1 1/2 3/2 1 1/2 3/2 1

QR
FR
FR*
G
G***
HFR

0.2045
0. 1893
0.1902
0.1878
0.1886
0.1895
0.1496

0.1297
0.1197
0.1202
0.1202
0.1271
0.1356
0.1167

2. 3564
2. 3393
2. 3445
2. 308?
2.2143
2. 2020
2.0645

0.0306
0.0287
0.0289
0.0288
0.0272
0.0268
0.0928

0. 2985
0.2768
0.2768
0. 2725
0.2725
0.2775
0.1851

0.9947
0.9517
0.9535
0.9498
0.9299
0.9177
1.4323

0. 2143
0. 2041
0.2039
0. 2012
0.1882
0.1834
0.3187
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0.5 eV) for Z= 56, but has become equal to about
25—30 % of the total difference between G and G '*
values for levels with 2s, i2 holes for Z=92. However,
even for Z=92, the effect of all these corrections is seen
to be somewhat under l%%uo by comparing 6 and 6'*
values. Nevertheless, it is seen to be sufficient at high Z
to switch the energy ordering for a few pairs of very near-
by levels.

Although, in general, the agreement between the vari-
ous results for energies is rather good, one sees, as expect-
ed, that, similar to the situation for oscillator strengths,
the difference between QR and FR results increases with
Z. Also, as expected, the reliability of the HFR results
appears to decrease as Z becomes very large.

An interesting aspect of the comparison of energies is
that the differences between FR, FR', and G values are

TABLE II. Comparison of energies (in eV) for excited levels relative to the ground-state level for
neonlike iron. Notation is as in Table I except HJ designates Ref. 6.

Upper
Level FR HJ HFR

3/2 1/2 2

3/2 1/2 1

1/2 1/2 0

1/2 1/2 1

3/2 1/2 1

3/2 1/2 2

3/2 3/2 3

3/2 3/2 1

3/2 3/2 2

"P3/2'P 3/2'0
1/2 1/2 1

1/2 3/2 1

1/2 3/2 2

1/2 1/2 0
(2p3/23d3/2 0

"P3/2 "3/2'1
(2p3/23d5/2) 2

3/2 5 /2

P3/2 3/2 2

(2p3/23d5/2 3

(2p3/23d5/2)l

1/2 3/2 2

( Pl/2 5/2)2
(2pl/23d5/2 3

1/2 3/2 1
(2sl j23sl/2) 1

1/2 1/2 0

1/2 1/2 0
' "1/2'P 1/2'1

1/2 3/2 2

1/2 3/2
(2sl j23d3/2) 1

1/2 3/2 2

(2sl/23d5/2 3

(2sl/23d5/2 2

893.49 893.40 894. 34 894.43 893.78 894. 44 894. 54

893.99 893.89 894. 83 894. 96 894. 27 894. 89 894. 98
896.45 896. 28 897. 23 897. 35 896. 60 897.22 897.25

898.41 898. 24 899.18 899.22 898. 46 899.09 898. 96
938. 73 938.57 939.60 939.63 938.84 939.56 939.74

938.92 938. 75 939.78 939.83 938.99 939.68 939.93
939.24 939.04 940. 07 940.07 939.18 939.92 940. 24

944. 25 944. 05 945. 00 944. 99 944. 14 944. 79 944. 65

724. 22 723. 91 725. 22 724. 62 724. 17 725. 82 724. 98
726. 24 725. 92 727. 22 726. 58 726. 13 727. 75 726. 74

737. 57 736.86 738.19 737.55 736. 80 738.57 737.66
738. 87 738. 17 739.50 738.81 738. 04 739. 79 738.76

754. 40 754. 17 755.46 754. 95 754. 48 756. A3 755. 98
758. 00 757. 80 759.05 758. 55 758. 09 759.52 758. 93
759. 73 759. 45 760. 72 760. 23 759. 68 761.12 760. 54
760. 86 760. 60 761.85 761.35 760. 88 762. 29 761.52

762. 70 762. 43 763. 67 763.14 762. 65 764. 05 763. 14
768. 58 768. 14 769. 40 769. 28 768. 71 769. 70 768. 67
770. 82 770. 22 771.50 770. 95 770. 18 771.75 771.14
774. 12 773.46 774. 74 774. 19 773. 41 774. 94 774. 14
774. 60 773.92 775. 21 774. 63 773. 79 775. 33 774. 56
790. 27 789.96 791.15 787. 39 786. 79 790 57 787. 38
800. 49 800. 22 801.60 800. 90 800. 42 801.99 801.65

801.55 801.27 802. 64 802. 19 801.63 802. 95 802. 60
803.50 803.18 804. 54 803. 88 803. 27 804. 77 804. 35
803. 67 803. 36 804. 71 804. 06 803.44 804. 88 804. 44

804. 42 804. 14 805. 47 804. 85 804. 28 805. 71 805. 07

806. 11 805. 82 807.14 806. 54 805. 98 807. 42 806. 61
807. 27 806. 96 808. 26 807. 66 807. 09 808. 47 807. 66
812.26 811.88 813.15 812.45 811.81 813.33 812.21
817.69 817.03 818.39 817.71 816.82 818.41 817.64

818.49 817.81 819.16 818.50 817.60 819.15 818.40
819.14 818.44 819.79 819.11 818.22 819.74 818.99
827. 11 826. 52 827. 69 826. 61 825. 69 827. 53 825. 99
860. 77 860. 57 861.56 861.58 860. 87 861.73 861.52
867.52 867. 39 868. 36 867. 90 867. 24 868. 23 867. 65
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generally very small (-1 or 2 eV) and almost indepen-
dent of Z, except for Z=92. These differences should be
entirely due to the differences in the determination of the
electron-electron contribution V"(r) to the central poten-
tial, because, as noted in the discussion off values, this is
the only difference in the physics used. The difference be-
tween FR and FR* is simply due to the use of Eqs. (20) or
(19) in determining the potential, while G uses the much

more elaborate multiconfiguration Dirac-Fock potential.
For Z=92, the larger differences between G and FR or
FR* values of up to about 14 ev, which are seen to occur
for levels involving s orbitals, may be due principally to
numerical error in our calculations of the small com-
ponent for s orbitals. However, the percentage error in

energies is very small and the corresponding numerical
error in line strengths or collision strengths is probably

TABLE III. Comparison of energies (in eV) for excited-state levels relative to the ground-state level
for neonlike barium. Notation is as in Table I.

Upper
Level

3/2 1/2 2

3/2 1/2 1

3/2 1/2 1

3/2 1/2 2

3/2 3/2 1

3/2 3/2 3

3/2 3/2 2

3/2 3/2 0

(2p3/23d3/2 0

(2p3/23d3/2 1

3/2 3/2 3

3/2 3/2 2
( 2p 3/23d /

)

P3/2 5/2 2

(2p 3/23d5/2 3
(2p 3/23d5/2 1

1/2 1/2 0

1/2 1/2 1

1/2 1/2 1

1/2 1/2 0

1/2 3/2 1

1/2 3/2 2

1/2 3/2 2

1/2 1/2 1

1/2 3/2 1

1/2 1/2 0

1/2 5/2 2

1/2 5/2 3
( .,/,

j /2 1/2 1

1/2 3/2 2

1/2 3/2 1

1/2 3/2 1
(2sl/23d3/2) 2

(2sl/23d5/2~ 3

(2sl/23d5/2 2

QR HFR

4571.18 4567. 06 4568. 29 4568. 06 4561. 76 4560. 42 456Q. 43
4576. 99 4572. 80 4574. 02 4573. 73 4567. 56 4566. 23 4565. 85

4666. 86 4664. 61 4665. 76 4665. 55 4659. 72 4657. 62 4656. 63

4670. 12 4667. 81 4668. 95 4668. 73 4662. 09 4660. 00 4659-58
4774. 11 4770. 49 4771.67 4771.40 4763.48 4761.68 4763. 16

4774. 34 4770. 71 4771.89 4771.64 4763. 36 4761.61 4763. 34

4782. 35 4778. 78 4779. 94 4779. 65 4772. 15 4770. 32 4770. 88

4819.73 4816. 76 4817.89 4816.01 4809. 22 4808. 93 4805. 62

4884. 83 4881.37 4882. 63 4882. 24 4875. 35 4873. 33 4872. 92

4892. 26 4888. 77 4890. Ql 4889. 84 4881.84 4879. 62 4879. 78

4896. 92 4893. 38 4894. 59 4894. 29 4885. 46 4883. 10 4883. 88

4900. 18 4896. 78 4897. 99 4897. 69 4889. 71 4887. 57 4886. 97

4918.53 4914. 34 4915.59 4915.22 4905. 51 4903. 30 4905. 56

4922. 17 4917.98 4919.22 4918.89 4909. 82 4907. 74 4908 ' 97

4929. 49 4925. 29 4926. 50 4926. 19 4917.31 4914.98 4915-88
4951.05 4946. 39 4947. 52 4946. 82 4936.89 4935. 39 4936.24

4974. 76 4964. 58 4965. 96 4965. 48 4954. 47 4954. 00 4966. 05

4979.4Q 4969.57 497Q. 91 4970. 34 4959. 21 4958. 59 4969. 92

5071.02 5062. 65 5063. 95 5063.49 5051.74 5050. 46 5063.09

5102.70 5095.66 5096. 91 5095. 13 5084. 47 5084. 42 5090.50

5177.56 5168.00 5169.32 5168.81 5156.48 5155.47 5168.97

5181.69 5171.93 5173.25 5172. 74 5159.60 5158.6Q 5172.71

5299.18 5289. 82 5291.19 5290. 59 5276. 93 5275. 65 5288. Q8

5297. 76 5294. 64 5295. 60 5295. 40 5283. 65 5281.48 5288. 71

5318.10 5308. 73 5310.00 5309.32 5295. 02 5293. 80 5306. 81

5316.08 5314.25 5315.18 5314.46 5303 ' 32 5301 ' 43 5306.07

5325.01 5314.93 5316.32 5315.70 5301.58 5300. 33 5313.56

5328. 34 5318.18 5319.55 5318.94 5304. 72 5303. 24 5316.98

5393.44 5392. 29 5393.16 5392.96 5381.70 5378. 73 5384. 62

5396.40 5395.14 5396.01 5395.82 5383.95 5380. 94 5387. 29

5501.20 5498. 66 5499. 56 5499. 34 5486. 22 5483. 44 5491.58

5505. 64 5503.06 5503. 95 5503. 67 5490. 44 5487. 70 5495. 72

5617.64 5615.48 5616.42 5616.18 5602. 84 5599.90 5606. 48

5622-14 5619.86 5620. 79 5620. 55 5606. 39 5603. 47 5610.72

5643. 65 5640. 67 5641.64 5641.32 5626. 31 5623. 52 5632. 19

5655. 49 5652. 44 5653. 34 5653.03 5638. 65 5635.80 5643. 39
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much less than l%%uo. The fact that we have been able to
reproduce exact relativistic hydrogen line strengths for
Z =90, even for the ls, ~2-2p, ~2 and 1s,~2-2p 3/2 transi-
tions, to much better than 1% would appear to confirm
this.

Experimental values for the energies of many of these
levels have been obtained for neonlike ions with Z values
in the vicinity of 56 by Beiersdorfer et al. and com-

pared with values by the program of Grant et al. with
QED, Breit, and finite-nuclear-size contributions includ-
ed. The discrepancies found between theory and experi-
ment were generally of the order of 1 or 2 eV, which is of
the same order as the differences between FR, FR', and
G results, and is considerably less than the difference be-
tween G and G '* results. Thus it appears that the accu-
racy of our fully relativistic approach is sufficient to war-

TABLE IV. Comparison of energies (in eV) for excited-state levels relative to the ground-state level
for neonlike ions with Z=92. Notation as in Table I.

Uppe r
Level

3/2 1/2 2

P3/2 j /2

3/2 1/2 1

3/2 1/2 2

3/2 3/2 3

"P3/2'P3/2'2

3/2 3/2 0

3/2 3/2 0

3/2 3/2 1

P3/2 3/2 3

P3/2 5/2 4

(2P
/

3d
/

) 3

3/2 5/2 1
Pl/2 1/2 0

1/2 1/2 1

1/2 1/2 1
Pl/23P1/2~ 0

1/2 1/2 l

1/2 1/2 0

1/2 1/2 0

1/2 1/2 1

1/2 3/2 1
( Pl/2 P3/2~2

1/2 3/2 2

1/2 3/2 1

] /2 5/2 2

Pl/2 5/2 3

1/2 3/2 2

1/2 3/2 1

1/2 3/2 1

1/2 3/2 2

1/2 5/2 3

(2sl/23d5/2 2

QR

12890.5
12901.9
13103.6
13108.8
14221.9
14222. 1

14236.5

14308.2

14426. 5

14445. 8

14448. 5

14454. 9

14688. 2

14694. 8

14707.9
14746. 7

16886.6

16893.0
17097.8

17158.1
17581.0
17623. 7

17797.9
17801.8
18222. 1

18225. 3

18444. 4

18474. 8

18692.5

18697. 7

18918.5
18926.8

19135.3
19145.6
19383.4
19399.4

FR

12871.4
12882. 4

13096.7

13101.6
14204. 2

14204. 5

14219.1
14295.4

14409.6

14428.6

14431.2

14438.4

14667.0

14673.6

14686.6

14725. 1

16820.4

16826.6

17043.4

17110.9
17561.9
17612.1
17790. 7

17794.3

18158.1
18160.9
18382.1
18411.9
18626. 1

18630.9
18901.1
18909.2

19119.8
19129 .5

19363.3
19379.0

FR

12872. 7

12883.7

13097.9
13102.8
14205. 5

14205. 8

14220. 4

14296.6

14411.0
14430.0

14432.5

14439.8

14668.4

14675.0

14688.0

14726. 3

16822. 3

16828.5

17045. 2

17112.7
17563.1
17613.3
17791.8
17795.4

18160.0
18162.8

18384.0
18413.8
18628.1
18632.9

18902.3

18910.4
19121.1
19130.7

19364.6

19380.3

12877.1
12888. 1

13097.8
13102.6
14206. 0

14206. 0

14220. 7

14294. 9

14411.4
14430.5

14432. 8

14440. 1

14668.4

14675. 3

14688. 2

14726. 3

16828. 3

16834.4

17046. 6

17112.7
17553.4

17602. 8

17777.4

17781.0
18161.9
18164.7

18385.8

18415.6
18629. 7

18634.5

18888.4

18896.5

19107.3
19116.8
19350.5
19366.3

12860. 3

12872.0

13075.8

13075.9

14167.0
14165.4
14184.1
14262. 7

14378.5

14391.1
14389.5

14401.6

14619.9
14630.5

14644. 2

14679.0
16764. 8

16768.1

16970.0
17043.1
17458.5

17511.8
17678.0
17676.1

18077.5

18076.0
18295.1
18322. 5

18535.9
18540. 2

18772.9

18781.0
18991.6
18996.4
19225.5

19244. 7

HFR

12596.1

12607.0
12777. 8

12782. 2

13971.4
13971.6
13985.4
14051.1
14092. 2

14109.3
14111.4
14117.4
14359.5

14365. 7

14378.1

14413.5
16836.6

16842. 7

17020.1

17065.9

17504. 6

17463.9

17648. 3

17651.2
18217.7

18220. 3

18351.6
18385.8
18605.9

18612.8

18843.4

18850.5

18974.5

18983.9
19299.9
19246.0
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TABLE V. Comparison of oscillator strengths for Ni-like gadolinium. Notation is as in Table I ex-
cept that now QR and FR results correspond to use of Eq. (29) and FR* results correspond to use of
Eq. (30). Also H and Z designate results from Refs. 21 and 23, respectively.

Upper
level

(3d3/2 p1/2 )1

(3d5!24p3/2 )1

(3d 3/24p 3/2 )1

(3p 3 /2 4~
1 /2 ) 1

(3d5/2 f5/2 )1

(3ds/z4f z/z ) i

(3d3/24f 5/2»
(3p1/24S1/2 )1

(3p3/24d3/2 )1

(3p3/24d5/2 )1

(3p1/24d ~/2 )1

(3~ 1 /2 4p 1 /2 ) 1

(»1/24P 3/2 )1

0.110
0.286
0.033
0.374
0.014
1.092
6.448
0.043
0.019
1.134
0.559
0.024
0.148

FR

0.111
0.281
0.033
0.372
0.015
1.054
6.471
0.041
0.017
1.129
0.545
0.031
0.147

FR*

0.112
0.286
0.034
0.373
0.015
1.075
6.489
0.042
0.018
1.126
0.544
0.031
0.147

0.110
0.274
0.032
0.357
0.011
1.082
6.142
0.045
0.018
1.076
0.525
0.030
0.140

0.109
0.274
0.032
0.356
0.011
1.075
6.119
0.045
0.018
1.070
0.523
0.030
0.139

0.111
0.273
0.032
0.362
0.011
1.059
6.123
0.043
0.017
1.060
0.511
0.035
0.138

0.121
0.305
0.036
0.384
0.016
1.09
6.65
0.047
0.018
1.1 1

0.553
0.020
0.143

Z

0.111
0.275
0.033
0.357
0.014
1

6.38

rant an option to include the dominant corrections, that
is, the Breit and QED corrections. Then the accuracy
should be sufficient for purposes such as line
identification work for ions with Z 2.5N. However,
since the effect of this on energies and mixing coefficients
is small, this option should have little effect on collision
strengths, which are usually less sensitive to slight
changes in mixing coefficients than are f values.

B. Results for nickel-like ions

Nickel-like ions are similar to neonlike ions with a
ground-state level having an outer closed n=3 shell in
place of the closed n=2 shell for neonlike ions and they

have also been of major interest for x-ray laser research,
e.g. , Refs. 3, 21, and 22. In Table V we compare results
of our calculations of oscillator strengths with those by
other approaches for Ni-like gadolinium (Z=64). It was
thought to be too lengthy to include the energies for all
106 excited levels with n=4, but the wavelengths in
angstroms for the transitions considered in Table V are
given in Table VI. We note that in Table V rows and
columns have been interchanged, as compared with Table
I, for economy of space.

Again the upper levels are ordered according to energy
and are designated by the basis state, making the dom-
inant contribution using the analogs of Eqs. (25)—(27).
For example,

( 3d 3/z 4f, /z ), = ( l s, /z 2s, /z 2p, /z 2p 3/z 3s, /z 3p, /z 3p 3/z 3d 3/z 3d s /z 4fs/z ), .2 2 2 4 2 2 4 3 6 (28)

The symbols designating the various sets of data in Tables V and VI have the same meanings as in Tables I—IV, except
that now QR and FR results correspond to using the mean configuration

2 2 2 4 1.9 1.9 3.8 3.8 5. 7 0. 12 0. 12 0. 13 0. 13 0. 13 0. 13 0. 14ls
& /z 2s

& /z 2p
& /z 2p 3/z 3s 1/z 3p i /z 3p 3/z 3d 3/z 3d 5/z 4s t /z 4p t /z 4p 3'/z 4d 3 /z 4d &/z 4f 5/z 4f 7/z' (29)

0

TABLE VI. Comparison of wavelengths (in A) for nickel-like gadolinium. Notation as in Table V

except that A, (expt) represents the experimental results of Ref. 24.

Upper
level A.(QR) k(FR) k(FR*) k( G) g(G+g ) A, (H) k(Z) A.(expt)

(3d3/2 p1/2)1
(3d ~/24p 3/2 )1

(3d 3/24p 3/2 )1

(3P3/24S I/2 )1

(3d5/24f 5/2 ) i

(3d 5/24f 7/2 ) i

(3d /z 4fs/z )1

(3p1/ 4~1/2 )1

(3p &/24d 3/2 ),
(3p 3/24d 5/2 ) 1

P1/2463/2 )1

(»1/24P1/2 )1

(3&1/24p 3/2 )1

10.897
10.760
10.465
8.982
8.874
8.758
8.495
8.088
7.671
7.609
7.000
6.901
6.721

10.910
10.769
10.481
8.995
8.883
8.769
8.507
8.109
7.679
7.619
7.014
6.905
6.726

10.893
10.753
10.465
8.986
8 ~ 871
8.757
8.498
8.101
7.673
7.613
7.008
6.900
6.721

10.899
10.759
10.471
8.986
8.873
8.761
8.509
8.102
7.673
7.613
7.009
6.900
6.722

10.905
10.763
10.482
8.996
8.881
8.770
8.522
8.119
7.684
7.625
7.025
6.914
6.736

10.906
10.764
10.476
8.982
8.880
8.766
8.506
8.096
7.678
7.618
7.013
6.917
6.738

10.87
10.73
10.45
8.98
8.76
8.75
8.49

10.90
10.75
10.47
9.01

8.77
8.54
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TABLE VII. Comparison of present quasirelativistic (QR) and fully relativistic (FR) values for oscil-
lator strengths and energies relative to the ground level for Ni-like ions with Z=92. Notation as in

Table V.

Upper
level QR FR FR*

hE {eV)
FR FR

~3d 3/24p 1 /2 ~1

~3d5/24p3/2 ~1

(3d3/24p3/2 ),
1'3p3/24~1/2 ~ 1

(3ds/24f s/2 )1

(3"s /2 4f7 /2 ) i

(3d3/24f s/2 ) I

~3p3/24d /2 ~

(3p3/, d, /, ),
~3p 1 /24~1/2 ~ 1

~3~1/z 4p 1 /2 ~1

~3p 1/24d3/2 ~1

1/24P3/2 ~1

0.1914
0.2608
0.0074
0.4224
0.0011
3.3999
5.0765
0.1111
1.4012
0.0489
0.2530
0.3471
0.0993

0.1876
0.2542
0.0074
0.4132
0.0008
3 ~ 3643
5.0714
0.1061
1.3875
0.0467
0.2464
0.3354
0.0961

0.1892
0.2565
0.0074
0.4151
0.0008
3.3832
5.0797
0.1061
1.3858
0.0471
0.2465
0.3347
0.0960

3032.5
3169.6
3362.7
3413.1
3654.1

3716.6
3891.4
4095.9
4168.9
4358.6
4849.8
5050.4
5189.0

3028.3
3166.1
3355.2
3405.7
3648.9
3710.4
3882.3
4089.2
4160.8
4340.8
4846.7
5033.4
5182.8

3029.9
3167.7
3357.0
3407.0
3650.6
3712.0
3883.9
4090.4
4162.0
4342.4
4848.0
5034.9
5184.2

in determining the central potential with Eqs. (16)—(18), while FR corresponds to our fully relativistic results obtained
using

2 2 2 4 1.95 1.95 3.9 3.9 5. 8 0.07 0.07 0.07 0.07 0.07 0.07 0.08
1/2 ~ 1/22J 1/2~J 3/2 s 1/2 3I 1/2 3J 3/2 d 3!23d5/2 s 1/2 4I 1/2 4J 3/2 d 3/2 d 5/2 f5/2 f7/2 (30)

in determining the central potential. The sets of values
labeled by H and Z refer to results from Refs. 21 and 23,
while the experimental wavelengths are from Ref. 24.
One sees that, in general, the agreement between the vari-
ous sets of results is good and there are no special
surprises as compared with the analogous results for
neonlike ions discussed rather thoroughly previously.
The one noticeable difference is that, since the results for
Ni-like ions correspond to one additional step upward in

n values, the relativistic effects are less pronounced than
for neonlike ions of corresponding Z. Hence, the Breit
and QED corrections are less important than for neonlike
ions and the effect of a finite nuclear size is essentially
negligible for Z=64. Also one would expect QR results
to be better for Ni-like ions. Partly for this reason we

give QR, FR, and FR* results for f values and the corre-
sponding transition energies in Table VII for Z=92. Re-
sults by the program by Grant et al. could not be in-

cluded because we were unable to get the program to
converge for this case. As expected, FR and FR* results
are very close and one sees that indeed the QR and FR
results are also close with a maximum deviation of only
4.7% for f values, except for the very weak transition to
the (3d5/24fs/2), level. Thus it appears that the QR ap-

proach is quite a good approximation for highly charged
Ni-like ions with essentially any value of Z.

atomic-structure results required for large-scale, rapid
calculations of the atomic data for ions with Z ) 2N
needed for the modeling of high-temperature plasrnas
such as those in x-ray laser research. For this regime the
approach appears to be very accurate, as well as rapid,
from comparisons of oscillator strengths and energies
with results by other more elaborate approaches. In fact,
it appears to be sufticiently accurate to warrant an option
to include the Breit interaction and the vacuum polariza-
tion and self-energy QED corrections, which we plan on
doing in a future work. However, we expect this to have
little effect on collision strengths and, since it would in-
crease the computing time, we would probably usually
not use this option in generating the atomic-structure
data for collision strengths, which is the main objective of
our work. We have also developed a slightly more rapid
quasirelativistic approximation to the present approach
that appears to be quite accurate even for very high Z,
especially for Ni-like ions. However, since it saves only
about 5% or 10% in computer time, it appears to be of
little practical value, except when coupled with an addi-
tional approximation in determining collision strengths,
as discussed in Sec. IE D of the accompanying paper.
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