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The electromagnetic field generated in a nonabsorbing anisotropic multilayer by a plane incident
wave with given wave vector is considered. By taking into account the fact that the field within a
given layer is a superposition of four proper waves, namely, four waves that propagate without
changing their polarization state, the field is associated with a four-dimensional complex vector
space. In this space a new algebra is defined such that the norm of a vector gives the energy flux

density of the corresponding field, and the scalar product of two proper waves is zero. This allows
one (1) to simply derive the amplitudes of the four proper waves for any layer, (2) to explicitly write
the reflection and transmission coefficients of a structure whose layers are uniaxial media with arbi-
trary direction of the optical axis, and (3) to deduce the propagation equations for the four waves in

the limiting case of a plane stratified medium with continuous variation of the dielectric tensor.
Similar equations are found in the literature only for some very particular cases and are generally'
used to obtain approximate solutions for the wave equation. Here the general case is considered.
The given equations contain as specific cases most of the already known approximations and give a
unifying method for their discussion and generalization. In particular, they contain the
geometrical-optics approximation (GOA) for uniaxial stratified media with arbitrary directions of
the optical axis and of the incidence angle, as well as a generalization of the GOA, where the cou-
pling between the ordinary and extraordinary waves is taken into account. The theory developed
here has a wide range of applications in many fields of physics, as for instance the propagation of
electromagnetic waves in magnetoactive plasmas, the optical properties of liquid crystals, and more
generally the optics of anisotropic media.

I. INTRODUCTION

The first systematic studies on the propagation of the
electromagnetic waves in anisotropic stratified media are
related to the transmission of radio waves in the iono-
sphere. The main results obtained up to 1969 and a refer-
ence list of more than a hundred papers are found in the
textbooks of Ginsburg' and of Budden. A new interest
in such studies is related to the development of electro-
optic devices, and, in particular, of liquid-crystal devices.

In order to clearly expound on the aim of this paper,
let us first consider the simple case of a linear homogene-
ous anisotropic layer between two parallel planes orthog-
onal to the z axis of a Cartesian-coordinate system. A
plane monochromatic wave with given wave vector K,
generates in the layer two proper waves with different
wave vectors, because the medium is doubly refracting.
Since the second boundary plane gives rise to two
reflected waves, the electromagnetic field within the layer
is a linear combination of four proper waves (namely four
waves propagating without changing their polarization
states). The coefficients of the linear combination can be
considered the components of a four-dimensional com-
plex vector P, which defines the "state" of the field. In a
multilayer the state vector P changes from layer to layer.
In the limiting case where the thickness of the layers goes
to zero, giving rise to a stratified medium in which the
dielectric tensor continuously changes by increasing z,
the state vector becomes a function of z.

The aim of the work is to compute the P vector,
defining the field generated in planar stratified media by a
plane incident wave. The starting point will be the prop-
agation equation for a different four-dimensional vector
function g(z), representing the same field and defined by
making use of four components of the complex electric
and magnetic vectors E(z) and H(z). This propagation
equation is well known, ' because it is directly and sim-
ply derived from the Maxwell equations.

The vectors g(z) and P(z) can be considered different
representations of the same vector space. The transfor-
mation between the two representations is defined by the
relation f(z)=T(z)P(z) The interest . in the P represen-
tation is due to the fact that the components of P are
directly related the measured physical quantities.
Knowledge of these components gives a deeper insight
into the physics of the problem, a fact which is particu-
larly useful if one makes use of approximated methods.
To this purpose, we observe that simple analytic solutions
of the propagation equations for inhomogeneous media
are known in few very particular cases. Generally, nu-
merical analysis or approximate methods are re-
quired. The most important approximations make
use —or can be reformulated by making use —of the P
representation. This representation gives a sound and
unifying basis which allows one to generate, discuss, and
compare the different approximations, such as, for in-
stance, the geometrical optics approximation and various
types of perturbation expansions.
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Until now, this technique has been used only for par-
ticularly simple cases, since the general expressions of
the matrices T and T ' are very complicated. The
preliminary —and in a sense the central point —of our
analysis will be the definition of a matrix algebra which
allows one to simplify these expressions and their deduc-
tion. This goal is achieved by the use of a suitably
defined scalar product between two vectors of the f
space. With such a definition, the scalar product between
the vectors corresponding to the four proper waves of a
nonabsorbing layer is zero: these waves can therefore be
considered orthogonal. For normally incident light, the
wave vectors of the four proper waves are parallel and
their polarization states are indeed mutually orthogonal.
Our definition of a scalar product extends the concept of
orthogonality to waves which propagate in di6'erent
directions.

The advantages obtained by the use of an orthogonal
basis for a vector space are evident. As an example, a
simple relation between the matrix elements of T and
T is expected, and is indeed found. The starting point
of our analysis is the theory developed in Ref. 3. In Secs.
II and III we define the scalar product, on the basis of en-
ergy considerations, and state the orthogonality relations.
These relations are used in Secs. IV and V to derive the
reflectances and transmittances of multilayers and the
propagation equation for P(z) in nonabsorbing continu-
ous media.

The time average of the energy flux density through the
planes z= const is given by the quantity

(H*E„E,*H H—'E E—*H„)= g Mg,

(2.4)

g =(E',H*,E*, H„*—),
and M is the matrix,

(2.5)

0 1 0 0
1 0 0 0
0001
0 0 1 0

(2.6)

For nonabsorbing media we expect that the flux will be z
independent, namely d (g Mg)/dz =0, and that this
property will be related to some property of the matrix D.
Now from Eq. (2.2) and its Hermitian conjugate,

d
g = —iKQD

dz

it immediately follows that

(2.7)

which is the time average of the z component of the
Poynting vector. Here, f is the symbol of Hermitian con-
jugation, namely

d
(@M Q) =iKQ (M D DM )g-

z
(2.8)

II. ENERGY FLUX AND DEFINITON
OF THE SCALAR PRODUCT

We consider a linear medium whose optical properties
depend on the single Cartesian coordinate z. The full
translational invariance of the Maxwell equations with
respect to x, y, and t suggests that one look for solutions
having the structure

E(z)
exp[i(K, x +K y cot)]+c.c. , —(2.1)

and the condition for energy conservation is therefore

MD=D M, (2.9}

or, equivalently,

MD M=D, (2.9'}

where use has been made of the properties ( f ) =f,
(Mg) =@M . and M=M =M

For a medium with unit permeability, the matrix D is
given by

(2.1')K =0.
Only four of the six components of the fields E,H are in-
dependent. Generally, the x and y components are con-
sidered. ' In Berreman's formalism the Maxwell equa-
tions are cast in the form

which will be used to solve the physical problem where a
plane monochromatic wave is incident on the medium
through the plane boundary surface z =0. In the follow-
ing, we assume (x,z) is the incidence plane. This gives

&zx—m
&zz

~xz ~zx
&xx

&zz

&yz &zx
Eyx

zz

m1—
t-zz

~xz

~zz

0

~yz

&zz

~xy

&zy
m

&zz

&xz&zy

~zz

0

0

0

yz&zy 2—m 0
yy

zz

d (z) =iKD(z)$(z), (2.2)
where e is the dielectric tensor, and

(2.10)

where K =co/c, D is a 4 X 4 complex matrix, and

E

E (2.3)

m =K /K =n,-sin8, - . (2.1 1)

Here, 8; is the incidence angle and n; is the refractive in-
dex of the incident medium.

For a nonabsorbing medium the matrix e is Hermitian
(namely e,"=@*,), and M D =D M, as is easily verified:
the energy flux is indeed conserved.
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The scalar quantity fbM@, will appear repeatedly in

the following. Owing to its evident analogy with a scalar
product (with the matrix M playing the role of the metric
tensor of the theory of relativity), it will be named the
"scalar product (f„tabb) of f, and QI,

' in the P-vector
space. Consequently, two vectors whose scalar product is
zero will be considered orthogonal, and g Mf will be
considered the "norm" of the vector P. This norm is real
but not necessarily positive. With the above definition of
the scalar product, the property of the D matrix given by
Eq. (2.9) implies:

choose two orthogonal vectors. We can therefore write

y', MP=N, fi„, (3.4)

or, equivalently,

N, -'y', Mg=fi„, (3.4')

where N, is the norm of the vector f'. Let us now choose
the indexes 1,2 for the forward-propagating waves and
3,4 for the other two waves. With such an assumption,
N, and N2 are positive and N3 and N4 are negative. It is
natural to assume as normalization conditions

(2.12)
N1 =N2 = 1 N3 =N4= (3.5)

This means that the operator of the cP defined by the ma-
trix D is self-adjoint. If we consider that it is the operator
that determines the spatial evolution of the electromag-
netic field [through Eq. (2.2)], we realize that the proper-
ty (2. 12) has extremely important consequences for the
whole theory (similar to those deriving in quantum
mechanics from the fact that the Hamiltonian operator is
self-adjoint).

In the following sections we will consider nonabsorbing
media whose D matrix has the structure (2.10) and there-
fore satisfies Eqs. (2.9) and (2.12). The theory which fol-
lows has a wide range of applications, such as, for in-
stance, the propagation of radio waves in horizontal iono-
sphere and the optics of crystals and liquid crystals.

III. ORTHOGONALITY RELATIONS
AND 0 REPRESENTATION

FOR NONABSORBING MEDIA

For homogeneous media the matrix D is z independent
and the propagation equation (2.2) admits solutions of the
type

+exp(iKd, z), (3.1)

which are the four proper electromagnetic waves (two
forward- and two backward-propagating) with the same
values of co and K„,and with K =0.

By inserting Eq. (3.1) into (2.2), we obtain the charac-
teristic equation for D:

(3.2)

The P representation is obtained by expressing g as a su-
perposition of the four proper vectors, namely

0= & f,W=TP (3.6)

where

(3.7)

and T is the matrix whose element t, is the i component
of the vector P. This means that the columns of T are
the column vectors '. . . and that the rows of T
are the vectors g&, f2, @3,f4 The orth. ogonality relations
(3.4') can therefore be written as

'T MT=1 (3.8)

T '=N 'TM, (3.9)

and, with the normalization condition (3.5), is expressed
as

where N is the diagonal matrix whose nonzero elements
are the norms N, , N2, N3, N4 of the proper vectors of D,
and 1 is the unity 4 X 4 matrix.

Equation (3.8) shows that N 'T M is the inverse of
the matrix T, namely

(d —d,*)Q,M+=@,(M D DM )+=0 . — (3.3)

Let us now consider two proper vectors g' and P. Equa-
tion (3.2) gives the relations d, M P =M D P and
d;*f;D M=/, D M, where f; =(g')f. From these rela-
tions and from Eq. (2.9), it follows that

t22

—t*
23

t24

t12

—t*
13

—t*
14

t42

t43

t 44

t32

—t*
33

—i*
34

(3.10)

By taking i =j, Eq. (3.3) shows that the proper vector of
a complex proper value has zero norm. Such vectors
represent evanescent waves, a case requiring separate
analysis which will not be considered here. ' The same
equation shows that two proper vectors corresponding to
different real proper values are orthogonal. For degen-
erated proper values (d, =d ) the scalar product PtMP
can be different from zero. However, in this case any
linear combination of f', P is a proper vector of d;, and
in this two-dimensional vector space we can always

IV. LAYERED MEDIA
WITH DISCONTINUITY PLANES

Here we consider a plane wave incident on a set of N
homogeneous layers separated by N+1 planes at z =z„
(n =0, 1, . . . , N), with the aim of finding out analytic ex-
pressions for the reflected and transmitted waves.

It is convenient to consider the case N =0 first, corre-
sponding to a single planar interface at z =0. With the
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symbols of Sec. III, the incident and transmitted waves
are represented by P vectors with f3=f4=0, and the
reflected wave by a vector with f, =f2=0. The P vec-
tors at the two sides of the boundary plane are, therefore,
with obvious symbols,

K (z, ) =exp(iKd z, ) . (4.6)

The quantities d, (j= 1,2,3,4) are the proper values of the
D matrix for the inner medium. From Eqs. (4.4) —(4.6) we
immediately obtain

(4.7)

(4.1)

Our problem consists of expressing the amplitudes
r, , rz, t„t2 of the reflected and transmitted waves as a
function of the amplitudes i, , iz of the incident proper
~aves.

The continuity of the tangential components of the
vectors E and H is expressed by the relation

(4.2)

These simple preliminary considerations clearly show the
relative roles played by the f and P vectors. The first
enters directly into the boundary conditions and in the
propagation equations. The second is more directly relat-
ed to the physical quantities of interest in experiments,
which in our case are the reflectances and transmittances,
namely the ratios r, li and t, /i (i,j=1,2). The trans-
formation matrices T and T ' play the role of interfaces
between the two aspects of the problem.

From Eqs. (4.1) and (4.2), and the relation g= TP, we
immediately obtain

where U is the transfer matrix for the P vectors within
the layer, imphcitly defined by f(zi ) = Utg(0). It is given

by

U=TK '(z, )T (4.8)

or, equivalently,

U= g +exp( iK—d, z, )@, , (4.8')
j=l

where g„gz, g&, P4 are the rows of the matrix T
For the general case of N layers, the solution of our

problem is given by Eq. (4.7), where U is the transfer ma-

trix of the layer set, and is given by the product of the N
transfer matrices of each layer.

All of the above results are very simply stated and

largely known. The new important fact is that for any
homogeneous medium the matrix T ' is known if we

know T. In order to obtain an explicit expression for T,
one must find the proper vectors g. By taking into ac-
count the structure of the matrix D, given by Eq. (2.10),
the first three equations of the set (3.2) give

$(0 )=T; 'T, P(0+), (4.3)

$(0 ) =T, 'TP(0+ ),
P(z, )=T 'T, P(z,+ ),

(4.4)

where the quantity T without indices refers to the inner
medium. The relation between P(0+' and P(z, ) is, ac-

cording to Eq. (3.1),

P(z, )=K(z, )$(Q ), (4.5)

where K(z, ) is the diagonal matrix whose nonzero ele-

ments are

where T, and T, are the T matrices of the first and
second medium, respectively. Equation (4.3) gives four
linear equations in the four unknowns r &, r2, t, , t2, and
can therefore be considered the solution of our problem.

Now we consider the case N =1, corresponding to a
single homogeneous layer between the planes z =0 and
z =z, . The continuity of the g vectors at the layer boun-

daries gives two relations of the type (4.3), namely

g=C,
d, 3d2, —di3(d„—d, )

(d „d,)(d2i ——d, )
—d, ~d2,

d, [(d„d,)(d22 d—
~ ) —d, ~d2, ]—

(4.9)

where d; are the elements of D, and C is the normaliza-

tion constant. The proper values d appearing in Eq.
(4.9) are the solutions of the characteristic equation of D
Since D is a 4 X 4 matrix, the characteristic equation is a
quartic. It admits analytic solutions, which are generally
given by rather complicated expressions, as is well
known. For our problem we therefore expect reasonably
simple expressions only if the quartic has simple solution.
This is the case of uniaxial, nonoptically active media,
where the two roots of the quartic corresponding to the
ordinary waves are well known. Taking into account this
fact, the quartic can be reduced to a quadratic equation
for the extraordinary proper values. The explicit expres-
sions for the matrix D and its proper values and vectors
are

m, cosy

0

(e, —e, )sin&p cosy

1 —m'e, /e. e,

m, cosy

m, sing

m, sing

(e, —e, )sing& cosy 0

~o+ Et Ef

(4.10)
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1/2
Cr Ef

d,—=m, cosy+ er —m
&e&o

d,—=+(e —m )'i
+ ~ + ~

b2 i, —a2 i2

+b+ +b+ t2=
2 a2

b) l)+a ) l2

+b+ +b+az

+ c+
e e

(1—m /e, )cosy' —m (cot8)d,—/e,

d,—cosy —m cot8

siny

Slny

(4. 1 1)

(4.12a)

Pg.
2a i u» + u &2p, pr+u2&

Pr

1 Pr+u 22

1 s,+u„—2a& =u&3 —+ 14p r —u23
s, P&

rI =a
) t)+a2 t2, r2 =b

I tI +b2 t2

where

—sing
—e, (sing) Id,+—

s;
2b I =u3) +u32$;pr+u4)

S;

1 Pr+u4~—
+ c+
0 0 cosy —m (cot8)/d, —

d,—cosy —m cot6

(4.12b)
S]. 1

2b 2
—u 33 + u 34$; st —u 43 —u 44

Sr S;Sr S;

where

1 cos 8 sin 6
E'r Eo Ee

Ef = E' S1n y+ Er cos y,
m =K /K=n, sin6,-,
m, =m (1—e, /c, )cot8 .

(4.13)

n„n, are the ordinary and extraordinary refractive in-
dices of the medium, and 6,y are the polar angles of the
optical axis.

Generally, the multilayer is sandwiched between
homogeneous media and the incident, rejected and
transmitted waves are analyzed in terms of p- (or TM)
and s- (or TE) polarizations. The f-vectors for these
waves are obtained from Eq. (4.12) by assuming n, =n,
and y=0. This gives

V. PROPAGATION EQUATION
FOR THE VECTOR 0 IN CONTINUOUS MEDIA

A medium with continuous variation of the tensor e(z)
can be considered the limit for hz~0 of a stratified
medium constituted of homogeneous layers of thickness
Az. The analysis given in Sec. III is valid for any layer,
and in the limit hz ~0 we obtain

f(z) = T(z)$(z), (5.1)

where T(z) is the 4X4 matrix whose four columns are
the four proper vectors of the matrix D(z). This property
can be expressed by the equation

D(z) T(z) = T(z)D 0(z), (5.2)

and where u, are the elements of the matrix U, which is
given by Eqs. (4.5) and (4.8). For a multilayer of uniaxial
media with arbitrary directions of the optical axis, the
matrix U is straightforwardly computed by making use of
Eqs. (4.11)—(4.13) and (3.10). This long-standing problem
receives a satisfactory solution here.

1

v'2

0

PI 0 P& 0

0 1/s, 0 1/s;

0 s; 0 SI

'1/p; 0 1/p;

(4.14)

where D o(z) is the diagonal matrix,

d( 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 d4

(5.3)

1/p, 0

0 s
P)

0
1

v'2 p 1/p 0'0

1/s,

0
d
dz

=iIC(D o+ V), (5.4)

By inserting Eq. (5.1) into Eq. (2.2) and taking into ac-
count Eq. (5.2), we immediately obtain

0 0 s, —1/s,
where

where

p; (n; =Icosd; )'~, s; =(n;cos8, )'~ (4.15)

l I dT
K dz

An important property of the matrix V is given by

(5.4')

and 8; is the incidence angle and n; the refractive index
of the first medium. Analogous relations hold for T, .

Equations (4.1), (4.7), and (4.14) give

V=N 'VN .

This follows from the relation

(5.5)

d(T 'T)/dz
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=d(1)/dz =0, which gives

dT + dT T 0
dz dz

V12

V&2 V13 V14

0 V23 V24

—V* —V* 013 23 V3
(5.6)

—V*,4
—

V24 V34 0

where the elements V; are purely imaginary.
For uniaxial media, the elements of V are easily com-

puted from Eqs. (4.12). The computations are greatly
simplified by considering that the derivatives dC /dz of
the normalization constants C are unnecessary. In fact,
it is easily found that each derivative dC~/dz is multi-
plied by a nondiagonal element of the matrix T 'T,
which is identically zero.

We explicitly observe that Eqs. (5.5) and (5.6) are valid
only if the norms of the proper vectors are z independent.
Another choice of the norms can easily be taken into ac-
count by inserting P(z) =R ' P(z) in Eq. (5.4), where 8
is a diagonal matrix whose elements R;; are the ratios be-
tween the new z-dependent norms and the previous ones.
This gives a V matrix whose diagonal elements are
different from zero.

We finally recall that Eqs. (5.5) and (5.6) are valid only
for nonabsorbing media. The energy conservation is ex-
pressed by the conservation of the quantity P Nits. In
fact, from the relations f= TP, f =f T, and Eq. (3.9),
we obtain

g MP=P NP, (5.7)

which shows that X plays the role of the metric matrix in
the P representation. With the normalization conditions
(3.5), the norm is simply given by

0'N4 =f if i+f &f2 f3f3 f4f4 . — —(5.8)

By using the propagation equation (5.4) and the property
given by (5.5), the conservation of the norm P NP can be
easily stated.

VI. CONCLUSIONS

In anisotropic linear media, the radiation field is gen-
erally analyzed in terms of proper waves, which propa-
gate without changing their polarization state. The

In fact ikT 'dT/dz = V and iK(dT '/dz)T
N —V N, as is easily found by considering Eq. (3.9)

and its Hermitian conjugate.
The properties of T and V given by Eqs. (3.9) and (5.5)

are the most important consequences of the orthogonality
relations (3.4).

For media whose dielectric tensor e has real com-
ponents, the elements of D are also real, and its proper
vectors corresponding to real proper values can be
chosen as real. In this case, and with the normalization
conditions (3.5), the property (5.5) gives to the matrix V
the structure

orthogonality of the polarization states of the proper
wave propagating in a given direction through a nonab-
sorbing uniaxial medium has been known since the early
works of Fresnel. A more complicated problem arises
when a plane wave of given wave vector K; is obliquely
incident on the surface of an anisotropic medium, be-
cause of the K change due to refraction. In a layer be-
tween parallel planes four proper waves with generally
different wave vectors are generated. The central point of
this paper has been the analysis of the polarizations of
these waves, namely of the amplitude and phase relations
between the Cartesian components of the electric and
magnetic vectors E and H. The most important results
are summarized by the orthogonality relations (3.4) and
by the property (3.9) of the transformation matrix T be-
tween the set of the vector components E;,H, and the set
of the complex amplitudes f/ of the proper waves. This
matrix is similar to a unitary matrix, since the elements
of the inverse matrix T ' are the complex conjugates of
the elements of T, taken in a different order.

The interest in the above results is due to the fact that
the matrix T is the interface between two fundamental as-
pects of our problem: the solution of the Maxwell equa-
tion, where the vector components E, , H; appear, and the
application of the obtained results to physical problems,
which generally requires the knowledge of the amplitudes

f, .
Explicit expressions for the matrices T and T ' are

found in the literature only in a few particular cases, be-
cause of the complicated calculations needed. Our
analysis greatly simplifies the calculation and, in particu-
lar, avoids the problem of matrix inversion.

%'ith the help of the formalism developed, two impor-
tant problems are solved: the evaluation of the reAection
and transmission coefficients of a multilayer, given in Sec.
IV, and the propagation equations (5.4) for the quantities

f/ in stratified media with continuous variation of the
dielectric tensor. Explicit expressions are given only for
the particularly simple and important case of nonabsorb-
ing uniaxial media.

Let us finally add some comments about the possible
applications of the results obtained.

The interest in stratified media (considered in Sec. IV)
comes from the widespread use of such structures and
from the fact that they can approximate continuous
media, a fact which allows one to develop methods for
the numerical integration of the wave equation for such
media. Explicit expressions for the wave propagation
through stratified media are found in the literature, but
they refer to particular directions of the dielectric ten-
sor, or make use of rather complicated expressions. The
analysis given here allows one to treat the general case on
the basis of very simple expressions. From the numerical
point of view, the most complicated problem is now the
computation of the proper values of the matrix D, since a
numerical inversion of the matrix T is no longer required.

The propagation equations (obtained in Sec. V) for the
amplitudes f, of the proper waves are a good starting
point for other methods of numerical analysis. " Howev-
er, the main interest in such equations is due to the fact
that they are the basis of most approximate methods, at
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least concerning aperiodic media. All the approxima-
tions quoted in this paper make use of similar equations,
which for slowly varying media have the structure of cou-
pled equations with small coupling terms. They are
therefore the starting point for the approximations based
on perturbation expansions or coupled-mode analysis.
The most important of these approximations is the
geometrical optics approximation (GOA), which consists
of simply dropping the coupling terms. Only a few very
particular cases have been considered until now, such as
the cases of normally incident light ' ' and of media with
the optical axis lying in the plane of incidence. ' The
GOA in the most general case of oblique incidence and
arbitrary direction of the optical axis is contained in the
Eq. (5.4), by simply neglecting the matrix V.

In the optics of anisotropic layers a particularly impor-
tant role is played by media having a periodic helicoidal
structure, such as the cholesteric and ferroelectric
smectic-C liquid crystals. The wave equation for such
media is a Mathieu equation, whose solutions are Bloch
waves. For this problem specific analytical methods are
available, ' ' and simple solutions are known for the
particular case of waves propagating along the helix axis.
Also, for such periodic media the theory developed here
gives (I) new and interesting solutions in the case where
the helical pitch is greater than the light wavelength, and
(2) the exact solution for a wave propagating along the
helix axis, since Eq. (5.4) becomes z independent.

We finally observe that the amplitudes f, have a very
simple physical meaning, being closely related to mea-
sured quantities. This gives a clear meaning to all the
terms which appear in the propagation equations (5.4), a
fact which is of great help when we are looking for the
most useful approximations. As an example, it is evident
(and indeed well known) that for slowly varying media
the reAection is generally negligible, whereas the interfer-
ence between the two forward-propagating proper waves
may play an essential role and must be taken into ac-
count. ' This is very easily achieved by simply assum-
ing f3=f4=0. The set of four differential equations
given by Eq. (5.4) reduces to a set of two equations, which
is formally identical to the time-dependent Schrodinger
equation for a two-level system (such as, for instance, a
spin- —,

' particle), with the coordinate z playing the role of
the time. In fact, Eq. (5.6) shows that the reduced'matrix
V becomes Hermitian, since V2, = V&2. This gives a very
good approximation for many problems in the physics of
liquid crystals, already used for the particular cases of
normally incident light and of a medium with the optical
axis orthogonal to the z axis. Once again, the theory
developed here extends this approximation to the most
general case, and the formal analogy with the
Schrodinger equation allows one to make use of the well-
known methods developed in quantum mechanics for this
problem.
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