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The simplest example of a reacting polymer system is studied, that of a single chain with reacting
end groups. The long-time cyclization rate is calculated systematically using renormalization-group
methods. Several types of single-chain dynamics are treated, with and without hydrodynamical and
excluded-volume interactions. The hydrodynamical cases ("non-free-draining") describe cyclization
in dilute polymer solutions. For free-draining polymers we find "diffusion-controlled" behavior for
long chains: The ratio of the reaction rate to the longest relaxation rate of the unperturbed polymer
is a universal constant independent of the chemistry of the reacting ends. For non-free-draining
models the analogous ratio vanishes to order e (@=4—d). In good solvents (hydrodynamics plus ex-
cluded volume) we predict that a "mass action" law holds asymptotically: The molecular weight
dependence of the reaction rate is that of the probability that the chain ends are together in equilib-
rium. In all cases, the asymptotic behavior, either diffusion controlled or mass action, is determined
by the class of dynamics and is independent of the reactivity of the end groups.

I. INTRODUCTION

The motivations for the study of intramolecular reac-
tions in polymers fall into two broad categories. Firstly,
such reactions occur in a wide variety of reacting poly-
mer systems, for example, during the formation of net-
works' (gels, rubbers) and other polymerization pro-
cesses. Secondly, the experimental measurement of
intramolecular reaction rates has provided a probe of the
internal dynamics of a polymer molecule. '

In the present work we study the simplest reacting po-
lymer system, namely, a single polymer chain with react-
ing groups attached to its ends (cyclization). This system
has been previously considered in the works of Wilemski
and Fixman, and Doi. ' The majority of the experi-
ments probing polymer dynamics have involved cycliza-
tion in dilute solution;" the main results of this paper
concern this case. In addition, results are presented for
the "Rouse model"' which is relevant to polymer melts
below the entanglement threshold. '

The first theoretical attempt to understand cyclization
from first principles was (to our knowledge) that of
Wilemski and Fixman whose model is introduced in Sec.
II. To extract the cyclization rate k they employed a clo-
sure approximation and deduced that for the Rouse mod-
el, k scales as the inverse of the longest relaxation time ~
of the polymer. This model, within the closure approxi-
mation, was further investigated by Doi' who confirmed
k -~ ' with a prefactor independent of the capture ra-
dius (defined as the maximum separation at which the
end groups may react). For 0 solvents Doi incorporated
preaveraged hydrodynamics and found logarithmic

corrections involving the capture radius.
The prevailing view which has emerged from the above

and other theoretical studies' and which has character-
ized the spirit in which experimental studies' have been
performed is that k -~ ' in the diffusion-controlled limit
in which the reactive groups react on every encounter.

The purpose of this paper is to present a study of cycli-
zation that is free of any ad hoc assumptions (a summary
of our results has appeared elsewhere' ), neither do we
use the closure approximation nor do we preaverage hy-
drodynamic interactions. The latter are incorporated
into our model, together with excluded-volume effects, in
a systematic fashion for the first time. The essential point
of our treatment is that by exploiting the fact that for
d )4 space is explored noncompactly' and reaction rates
obey mean-field "laws of mass action, " we are able to ap-
ply the renormalization group (and e-expansion tech-
nique).

For the cases of the Rouse model and Rouse model
plus excluded volume we will find k -~ ' with a univer-
sal prefactor for long chains which is independent of the
details of the reaction. Adding hydrodynamic interaction
to the Rouse description we obtain a result qualitatively
similar to Doi s: k scales as the inverse relaxation time
with a logarithmic correction. Perhaps the most surpris-
ing result of the present work is for Rouse plus hydro-
dynamics plus excluded volume (describing chains in
good solvents) for which we will find k does not scale as

' but rather as the equilibrium probability that the
ends are in contact (law of mass action). This implies a
different molecular weight dependence of k than hitherto
assumed and motivates further careful experiments.
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The structure of this paper is as follows. Section II de-
scribes the models we use. Section III is a derivation of
the bare perturbation theory for reaction rates. In Sec.
IV we develop the renorrnalized perturbation theory and
renormalization-group equations for reaction rates (Sec.
IV A deals with the free draining case, Sec. IV 8 with the
non-free-draining case). We present conclusions and a
summary in Sec. V.

II. THE MODEL

We define the model of the cyclizing polymer in d di-
mensions by the following Fokker-Planck type equation

for the probability P({cj, t) of a configuration {cj at
time t:

as =FP +u 5(c (N )
—c (0)) P .

The configuration {cj
—=c(r) is a vector valued function

specifying the position of the ~h element of the chain,
0~~ No where No is the bare contour length. The sink
term in Eq. (1) selects configurations whose ends are to-
gether (uo is the bare "reaction rate"). F is the diffusion
operator' including the effect of hydrodynamics through
the Oseen tensor T & and excluded volume through the
Edwards Hamiltonian H. Explicitly,

Xo
F = f

deaf

dr'g 5(r r')+—T p(c(r) c(r'))—
o o p5c (r) go

5 5H
5cp(r') Scg(r')

(2)

e'" ", H =Ho+HI, Ho = ' f —d r[c(~)]
0

T &(x)=(2') f d k
zgk

No
HI=(eo/2) f dr f dr'5(c(r) c(r'))—.

0 0

(3)

Here go and eo are the bare friction and excluded-volume
coupling constants, respectively, and g is the fluid viscos-
ity.

The model equation (1) is a particular realization of the
class of models first introduced by Wilernski and Fixman
who considered a general sink term. We choose the 6
function as the sink firstly because we believe it to be in
the same universality class as other choices of sink and
secondly for mathematical convenience in that it facili-
tates the use of field-theoretic methods. Note the parallel
with the self-avoiding polymer problem: the Edwards
Hamiltonian [see Eq. (3)], which involves 5-function in-

teractions, is believed to belong to a large universality
class of Harniltonians involving other types of interac-
tions (including hard core).

We now turn to a preliminary study of the dimensional
analysis of the model. Assigning ~, the contour variable,
a dimension l, and equating the dimensions of the terms
in the Fokker-Planck equation we see that uogo has the
dimension 1 ~ . We view (and this is borne out by sub-
sequent calculation) uogo as a natural coupling constant.
We note that uogo is dimensionless if d =4. Thus dimen-
sional analysis suggests the efficacy of an expansion
around four dimensions, i.e., the e expansion where
a=4 —d.

III. DERIVATION OF BARE SERIES
FOR REACTION RATES

lymer without a sink in terms of which the solution to
Eq. (1) is

P({cj,t)=P, ({cj)
+ f dt' f d {c'jG({c'j,{cj, t t')—

X u o5(c'(0) c'(No ))—
XP({c'j,t') .

In the case where the initial distribution differs from
the equilibrium one P,q({cj), Eq. (4) is valid only for
large t (which is our interest here). Integrating Eq. (1)
over all configurations {cj and noting that F conserves
normalization, we have

dN =uo f d {cj5(c(0)—c(No))P({cj, t) .
dt

We remark at this stage that Wilemski and Fixrnan's
closure approximation amounted to approximating

5(c(0)—c (No ) )P =5(c (0)—c (No ) )P,q v(t),

where the time-dependent factor v(t) is determined self-
consistently. Let us now introduce the transient part o.

of the Green's function

G({c'j,{cj,t)=—o({c'j,{cj,t)+P, ({cj).

With the help of Eq. (5) we express Eq. (4) in terms of o
and find

P({cj, t)=P,q({cj )N(t)

+uo f 'dt' f d {c'jo({c'j,{cj, t t')—
X 5( c'(0)—c'(No ) )

XP({c'j,t') .

The quantity of greatest experimental interest is the
long-time reaction rate k, where N(t)-e "' and N(t) is
the fraction of chains in the ensemble which have not
reacted after time t.

The first step in calculating k is to derive the bare per-
turbation series in the coupling constant uo. We intro-
duce the Green's function G({c'j,{cj, t t') for the po-—



5952 BARRY FRIEDMAN AND BEN O'SHAUGHNESSY 40

Solving the Laplace transform of Eq. (6) in terms of
P ( I c j ), where the subscript p denotes the Laplace trans-
form variable, and substituting the latter into the Laplace
transform of Eq. (5) we obtain (X denotes Laplace trans-
form)

where p, is the probability to be looped in equilibrium.
Defining R, —=c(0, t) —c(N~, t) to be the end-to-end

vector at time t and using the definition of o. —=G —P, we
find that Eq. (9) can be rewritten:

where

dN
dt

=z iV (7a)
—k=uo(5(R))+u02 f dt[(5(Ro)5(R, ))

0

—( 5(R ) ) ]+0 ( u 0 ) . (10)

and

z = uo f d [c j 5(c(0)—c (No) )

X[(I—uoO~) 'P, ](Icj), (7b)

k+z q=O . (8)

Expanding the operator (I —uoO )
' in Eq. (7b) yields a

series for z . Inserting this into Eq. (8) and solving Eq.
(8) for k in powers of uo, we find to second order

—k =uop, +uo f dt fd{cjd Ic'jP, (Ic'j )

X 5(c '(0) c'(No ))—
Xo(Ic'j, Ic j, t)

X5(c(0)—c(NO)) . (9)

0 ( [c'j, Ic j )—:5(c'(0)—c'(No))o (Ic'j, Ic j ) . (7c)

We now assume that the long-time behavior is ex-
ponential: N(t) —e "'. It then follows that k is minus
the smallest pole of N . From Eq. (7a) N =1/(p —z ),
so k is the smallest root of the equation

In Eq. (10) all averages refer to a polymer without a
sink; the second order term is the Anite part of the time
integral of the "return probability" that an initially
looped polymer is looped again at time t. To obtain k to
second order in all coupling constants the average in the
first term in Eq. (10) must be evaluated to first order in e~
(statics being unaffected by hydrodynamics) while the
average in the second term is that of the Rouse model
[obtained by setting eo = T &=0 in Eqs. (2) and (3)].

Considering first the static quantity (5(R) ) we have

(5(R)) = f d tc je 5(c(0) c(NO))—f d Ic je

= (5(r) ),+ (5(r) ),(H, ),
—(H15(R) )o+O(eo ),

where Ht is defined in Eq. (3), we have expanded to first
order in eo and

(. )0=—fd[cje j j fdIcje . (12)

By use of the static Green's function for a Gaussian
chain, it is straightforward to obtain

(2ir )'"
eO 1VO No 1

(HI5(r) )o= d7d7'
(2~) o „,, o

I [N, —(r —r')](r —r') j'" (13)

The integrals in Eq. (13) diverge like 1/e (where e =4 —d )

as d approaches 4. Noting that (5(R) )o is simply the
equilibrium loop probability for a Gaussian chain of
length No, Eq. (13) in Eq. (11) yields to first order in eo:

(5(R))=
(2~NO )"

6eoXo

(2~)
—+ 'T„, (14)

where

g(k, l)=(1/2d)[(k +l )(R )o+2(k l)(RO.R, )0] . (15)

where T„, denotes terms depending nonsingularly on di-
mension d.

Turning to the second term in Eq. (11) we find

(5(R )5(R )) = d"k d l e
1

n n nd /2

Q d "x;exp —g a,"x,x
(det[a, j )

by setting n =2 a
&& =a2z =(R z)o/2d,= (R )j'(t)/2d. Here f(t) is the dimensionless correla-

tion function for Rouse dynamics

(16)

(R, .R, )f(t)= 8 ~ e

odd p

Pp t / $0NO

(17)

To obtain Eq. (15) the 5 functions were expressed in in-
tegral form and we have used the fact that under the
averaging defined by Eq. (12) R, is a Gaussian variable.
The integral in Eq. 15 can be obtained from the general
result (valid when a,"=a, ):
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f dt[(5(R )5(R, )) —(5(R))']
0

kpNo
dt

(2wNp)" w' o [1—f '(r)]'"
(18)

where we define f (rr tlgpNp)—=f(t). From Eq. (17) we
find the small-time behavior off (t) is given by

4t ~/2f(t)-1—
3/2 (19)

g~ 2 —d —2 —d /42 —( 5d /2 ) + 2
1 / + cZ-

ns (20)

Defining dimensionless coupling constants wo ——upL'/ go,
and ep=epL'/, and substituting Eqs. (14) and (20) into
Eq. (10) we obtain finally for the bare series

e/2 E
N0 o B

gp L e
E

wpep Np+
ko

D—+E

where

)(e/2) —2

4(5e/4 j —4 ( e/4) —3
7

D =6(2vr )'

(21)

and C and E are dimensionless and depend nonsingularly
on spatial dimension. L is a phenomenological length
scale. '

We remark that —k is synonymous with the ground-
state eigenvalue (which of course vanished in the sink-
free case), and we have also obtained the series to second
order, Eq. (21), by using the methods of standard
quantum-mechanical perturbation theory.

IV. RENORMALIZED PERTURBATION THEORY
FOR REACTION RATES

In this section we proceed to renormalize the bare
series for the reaction rate k [Eq. (21)], to derive the
renormalization-group equations for k and to obtain the
solutions of the latter. In IV A we consider cases with no
hydrodynamic interaction [T &=0 in Eq. (2)], termed
"free-draining" cases in the polymer literature. There are
two such cases; Rouse model plus sink and Rouse model
plus excluded volume plus sink. In Sec. IV 8 we consider
the so-called non-free-draining cases (hydrodynamic in-
teraction included), namely, the "Zimm" model' plus
sink [ep =0 in Eq. (3)] and the Zimm model plus excluded
volume plus sink.

Using this result in Eq. (18) enables us to determine the
singular (at d =4) part of the expression in Eq. (18)
which again diverges like 1/e:

J dr[(5(R p)5(R, ))p —(5(R))()]
0

In the folioing subsections we shall make a number of
renormalization assumptions. These assumptions are of
two types. The first type of assumption is whether a par-
ticular model is renormalizable. Physically, what we are
assuming by renormalizability is that the model [Eqs. (1),
(2), and (3)] is a good coarse-grain description of cycliza-
tion. The detailed calculations in the following are at
least consistent with this assumption. We should stress
that such an assumption is almost universal in renormal-
ization group calculations, except for the small class of
models in which perturbative renormalizability may actu-
ally be proven.

The second type of assumption concerns the manner in
which the renormalization is done. Here the main as-
sumption is that the sink does not change the renormal-
ization of any parameter present in the sink-free case (for
example Np is renormalized exactly in the same way as in
the sink-free case). We view this assumption as being
reasonable also. This assumption is verified to the order
to which we calculate. More generally, we find it difficult
to see how a perturbation restricted to the chain ends
(i.e., the sink is at the end of the chain) should change the
renormalization of sink-free parameters.

The calculations in the following sections are essential-
ly straightforward application of direct renormalization
methods for polymers;' we have chosen to make all as-
sumptions we have made explicit for the sake of com-
pleteness.

e/2
wp No—kNp=A
0o

wp Np+
0o

B—+C (22)

We now renormalize the theory in the standard way, re-
placing bare quantities by renormalized quantities which
are chosen to eliminate the singularities order by order in
the bare perturbation series. In principle, there are four
candidates for renormalization: k, Np, go, and wp. How-
ever, we can immediately deduce that k is not renormal-
ized, since the reaction rate is a directly observable exper-
imental quantity. ' In fact, it transpires that to first or-
der in wp neither N p nor go are renormalized (i.e.,

Np =N gp:g) as can be seen from the following argu-
ment. Since the sink introduces no external forces the
diffusion coefficient D is equal to the value for the Rouse
model without sink, namely' D = 1/gpNo. Since
( gpNp ):( (ZP'Z)v ) ', where go= gZ~ and Np =NZ~,
and there are no singularities in D to be absorbed, it fol-
lows that Z~Z& must contain no singularities. However,
we are employing a minimal subtraction scheme and
hence Z&Z&. = 1.

We next consider the perturbation of certain faster re-
laxation rates by the sink. Let A, , denote the eigenvalue
of the eigenfunction in which the (p, a)th Rouse model is
in the first excited state and all other modes are in the
ground state. ' A straightforward calculation shows that
to first order in wp the perturbation by the sink of A,

&
is

A. Free-draining models

We first consider the Rouse model plus sink case for
which the bare perturbation series [co=0 in Eq. (21)]
reads
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(23)

whence 3 i
= —(B/3 )(1/e) (where 2 and 8 are evalu-

ated at d =4). The explicit value of 8/3 is 1/64vr, so

1 21
lDO =W ~ + +Ho

64m e
(24)

Having determined the renormalization constants for
the Rouse plus sink model to lowest order we proceed to
explore the consequences of renormalizability. Assuming
the nonrenormalization of go and No to all orders (go=/,
No=N) we obtain the following renormalization-group
equation by following the standard procedure

L +P(w) =0,
BL Bw

(25)

where P(w)=L(t}w/t}L)
& z and wo=woL ' . Re-

o go, No

call that the physical meaning of the renormalization-
group equation is an assertion of the existence of macro-
scopic relationships which are independent of microscop-
ic details.

To investigate the large-N behavior of the model we
study (25) at the fixed-point value' of w—:w* [i.e. , w
such that p(w)=0]. At the fixed point L (Bk/BL) =0, so
k is independent of L, i.e., we may write k =f (N, g). A
standard argument then yields that k has a 1/N depen-
dence on N. For completeness we recall this argument.
From our initial Fokker-Planck equation [Eqs. (1) and
(2)] we see there are two dimensions in the problem,
namely a contour "length" scale [r]= l ([ ] means dimen-
sion) and a time scale [t]=—t. It then follows that
[g]= t /1 and [k]= 1/t. Let us now rescale t by C, so
k =C,f(N, C, g), and then 1 by C2 so k =C,f[CzN,
(Ci /Cz )g]. By choosing C2 = 1/N and Ci = I /gN we
see k =(1/gN )f (1, 1). That is, the existence of a fixed
point plus no renormalization of N and g implies k scales
like 1/N . Moreover, the above argument shows that the
ratio of k to the longest relaxation rate for the unper-
turbed Rouse chain (~ /(N ) is a universal ratio for very
long chains under the same assumptions since f is a
universal function. Doi' had previously derived that k
scales like 1/N with the prefactor independent of the
size of the reaction region (for very long chains) within
the closure approximation of Wilemski and Fixman.

It is important to note that we have thus far only
verified the nonrenormalization of go and No to first or-

nonsingular. Since '

=sr p /(goNO),

on replacing $0N0 by gN we find that No is not renormal-
ized to first order in Mo Consequently to first order in
wo neither No nor go are renormalized.

To determine the renormalization of wo to lowest non-
trivial order we return to the expression Eq. (22) for the
reaction rate. Assuming wo=m+ A&w +%Ho, where2

'THo denotes higher-order terms, we substitute this ex-
pression in (22) to determine the coefficient A, . To elimi-
nate the singularity in the reaction rate requires

k = 16m/vr(N (26)

From Eq. (26) we see that to order e the ratio of k to the
longest relaxation rate for the unperturbed Rouse chain is
16@/~ . At @=1, this ratio equals approximately 0.52.
Wilemski and Fixman have numerically evaluated this ra-
tio to be =0.46 in the closure approximation for the
choice of the sink function S where immediate reaction
occurs when the reacting groups are closer than some dis-
tance b. To our knowledge, no systematic experimental
study of the dependence of k on molecular weight has
been performed yet in melts and since our theory is ap-
plicable only to long chains, it seems unlikely to be
directly applicable due to the neglect of entanglements.
However, Sakata and Doi have performed numerical
simulations of Rouse chains with reacting groups on the
ends. These results suggest that k goes as 1/N; howev-
er, the chains in the simulation were apparently too short
to test the value and universality of the above-mentioned
ratio.

Finally, we present a crossover result (in the molecular
weight) for the reaction rate k. By solving the
renormalization-group equation [Eq. (25)] for finite
chains (that is, wow") and manipulating the perturba-
tion series for k in the standard way' (see Appendix A
for a similar calculation) we obtain the following cross-
over result to order e:

X 16 e
1+X ~ N'g

(27)

where
' e/2

NX=
L

This result interpolates between the weak-sink small
molecular weight limit (X «1) and the strong-sink high
molecular weight limit (X))1). In the former limit the
N " dependence is that of first-order perturbation
theory in which the rate is proportional to the equilibri-

der in uo. We believe, however, this result result holds to
all orders in wo. Indeed, we have explicitly calculated k
to order wo (details are planned to be presented else-
where ) and find the theory is only renormalizable to
this order provided go and No are not renormalized to
second order in wo. Note that if one of No, go is not re-
normalized the other is not renormalized since the com-
bination I/$0NO is not renormalized. We now use the re-
lationship between w and wo to calculate w * to first order
in e. We use the chain rule to calculate' p(w) and find to
second order in w P(w)=(w/128rr)(w —w*) where
w*= —64~a. Thus p(w) has two zeros, w, '=0 and
ur*= —64m@. From a crossover result we will present
shortly, we will see that w'= —64m.e is the stable zero,
namely, no matter which (negative) value of w we "start"
with, for a sufficiently long chain we are driven to an
"efFective" theory with m = —64~@. Substituting this
fixed-point value into the renormalized series for k [i.e. ,
Eq. (22) with w substituted for wo according to Eq. (24)]
yields the reaction rate to O(e) for N~ oo:
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um probability of the ends being together p, . The X))1

limit is our asymptotic result [Eq. (26)]. Note that Eq.
(27) is valid only for w' & w & 0.

We now consider the addition of excluded volume, i.e.,
the case of Rouse plus excluded volume plus sink. This
case is conceptually similar to the previous case, Rouse
plus sink.

The bare perturbation theory for k (to second order) is
the full expression, Eq. (21). There are again potentially
three quantities to renormalize: No, go, and wo. To first
order we can show that the renormalization of No and go
is the same as for the dynamics of a sink-free Rouse chain
with excluded volume, that is,

y((e)=L
BlnZ&

BL Pp Wp Np

Note that wo=uogo. We have assumed P„y~, and y&
are independent of w (see below).

For simplicity, we will only consider the solutions of
this equation in the limit of strong excluded volume,
namely, e =e' where P, (e')=0. Furthermore, we shall
assume that eo is renormalized in exactly the same way as
in the sink-free case; in particular, e' equals its static
fixed point value. In the limit of very long chains (e =e*,
w =w ') Eq. (30) simplifies to

e
No =N 1 — + THo =NZ-

27T E

L +y~(e')N +y((e')g k =0 .
BL

(31)

1+
2

+ %Ho) =0Z
2& E

(28)

wo=w 1+ 1 e—
7T E

1 1 ~++HO (29)

We show this by noting first that the difFusion constant
D equals I/goNO (internal forces "added" by excluded
volume do not afFect the motion of the center of mass) so
D is not renormalized and Z&Z&=1. As before, A, ]p
does not pick up any singularities from the sink term to
first order so Z& is determined by the perturbation of

due to excluded volume only. We thus conclude Zz
and Z& are the same as the no sink case to lowest non-
trivial order. Substituting into Eq. (20) No =Z~N,
go=Z&g, and eo=e where e is the renormalized
excluded-volume parameter [since eo appears only in the
factor eowo we only need eo(e) to lowest order] we deter-
mine

We showed above that No and go are renormalized exact-
ly as for the problem without sink, i.e., Rouse model plus
excluded volume, to first order. If we assume this is true
to all orders Eq. (31) plus ordinary dimensional analysis
then implies that

N
—I —2vg —1L —1L 2v

( 1 (32)

where v is the static exponent (i.e., (R ) -N ) and
g((,N) is a universal function. For a derivation of Eq.
(32) see Appendix A where Eq. (30) is also solved for gen-
eral wow *. Under the above assumptions the ratio of k
to the slowest nonsink relaxation rate ~ ' (where
~-N', z =2+1/v) is again universal. This ratio should
be accessible to computer simulations, though probably
not to experiment.

We now turn to the determination of w * to order e for
which we must calculate P (e', w). It is straightforward
(see Oono' for analogous computations) to show from
Eq. (29) that

Assuming renormalizability we now write down a
renormalization-group equation for k (derived in the
standard way

P (e, w)=(e/2)w 1+ —w—1 1

64m. e
1

e + THo
7T E

(33)

L +P, (e) +P (e, w)
a a a

+y~(e)N +y~(e)g
~

k =0, (30)

Substituting' e'=m. e/2 determines the two fixed points
w*= —32m' and w,'=0. A crossover analysis similar to
that for the Rouse plus sink case shows w * is the stable
fixed point (see Appendix A). Substituting for eo(e) and
wo(w) into Eq. (21) yields the renormalized series for k.
Setting e =e ' we obtain

where w 1
2++HO.

(2m ) gN
(34a)

P, (e)=L
BL 2p ~ Lvp ~ Xp ~ gp

Using the fixed-point value w =w* gives the asymptotic
(N~ ~ ) value of k to 0(e):

k =8m/(mgN ) . . (34b)

aIld

13 (e, w)=L Bw

, la, X

7

Vp Wp Xp gp

Since to zeroth order in e the relaxation rate equals the
Rouse value of n /gN, Eq. 34b implies the ratio of k to
the longest relaxation rate without sink equals 8e/m to
order e.

To understand the above results for the two free-
draining cases note for free-draining models the dynami-
cal expoIlerlt is z =2+1/v. Whenis d )4, v=1/2 so
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that the volume explored after time t, =t ', increases
more rapidly than t; this is noncompact exploration and
we expect that the sink is a weak perturbation and k
obeys a mean field "law of mass action" (LMA), i.e. , is
proportional to the equilibrium probability that the reac-
tive groups are together, namely, p, of Eq. (9). Corre-
spondingly tLI*=O is stable for d )4. When d &4 an ar-
gument based on hyperscaling (presented below) shows
that d/z & 1 and the exploration is compact. The sink is
now a relevant perturbation and the nonzero fixed point
becomes stable. From the results presented above the
corresponding behavior is diffusion-controlled (DC) in
that k scales as the longest relaxation rate. To show that
d /z & 1 for d & 4 in free-draining cases, first note that the
hyperscaling relation' implies v=(2 —a)ld where v is
defined as before and a in the case of critical phenomena
is the specific heat exponent. For polymers, a) 0 for
d ~4 so this means v~2/d. Secondly, we note that
2 —4/d ~ 1 for O~d &4, so (2/d)(d —2) ~ l. It follows
that v(d —2) ~ 1, i.e., d ~ 1/v+2 which translates to
d ~z.

B. Non-free-draining models

In this section the two non-free-draining cases will be
treated: The Zimm model plus sink (the Zimm model' is
defined to be the Rouse model plus hydrodynamics) and
the Zimm model plus excluded volume plus sink. These
models describe dilute chains in 6I solvents and good sol-
vents respectively. Up to the point where we determine
the fixed points we will handle these cases simultaneous-
ly. The starting point is the expression for the bare reac-
tion rate Eq. (21). Note that the bare reaction rate (to
second order) is the same for the free-draining and the
non-free-draining cases; differences arise only through re-
normalization. Defining go—:(jolgo)L ', Eq. (21) is
rewritten:

kNo =wo AN—o /(/oslo)

+(woL ' 'No/goih)(B/e+C)

+ ( woeoL '
No /gorjo)(D /e+ E),

where 3, B, C, D, and E are defined as before [see Eq.
(21)]. go is a dimensionless coupling constant which mea-
sures the strength of hydrodynamic interaction.

Before proceeding to renormalize Eq. (35), let us pause
to anticipate results for the non-free-draining cases. For
d )4 the picture is as before: space is explored noncom-
pactly since' z =4 and we will find that w'=0 is stable
as expected. But for d & 4 since z =d, we see that the
exploration is marginal; one cannot a priori determine
which of the two fixed points, LMA or DC will be stable.
This geometric aspect is rejected by the fact that the
coupling constant uo is now dimensionless independent of
spatial dimension [as is seen by dimensionally analyzing
Eq. (2) for T &%0]. Consequently, there is an arbitrari-
ness in the choice of the coupling constant corresponding
to the sink; we are guided to the choice wo=jouoL' by
the free-draining calculation and by the expectation that

a term I/go should naturally factor out of the bare long-
est relaxation rate as it does in ordinary polymer hydro-
dynamics. '

We now turn to the renormalization of the model.
Since go is not renormalized in polymer hydrodynamics'
there are four candidates for renormalization: wo, eo go,
and Xo. We shall assume the renormalization of static
quantities is not affected by the sink. Thus'

eo =e 1+ 2 e+'r„o
E77

(36)

3 11+ g+ i e+ THo
(8ir e) (2~ e)

(37)

To show this, we have examined the perturbation to first
order of A, , by the sink, which we find to be nonsingu-
lar. Hence the renormalization of go is determined by the
singularities arising from hydrodynamics and excluded
volume (to this order) and thus is left unchanged from the
sink-free value. (Note that the first-order calculation for

determines the renormalization of go to second or-
der, just as it does in ordinary polymer hydrodynam-
ics. '

) We thus need only determine the renormalization
of wo. Substituting the form wo=w(1+C, w+C2e
+C&g+ 'THo) into Eq. (35) [along with the expressions
for eo, No, and go in terms of renormalized quantities, see
Eqs. (36) and (37)] and choosing C, , C2, and C& to elimi-
nate the poles in e, we find C i

= —I /(64vre ),
Cz = I/(ir e), and C& =3/(8' e).

Assuming the renormalizability of the model we write
down the following renormalization-group equation (de-
rived in the standard way):

L +P, (e) +P (e, w, g) +P~(e, g)
a a a
Be

'
Bur

+@~(e) k =0,a
BX

(38)

where P, (e) =L(Be/BL), P&(e, g):L(d(ldL ) &,—and
0 0' 0

y~(e) =L(8 lnZ~IBL ) are the same as in ordinary po-
0

lymer hydrodynamics' and

P (e, w, g)=L(Bw/BL),

(we have used an abbreviated notation for the quantities
which are fixed during differentiation).

We wi11 not discuss the consequences of the existence
of a nontrivial fixed point and our renormalization pro-
cedure since the existence of a physical nontrivial fixed
point is a priori unclear. (The sink for d 4 is always a
"marginal" perturbation. ) We turn then to a determina-

e
No =NZ~, Z~ = 1 —

2
+ 'THp .2' 6

Under these assumptions one can show that the renor-
malization of go is not affected by the sink to second or-
der in the coupling constants, that is, '
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P =(E/2)w(1 —C, w —Cze —C3(), (39)

with C&, C2, and C3 defined as before. Considering firstly
the Zimm case we find at the nondraining, Gaussian fixed
point' (e*=0 g'=8~ e/3) that P =w /(128m. ). That
is, to order e, there is a double zero at tU,

*=0 (the P func-
tion has no nontrivial fixed point). In the second case,
Zimm plus excluded volume, we find at the nondraining
self-avoiding fixed point' (e"=m e/2, g" =2m. e) that

tion of the fixed points to lowest nontrivial order. From
the definition of P we find (for an analogous calculation
see Ref. 18)

as expected from the stability of the fixed point w*=0.
The present experimental data cannot quite distinguish
between this result and the diffusion controlled prediction
that k should scale as the inverse relaxation time,
k-N

To close this section we make the final obvious (at this
point) though important comment that in non-free-
draining cases the ratio of the unperturbed slowest relax-
ation rate to the reaction rate is, to order e, 0. We con-
jecture the preceding statement to be true to every order
in e' (within the Oseen tensor description of hydrodynam-
ics. )

p(w) = (tU' —w),128~ (39a)
V. CONCLUSIONS

where w*=16me. Here the P function has a nontrivial
zero but this zero is positive (corresponding to creation of
probability) and thus unphysical. The physical fixed
point again vanishes: w,*=0. Therefore to understand
the large N behavior of k we must study crossover behav-
ior describing the approach of w to w,

*=0.
In the Zimm case, solving the renormalization-group

equation for finite w (of order e) and manipulating' the
perturbation series for k we obtain (see Appendix B)

12 1
(40)

k =(2/m il)(L/N)""L i [I/(X —I)], (41)

where

' ev/4

where X = 128ir/w+ ln(L /N).
Although w, X, and N are not universal parameters,

the functional relationship given above is universal. If we
assume that w is only weakly dependent on N (we expect
a leading N-independent term but we stress that this is an
assumption concerning a nonuniversal quantity), then
one has k-N " /ln(N/L) as N~oo. Note this is
qualitatively similar to Doi's result. ' We can explain ex-
perimental results in 0 solvents by assuming w is small
and N is relatively small (but large enough so the model
makes sense). In this case (in three dimensions) accord-
ing to Eq. (40) k scales as N with a prefactor strongly
dependent on the reactive end groups. This appears to be
what is observed experimentally. '

In the good solvent case, solving the renormalization-
group equation for finite w and manipulating the pertur-
bation series for k we find (see Appendix C)

We have developed a direct renormalization scheme to
calculate polymer cyclization rates k. For free-draining
models we find that the ratio of k to the unperturbed re-
laxation rate for long chains in universal for d &4: Un-
der the renormalization group, the models are driven to
diffusion-controlled behavior in a universal manner in-
dependently of the chemistry of the reacting ends (in par-
ticular, this universality is not restricted to the case where
reaction occurs on every encounter of the end groups).
When hydrodynamics is included we find that for d &4
the stable fixed-point value of the sink coupling constant
vanishes to order e. Intuitively, we expect that this is
true to all orders. In consequence, the large-N behavior
of k is that predicted by mean-field theory with logarith-
mic corrections in the case of 0 solvents.

Perhaps the most surprising and significant outcome of
this work is the prediction that for dilute polymers in
good solvents the cyclization rate will not scale as the in-
verse relaxation time of the unperturbed chain (i.e.,
without reactive end groups). Rather, k is predicted to
scale as the equilibrium probability that the end groups
are in contact (the mean-field result). The physical origin
of this result lies in the existence of the "correlation
hole", ' ' namely, the reduced probability of chain end
contact when excluded-volume interactions are irnpor-
tant (as in good solvents). As discussed in the text, for
good solvents the exploration is marginal for d &4; the
effect of the correlation hole is to "tip the balance" in the
noncompact mean-field direction. To appreciate why this
happens, consider the number of "collisions" between
two chain ends in one polymer relaxation time ~, which
we name Z. We imagine that all reactions are "switched
off" and we define the chain "ends" to be the terminal
"blobs" containing L units with blob relaxation time tz .
For a chain of N units, we have

NX=
L w = 167TE Z=(~/tz )(N/L)

Equation (41) implies k-N ' +' ' for large N, with
a nonuniversal prefactor. Since' v= —,'(1+@/8+ . )

we see that to order e this is k-p, where p, is the re-
normalized equilibrium loop probability' p, -N
and g =e/4+ . . - the exponent describing the correla-
tion hole. ' ' ' Thus k has the law of mass action form

which is the product of the number of "steps" in one re-
laxation time r (each step lasting tz ) with the fraction of
these steps for which the end blobs are in contact. Ergo-
dicity of the dynamics ensures that this latter fraction is
determined by the correlation hole exponent g describing
the equilibrium statistics of the chain of N/L blobs.
Thus Z=(N/L) " ~'. Switching on the reactivity of
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the end blobs once again, this leads to a mean-field esti-
mate of the reaction rate as k=ql (tL/r)Z where qL is
the probability per unit time of reaction when the blobs
overlap. This estimate is only sensible if the total proba-
bility of reaction in the time w is small, i.e., if Zqr tl =k~
is much less than unity. For large N this clearly depends
on the exponent z —d —g. For good solvents z =d, and
since g is positive Z-N is arbitrarily small for large
enough %; the mean-field result is asymptotically valid
and k-Z/r scales as the equilibrium loop probability.
For the Rouse model, on the other hand, z =4 and g =0
whence Z -X '. Thus for d (4 Z becomes very large for
large X, i.e., the number of collisions in ~ becomes very
large. Hence in the time ~ reaction is almost certain and
"diffusion-controlled" behavior is recovered, i.e., k -~
From this discussion it is clear that the criterion govern-
ing the asymptotic form of k involves more than the com-
pactness or otherwise of the exploration. The relevant
criterion is the parameter Z. Depending on the N depen-
dence of Z, k is driven to a diffusion-controlled or mean-
field asymptotic form (regardless of the reactivity of the
end groups}.

ACKNOWLEDGMENTS

We would like to thank Jacob Klein for helpful conver-
sations. One of us (B.F.) thanks the Bantrell Foundation
and the other (B.O'S. ) acknowledges support from the
Weizmann Institute and the U.S. Office of Naval
Research, Grant No. N00014-85-K-0239.

APPENDIX A

In this appendix we derive the solution to the
renormalization-group equation for Rouse plus excluded
volume plus sink, at the excluded volume fixed point. At
the fixed point e =e ' Eq. (30) has the form

Thus a good variable for the solution is

Q =(L/N)"' [(w*—w)/w].
Now we manipulate our first-order result for the reac-

tion rate, Eq. (34a), into the form (A3) assuming
w* ~ w ~ 0. To order e,

w =w*(1+Q)

Substituting (A4) in Eq. (34a) we conclude

k = —w*(1+Q) '(2~) (L g) '(N/L)

(A4)

(A5)

APPENDIX B

In this appendix we solve the renormalization-group
equation for the reaction rate in the case Zimm plus sink,
which reads [Eq. (38)]

L -+P (w, g*) =0,ak , ak
aL '

aw
(81)

in the Gaussian non-free-draining limit [here
g'* = 8m. e/3, p ( w, g* )—:pw (e"=0,w, g =g* ) ]. Equation
(Bl) has the solution

['

dS
k =F Lexp-

w, p(s)
(82)

Note that Eq. (A5) is consistent with the form [Eq. (A3)]
dictated by the renormalization-group equation. In the
small-Q limit this has the form of Eq. (32) and is
equivalent to (to within terms of order e ) Eq. (34A). In
the large-Q limit, assuming that w does not depend
strongly on molecular weight, we find k —N
where g agrees to order e with the exponent describing
the correlation hole (of course, the natural conjecture is
that g is the correlation hole exponent and consequently
k scales as the probability in equilibrium that the ends are
together).

ak ak . ak , ak
L +P (w) +yvN +ygg =0,

aL aw

where we write p (w)—:p (e*,w),
, s~n~~ ZvZc=l

and we call y~ =y*. Equation (Al) has the solution

k =f LN ' r, L(' ",L exp —f~i p (s)

(A 1)
where F is an arbitrary well-behaved function. Recalling
that, to O(e), p(s) =s /128m we have

w d$L exp =Le px(12 ~8w/) . (83)

Rescaling L by C, =1/N, (and since [k]=[L] ~ it fol-
lows that the solution has the form (we work in units
where i)o= 1)

(A2) k =(1/N ~ )F((L/N)exp(128~/w)) . (84)

where f is an arbitrary well-behaved function. From Eq.
(33) with e =e* it follows that

Hence a good variable for the solution is
X =In(L/N)+128m. /w. w is then given by

P (e*,w):—P (w)=[w/(128~}](w —w*) w = 128vr[X —ln(L /N)] (85)

with w* = —32~a.
Consequently, we find the last argument in (A2) equals

L [(w*—w)/w] ~'. We next apply dimensional analysis
to the solution, rescaling the time dimension t by

C, =(L r-) '(N/L) ' r ' where 2v=(I —yv)
and the contour dimension I by Cz =L '+ N . It fol-
lows that k has the form

Substituting (85) into the lowest-order renormalized
perturbation-theory result [which is identical to Eq.
(34a)], we see on substituting the value of g* that

k =12[err N ~ (X —lnL/N)] (86)

Since we are free to add and subtract higher-order terms
we manipulate Eq. (86) into

k =C,f I 1, 1,(N/L) [(w*—w)/w] i'I . (A3) k =12(err N" X) (87)
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consistent with Eq. (B4). (Note in doing this we have as-
sumed w is of order e. )

APPENDIX C

In this appendix we derive the solution for Eq. (38) at
the excluded volume, nondraining fixed point. In this
case the renormalization-group equation is

the dimension of the contour variable by

we conclude the solution has the form

L —
( d /2) + vdN —vdf ( ( N /L )

—2 v[ ( w w e
) /w]

—8/e
)

(C4)

(C5)

L +13 (e*,w, g*) +yet(e*)N =0,, ak , ak
(Cl) where w*=16me. Thus a good variable for the solution

1s

where e*=tr e/2, g* =2tr e.
The solution to (C 1) is

k =f LN, Lexp —f~& /3(s)
(C2)

X =(N/L)'" (w —w*)/w .

To order e (C6) implies

w = —w*( —1+X)

(C6)

(C7)

where y~—=y~(e*). Using the expression for P(s) [Eq.
(39a)] we find

—8/e

Substituting (C7) into the lowest-order renormalized per-
turbation theory result for k (which is identical to Eq.
(34a) since we are working to lowest order) yields

k =f LN, L
w

(C3)
k = —w*( —1+X) 'L' '+ N g* (2m. )

Applying dimensional analysis to Eq. (C3), by rescaling =27J. (L /N) dL d/~(X —1 ) (C8)
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