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Chaos and quantum fluctuations in the Henon-Heiles and four-leg potentials
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Using the idea of the Gaussian eff'ective potential due to Stevenson [Phys. Rev. D 30, 1712
(1984)], the effect of quantum fiuctuations on chaotic behavior is studied in the Henon-Heiles and
four-leg potentials.

I. INTRODUCTION

In this work the effects of quantum fluctuations in the
Henon-Heiles' potential and what we call the four-leg po-
tential are studied using the Gaussian effective potential.
In the papers of Churchhill, Pecelli, and Rod (CPR),
these two potentials were shown to exhibit chaotic behav-
ior for certain restricted energy ranges. They show that
due to their symmetry properties these potentials have
periodic orbits and that, as the result of geometrical con-
ditions, these periodic orbits are also hyperbolic. Also,
by numerically proving the existence of a so-called
"crossing" orbit in these potentials, they showed that the
unstable manifold of one periodic orbit intersects the
stable manifold of another periodic orbit, with the inter-
section being topologically transverse, all this taking
place in a bounded region around the origin. Thus there
is a horseshoe in the dynamics based on these potentials.

The interested reader can find an outline of the CPR
conditions in Appendix A. We will not elaborate on their
results as they are very lengthy and quite abstract. For
more details we refer the reader to their original papers.
In Sec. II the Gaussian effective potential (GEP) will be
reviewed and calculated for the Henon-Heiles potential
and the four-leg potential. We will then plot the GEP for
various values of Planck's constant and for some energy
ranges where crossing orbits are known to exist. It is
found thai the effect of quantum fluctuations is to "close
off" the "legs" of these potentials and result in a potential
that is merely a circle around the origin. In Sec. III we
wi11 examine one of the CPR conditions and study the
effect of quantum fluctuations on this condition. Lastly,
in Sec. IV we draw some conclusions.

(P /2). This means that the ground-state energy is a
function of the depth and the width of the potential wells.
In a symmetric double well, for example, the quantum
fluctuations lower the barrier since the particle can
spread itself out and lower its energy. But because of the
zero-point energy, the energy is higher in the wells. The
idea of Stevenson is to approximate the effective potential
of a system by using Gaussian wave functions. We will
construct this quantity for systems with two spatial de-
grees of freedom. For such a system with Hamiltonian
H (p „pz, xy), we first cotnpute the expectation value of
the energy
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II. THE GAUSSIAN EFFECTIVE POTENTIAL

To examine the effects of quantum fluctuations on the
chaotic behavior in the above potentials we will use the
idea of the Gaussian effective potential due to Steven-
son. In general, the effective potential of a system gives
us a picture of how the quantum fluctuations modify the
classical potential. In particular, for a particle in a po-
tential well(s), the Heisenberg uncertainty principle im-
plies that if the particle's wave function is concentrated
in a small region AX, then the momentum uncertainty is
very large: AP ~h/AX. There is then a large contribu-
tion to the energy arising from the kinetic energy

FIG. 1. Here —'( V& (—'. The top diagram is for h =0; the
bottom for h =0.1.
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&FIHIF &, (2.1) a, [0)n=0 and az IO)n=0 .

where the normalized wave functions F are two-
dimensional Gaussians of the form exp( —x&Q,"xj /2) and
where Q; is a symmetric matrix that in general depends
on the position variables. The Gaussian effective potential
is defined as

The Henon-Heiles Hamiltonian is given by

H =(pi+pz)/2+(x&+xz)/2 —xixz+x
&
l3 . (2.3)

The Gaussian effective potential for the Henon-Heiles
system is given by

VG(x, y)=minn&FIHIF & . (2.2) VG= (x +y )/2 —xy +x /3

—sinp (2A) ' (a, +a, )

cosP (2w) ' (az+az )

p
—(i /2)(211)' (a, —a, )

—(i/2)(2w)' (az —az )

cosp
sinp

cosp —sin

pz sinp cosp

where [a„a,]=1 and [az, az]=1, the expectation value
of H is evaluated in the state IO) n defined by

One will note that this is an ansatz which involves
three parameters: two principal frequencies 0, w, and an
angle p which specifies the orientation of the principal
axes of the wave function with respect to the x,y axes.
The two frequencies and the angle are adjusted to mini-
mize &FIHIF) at each x,y. Using the number represen-
tation

where

+(h /2)Q '+ w ')(x cosP —y sinP)

+(h /4)(Q+ w),

Q=(2x cosP —2y sinP+ I)'~

w =(1—2x cosP+2y sinP)'~

P=( —,
' )arctan( —ylx) .

For the four-leg potential with

H =(p i+pz)/2+(x +y )/2 —x y /2,
the Gaussian effective potential is calculated to be

(2.4)

-2+ ' x
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FICx. 2. Here —' & Vz & —'. The top diagram is for h =0.2; the
bottom for h =0.3.

FIG. 3. Here —' & VG & —'. The top diagram is for h =0.4; the
bottom for h =0.5.
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Q +Q[3+2w ' —8(x cosP+y sinP) ]—4=0, (2.5a)

w +w [3+2Q ' —8( —x sinP+y cosP) ]—4=0 . (2.5b)

These equations must be solved simultaneously to give
Q and m. Unfortunately, when 0 is expressed in terms of
m from Eq. (2.10b) and then inserted into Eq. (2.10b), the
resulting equation for 0 is of fifth degree and therefore
must be solved numerically for each value of x and y.

In Figs. 1 —8 the level curves of VG are plotted for the
Henon-Heiles potential at various energies where cross-
ing orbits are known to exist and for various values of
Planck's constant. In the figures Planck's constant is
scaled to 1. Also, in Fig. 9, VG is plotted for the four-leg

VG= (x +y )/2 —x y /2+(2Q } '+(2w }

—3(4Q) ' —3(4w) ' —(2Qw)

+2Q '(x cosP+y sinP)

+2m '( —x sinP+y cosP) + ( Q+ w ) /4,
where p=arctan(y/x). Q and w are found from the
equations

potential (for Planck's constant equal to 1) at the energy
gap range 1.5 & V& &3 where CPR have shown the ex-
istence of crossing orbits. It is seen that the 2m/3 sym-
metry is preserved by the quantum fluctuations in the
Henon-Heiles potential and the n. /4 symmetry is
preserved by the quantum fluctuations in the four-leg po-
tential. For the Henon-Heiles system in the energy range
—,
' & VG & —,', one observes that the "legs" of the Henon-
Heiles potential "close off" when Planck's constant is
equal to 0.3. One can see this explicitly by calculating
the transverse width w of the Gaussian wave function
from Eq. (2.9). For example, at X=(—1,0) and when
V= —,', the width of the "corrider" is —2&2, while the
transverse width of the wave function is equal to &3.
For the energy range —', & VG & —,

' the legs close o6' when
Planck's constant is equal to 0.7. The closing off' of the
legs is a consequence of the Heisenberg uncertainty prin-
ciple: A wave packet tends to avoid regions where grad V
is large, which here are the regions along the gradient
lines of the potentials.

Also, just as in the Henon-Heiles potential, the quan-
tum fluctuations close off the legs in the four-leg potential
and result in an effective potential that is simply a circle
around the origin.

' x
2

I X
2

FICx. 4. Here 6
& VG & 4. The top diagram is for h =0.8; the

bottom for h =0.9.
FIG. 5. Here —, & VG & 6. The top diagram is for h =0.2; the

bottom for h =0.3.
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FIG. 8. Here —, & VG & —'; h = 1.

FIG. 6. Here —, & VG & 6. The top diagram is for h =0.4; the
bottom for h =0.5.

III. QUANTUM FLUCTUATIONS AND THE
HYPERBOLICITY CONDITIONS

It is also instructive to examine what happens to the
conditions for hyperbolicity of the periodic orbits when
quantum Auctuations are present. From Appendix A one
of the conditions (condition 3) for hyperbolicity of the
periodic orbit is that ( T, V) be less than 0 above the crit-
ical energy. To examine the effect of quantum Auctua-
tions on this quantity define the quantity ( TG, VG ) where
VG is the effective potential and TG = T+ T', where T' is
the vector field defined by

'-- x
2

and where V' is the quantum correction to the classical
potential (VG= V+ V'). Written out in detail one has
that

( TG, VG ) = ( T+ T', V+ V' )

=( T+T', V)+( T+ T', V')

=(T, V)+(T', V)+(T, V')+(T', V')

2

-2

FIG. 7. Here —& VG & 6. The top diagram is for h =0.8; the
bottom for h =0.9. FIG. 9. Here 1.5 & V~ & 6 and h = 1.
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FIG. 13. Diagram illustrating the regions R;.

FIG. 10. Here h =0 and the shaded region is where
( TG, VG) &0.
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FIG. 11. Here h =0. 1 and the shaded region is where

( TG, VG ) & 0.

The calculations needed for obtaining the above quan-
tities are given in Appendix B. If the quantity ( TG, VG )
is less than zero in regions where ( T, V) is not, then we
have a qualitative test of the effects of quantum fluctua-
tions on the hyperbolicity of the periodic orbits. In Figs.
10—13 the regions where ( TG, VG ) is less than zero is
plotted for Planck's constant equal to 0, 0.1, and 0.2. It
is seen that when Planck's constant is equal to 0.1, there
is a region around the origin where ( TG, VG ) is less than
zero. This region around the origin is even larger when
Planck's constant is equal to 0.2. These figures imply
that due to the quantum fluctuations the level curves of V
are becoming concave up in this region where they were
strictly concave down without the quantum fluctuations.
Physically this is because (eff'ectively) a wave packet does
not spill over the corridor in the directions of the gra-
dient lines, but stays near the origin.

We should remark here that we have not plotted the
quantity ( TG, VG ) for values of Planck's constant above
0.2. We have not done this since it is our contention that
although the Gaussian effective potential is not a semi-
classical quantity, the T-vector field is not really a mean-
ingful quantity except for values of Planck's constant
close to zero, since it was defined for a specific geometry.

IV. CONCLUSIONS
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FIG. 12. Here h =0.2 and the shaded region is where
( TG, VG ) & 0.

In both of these cases above it is seen that as Planck's
constant gets closer to 1, the effective potential is a circle
around the origin which is, of course, completely integr-
able. It is in this sense that the quantum fluctuations des-
troy the chaotic behavior in the Henon-Heiles potential
and in the four-leg potential. To be more specific, solving
Newton's equations of motion using the effective poten-
tial

X = —grad V&2

will give the motion of the center x of a Gaussian wave
packet in the Henon-Heiles potential. When VG is a cir-
cle (as it is above) the dynamics of the wave packet is
equivalent to the dynamics of a particle in a classical
two-dimensional harmonic oscillator, which is integrable.

In using the Gaussian effective potential one would
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naturally wonder just how good an approximation it is.
Munoz-Tapia et al. have defined an uncertainty for the
Gaussian effective potential in one dimension. They
demonstrated that the uncertainty of the GEP for the or-
dinary harmonic oscillator vanishes identically, just as
one might expect. Using a generalization of their
definition to two-dimensional potentials the uncertainty
of the GEP in the Henon-Heiles potential was shown to
vanish at the origin and grew larger as one moved away
from the origin. But it is only in the region around the
origin that the CPR theory is applicable, thus giving
more credence to the use of the GEP in the study of
quantum effects in the Henon-Heiles potential. In Ref. 6
GEP was also used to study the evolution of a scalar field
in a time-dependent potential assuming a Robertson-
Walker background spacetime.

Although we have not proved absolutely that chaos is
suppressed by quantum fluctuations in these potentials
(since the GEP is only an approximation to the actual
quantum mechanics), the approach used here shows some
promise to study this very difficult problem. One should
note that much use has been made of the particular
geometry of the potentials to show the existence of chaos
and to study the effects of quantum fluctuations on this
chaos. In this spirit the authors in Ref. 7 studied the
effects of quantum fluctuations on the chaos in the forced
Duf5ng oscillator using a semiclassical generalization of
the Melnikov function. Also in Ref. 9 chaos was shown
to exist in the squeezed double-well potential' using gen-
eralized Melnikov techniques due to Holmes and
Marsden. " The reflection symmetry in the squeezed
double-well potential was used to study the effect of
quantum fluctuations around the instanton path on the
chaotic behavior.

The CPR theory and the Melnikov techniques are both
tools that allow one to show the existence of chaos
analytically. These two developments, however, are only
applicable to a very restricted class of potentials, most
physical systems of interest do not have the geometrical
properties required to use these techniques. Therefore it
is of great interest to find other analytic techniques to
show the existence of chaos.

APPENDIX A: THE CHURCHILL-PECELLI-
ROD THEORY

gradient line of V if for each point p in L then the gra-
dient Vx(p) is parallel to L.

The examples we will study will satisfy the following
geometric hypothesis: There is a critical energy ho such
that for h ) ho the region V(X)( h has a bounded subre-
gion containing the origin which is the union of closed
two-dimensional regions R, , i =1, . . . , N where N ~3
with the following properties.

(1) The boundary of R; consists of two segments E; and
F, , one on each of the distinct branches of the level curve
V=h. Also, there is a line L; connecting an endpoint of
E; with one of F; and two gradient line segments 6; and
H; of the potential V connecting the other endpoints of
E; and F; to the origin.

(2) For iA j, the interior of R, does not intersect the in-
terior of R and the intersection of the boundary of R;
with the boundary of R consists either solely of the ori-
gin, or of one gradient line segment from V =h to the ori-
gin.

(3) All gradient lines of V pass through the origin.
Each region R,- is separated into two components by one
and only one such gradient line, and this line intersects L;
(see Fig. 13).

Now suppose V is a real-valued potential that is third-
order differentiable and is defined on some open region
of the plane. It will be assumed that there is a period-
ic solution II of d X/dt = —Vx with energy
h = ~dXldt~ l2+ V(X) that connects points p and p' on
two distinct branches of the level curve V(X)=h. These
branches will be separated by a gradient line of the poten-
tial. This gradient line will be called A. The branch con-
taining p is called the upper branch and is assumed to be
strictly concave up with respect to A. The branch con-
taining p' is called the lower branch and is assumed to be
strictly concave down with respect to A (see Fig. 14).

The gradient Vx will be assumed to be nonzero off A
and to have values above (below) A in the upper (lower)
half-plane determined by A. All this implies that there is
an ho such that the level curves V(X)=L for ho (L (h
are smooth and have the right convexity properties.
Now parametrize the upper branch of V =h by a third-
order differentiable function f(s) of arclength s with
s =0 at p and increasing to the right ofp. By assumption
on the direction of the gradient, orbits x(t, s) of energy h
that begin at x(O, s)=f(s) on V=h and with velocity
y(O, s)=0 at time t =0 fall toward A and intersect the

Let M be an energy surface for a dynamical system
with a real arialytic Hamiltonian H which is defined on a
four-dimensional real analytic symplectic manifold.
Also, let X be a point in the plane R and let V(X) be a
potential that is differentiable to third order. Let H =h
be the three-manifold I X,Y in R ~H(X, Y)= —,

'
~Y~

+ V(X)=h ) of solutions of energy h of Hamiltonian's
equations

dX
di

=Y, dY/dt = —VX

branch of V = h

nchof V=h

A

Let P(X,Y)=X be the projection of H =h into the X
plane. H =h projects to IX~ V(X) ~ h J. This region will
be referred to as V(X) ~h. A line L in the X plane is a

FICi. 14. The branches of the potential and the periodic orbit
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APPENDIX B: CALCULATION OF TG
FOR THE HENON-HEILES POTENTIAL

For

V'=h ( —,'II+ —,'w)(x cosP —y cosP)+h (II+w)/4

one has

0 —1

1 0 V' V' —1 0

T

Vx. Vy'. 0 V'

V'

FICr. 18. Diagram illustrating the integral curves of T.

in the subregion of Mz —
[ Q ] between and including the

lines A and V=ho in falling from V=h to A (see Fig.
18).

Condition 5. Consider any T curve in the subregion of
MU —

[ Q ) between and including the lines V = ho and A.
Let u be any vector obtained as the unit tangent vector of
an orbit of energy h rising to V =h as it crosses this T
curve. Then (T,Ju) &0 and for d =det(VXX) one must
have

([3d (h —V)+ T( V)]( T,Ju)
—(h —V)(Dz T,Ju) ](X)&0

for all X along the T curve between the point of intersec-
tion and Q.

In Ref. 4 CPR show that these five conditions imply
the foliation hypothesis.

To show the existence of chaotic behavior in the
dynamical systems with these Hamiltonians, it also must
be proven that the dynamical equations of motion possess
what is called by CPR a crossing orbit. In Fig. 19 an illus-
tration of a crossing orbit is given. CPR show that if
such an orbit exists then the unstable manifold of one
periodic orbit intersects the stable manifold of another
topologically transverse. This gives an analog of the
horseshoe phenomena of Smale.

crossin

FIG. 19. Illustration of a crossing orbit.

V' V' —V' V'

The terms in this expression are given by

V' =(E„D+ED„)/2+h (0 +w„)/4,
V'=(E D +ED )/2+h (0 +w )/4,

V» (DE» +E D»+E D +ED )/2

+h(Q» +w „)/4,
V„' = (E„D+ED +E,D +ED„)/2

+h (0„+w„)/4,
V'„= (E„„D+E,D„+E„D +ED, )/2

+h (0„„+w„„)/4,
V' = (E D+E D +E D +ED }/2

Here

+ h ( Q +w» ) /4 .

and

p=arctan( —y/x)2,
D =x cosP —y cosP,

D„=cosP—(xy sinP —y cosP)/2L,

D» =(x sinP+yx cosP)/2L —sinP,

D„=(cosP)„—[2L [y sinP+xy (sinP), ] ]

—4x y sinP/4L y[L (cos—P)„+2y cosP]/2L

D „=(cosP) —5x [L [sinP+y (sinP} ]—2y sinP] /L
—[L [2y cosP+y (cosP) ]+y (cosP) j

—2y cosP /2L

D„=[(L [2x sinP+x (sinP) ]—2x sinP] /2L
—(sinP) +y[L [cosP+(cosP} ]

—2x cosP ] /2L

D =x [L (sinP) —2y sinP] l2L —(sinP)

+x [L [cosP+y (cosP) ]—2y cosP] l2L

E =h (I/II+1/w),
E„=h ( —II, /0 —w„/w ),
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E =h ( —0 /Q —w~/w ),
E„„=h(20„/0 —0„„/0 +2w, /w —w„ /w ),
E = h (2Q /6 —

Q~~ /0 + 2w~ /w —
w~~ /w ),

E „=h(2Q, Q IQ —0 /0 +2w, w jw —w Iw ),
E, =h (2Q„Q~IQ —Q„~IQ +2w„w~/w —w ~Iw ),

D /0 Qy Dy /0 w D /w wy Dy /w

= —0, D /0 +D„ /0,
Qy Oty D /0 +Dy /0

y
0 Dy /0 +D y /Q

Ayy Qy Dy /0 +Dyy /Q

=w D /w —D„/w,
wy wyD /w Dy /w

w~y wx Dy /w D~y /w

wyy wy Dy /w Dyy /w

where

1 =x +y

(cosP)„=—y sinP/2L, (sinP)„=y cosP/2L,

(cosP) =x sinP/2L, (sinP) = —x cosP/2L,

A,, =D /0, , 0 =D /0, ,

w„= —D /w, w = —D /w .
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