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Frequency shifts of spectral lines generated by scattering from space-time Auctuations
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The scattering of a class of partially coherent electromagnetic fields by a model medium whose
dielectric susceptibility fluctuates in space and in time is considered within the accuracy of the first-
order Born approximation. It is shown that if the incident field is a linearly polarized, polychromat-
ic plane wave whose spectrum is a line of Gaussian profile, the spectrum of the scattered light is, in

some cases, approximately Gaussian and is shifted towards the shorter or the longer wavelengths,
depending upon the angle of scattering.

I. INTRODUCTION

It was predicted not long ago that, in general, correla-
tions between source fluctuations produce changes in the
spectrum of the emitted light. ' For radiation from pla-
nar secondary sources this prediction was subsequently
verified by experiment. It was also shown theoretically
that the changes may be such as to produce red shifts or
blue shifts of spectral lines, and this prediction has
also been verified. A similar effect can also be expect-
ed to arise with acoustical waves and was, in fact, ob-
served recently. '

Because of the well-known analogy that exists between
the processes of radiation and scattering, one might ex-
pect that similar phenomena will arise when a po-
lychromatic wave is scattered by a medium whose dielec-
tric susceptibility fluctuates in space and in time. In fact,
it was shown recently" that, in some cases, when a po-
lychromatic plane wave field is scattered from a medium
whose dielectric susceptibility is a static, random func-
tion of position, the spectrum of the scattered light will
have approximately the same profile as the incident light,
but be blue shifted or red shifted, depending upon the an-
gle of scattering.

In the present paper we investigate the scattering,
within the accuracy of the first-order Born approxima-
tion, of a linearly polarized, electromagnetic po-
lychromatic plane wave from a model medium whose
dielectric susceptibility fluctuates both in space and in
time. We utilize the theory developed in the accompany-
ing paper, ' which applies to a very wide class of prob-
lems of this kind. We will show, in particular, that when
the spectrum of the incident field is a line of Gaussian
profile, and the correlation function of the dielectric sus-
ceptibility fluctuations at any two space-time points is a
Gaussian function of the spatial and temporal variables,
the spectrum of the scattered light is approximately also
Gaussian, but is blue shifted or red shifted, depending
upon the angle of scattering. An approximate formula
for the line shift, which emphasizes the roles of the physi-

cal parameters, is developed, and some numerical results
are presented.
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FIG. 1. Notation relating to the scattering geometry. uo and
u are real unit vectors in the direction of propagation of the in-
cident field E",H" and the scattered field E",H"', respectively.
eo is a real unit vector in the direction of polarization of the in-
cident electric field. P is a typical observation point in the far
zone.

II. FORMULATION OF THE PROBLEM

Let us begin with a brief outline of the problem that is
studied in this paper. We consider the scattering of a
fluctuating, polychromatic, linearly polarized electromag-
netic plane wave with the electric field E' (r, t) and mag-
netic field HI'(r, t), propagating in free space in the direc-
tion specified by the real unit vector up. The wave is in-
cident upon a medium which occupies a finite volume V
and whose dielectric susceptibility fluctuates both in
space and in time (see Fig. l). We denote by E"(r,t) and
H"(r, t) the scattered (i.e., total minus incident) electric
and magnetic fields, respectively. We wish to determine
the spectrum of the scattered light in the far zone when
the spectrum of the incident light consists of a single line
of Gaussian profile and the correlation function of the
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dielectric susceptibility fluctuations is a Gaussian func-
tion both in the spatial and temporal variables.

A. The incident field

Let

y "(R T) —=
@")(o,o)

f S(i)( )
' "0

f" S"(~)d~ (2.8)

E"(r t)=eo f A(co)e ' d~,
H' (r, t) =uo X E"(r,t)

(2.1a)

(2.1b)

be the (real' ) electric and magnetic vectors of the in-
cident wave. Here uo is a real unit vector in the direction
of propagation of the incident wave, eo is a (real) unit vec-
tor in the direction of polarization of the incident electric
field (eo uo=o), and

In particular, with T =0,

f S"(co)e ' des
y"(R 0)= S" a) des

(2.9)

We see from Eq. (2.9) that when the two field points r)
and r2 (R= r2 —r, ) are located in a plane perpendicular to
the direction of propagation, i.e., when uo R =0,

k =co/c (2.2) y "(R,O) =I . (2.10)

c being the speed of light in a vacuum. We also assume
that the field is stationary, at least in the wide sense, ' as
is well known; the representation (2.la) must then be in-
terpreted in terms of generalized functions. Under these
circumstances the cross-spectral density tensor of the in-
cident electric field is given by (cf. Sec. V A of Ref. 12)

WI~(R, co) =S"(co)e ' eo)eo~, (2.3)

where S"(co) is the spectrum of the incident field and the
subscripts l and m label Cartesian components. In terms
of the spectral amplitude A (co) the spectrum S"(co) is
given by

cLo- r, (2. 1 1)

We will refer to this quantity as the longitudinal coher-
ence length of the incident field.

We may express this result by saying that the incident
field has complete transverse coherence. On the other
hand, when the two points are located along the direction
of propagation, then uo. R=R, and if, in addition, the
spectrum is given by Eq. (2.5) the effective width of
~y"(R,O)

~
is readily seen to be given by

( A *(co)A (co') ) =S"(co)5(co'—co), (2.4)
B. The scattering medium

As"(~)= [g(~—~,;r, )+g(~+~,;r,)],
2m I 0

(2.5)

where the angular brackets denote an ensemble average.
We will only consider the case where the spectrum is a

line of Gaussian profile, centered on frequency coo and of
rms width I o, i.e.,

We will assume that the scattering medium is linear,
isotropic, and nonmagnetic, and that the fluctuations of
its generalized dielectric susceptibility 71(r, t;co ) (cf. Ref.
12, Sec. II) are statistically homogeneous and stationary,
at least in the wide sense. As before, we will denote the
space-time correlation function of the medium by
6 (R, T;co'):

where A, coo, and I o are positive constants and (g "(r, t;~')g(r +R, t+T;co')) =6(R, T;co') . (2.12)

2 2(" ~o) /2ro
g(co —coo;1 o) =e (2.6)

BI'(R, T) =eo&eo f S"(co)e ' den . (2.7a)

If we choose the axes of our Cartesian coordinate system
so that one of them coincides with the direction of the
real unit vector eo, (i.e., along the direction of polariza-
tion of the incident electric field), then only one com-
ponent of 6& (R, T) will be nonzero and it will be given
by

e(R, T)= f S"(co)e ' des . (2.7b)

For later purposes we note some coherence properties
of the incident field. The space-time correlation tensor of
the field is just the Fourier transform of the cross-spectral
density tensor (2.3), i.e.,

Here the asterisk denotes the complex conjugate. We
will also assume that the scattering is so weak that, to a
good accuracy, it may be described within the framework
of the first-order Born approximation.

The resonance frequencies of the medium, i.e., the fre-
quencies of its atomic or molecular transitions, will be as-
sumed not to be in the immediate vicinity of the center
frequencies +coo of the incident light. Under these cir-
cumstances the correlation function 6 (R, T;co') may be
approximated, over the effective frequency range (the
spectral line) of the incident light, by 6(R, T;coo) when
co') 0 and by 6 (R, T; —co0) when co' (0.

We will take as our model scatterer one that satisfies
the above requirements and has a space-time correlation
function that is the product of a Gaussian function of R
of rms width o. and a Gaussian function of T of rms
width ~, i.e., that

The degree of coherence of the incident field is then given
by

6 (R, T;+co )=o
B —R /2O. e

—T /22
(2 2)3/2

(2.13)



590 JOHN T. FOLEY AND EMIL WOLF

where B, o., and ~ are positive constants. Evidently, ~ is
the effective time duration over which the fluctuations of
the dielectric susceptibility are correlated, i.e., it is the
correlation time of the medium T. he constant o. is clearly
the effective distance over which the fluctuations of the
dielectric constant are correlated, i.e., it is the spatial
correlation length of the medium. We will assume that o.

is much smaller than the linear dimensions of the scatter-
ing volume. Finally, we will assume that the fluctuations
of the medium and the fluctuations of the incident field
are statistically independent.

will not only differ, in general, from the spectrum of the
incident light, but will also be different in different direc-
tions of observation.

It is useful, for the purposes of calculation, to divide
S"(ru, (o) into two parts: the part denoted by
S(+'(ru, oi), generated by the positive frequency part of
the spectrum of the incident light, and the part denoted
by S"(ru, o2), generated by the negative frequency part
of the incident spectrum. Upon substituting Eq. (2.5)
into Eq. (3.1) and assuming that I o/coo((1 we find that,
to a good approximation,

III. SPECTRUM OF THE SCATTERED LIGHT
IN THE FAR ZONE

S"(ru, co) =S'+'(ru, o2)+S"(ru, o2), (3.5)

When the incident field is of the type described in Sec.
II A and the medium fulfills the assumptions stated
above, the spectrum of the scattered light at the position
r=ru (u u= 1) in the far zone, S"(ru, o2), is to a good
approximation, given by Eq. (5.10) of Ref. 12, viz. ,

S(,) (2') o2 V sin ))/S+ ru, o2 =
4 2

C I'

x f S(k —k', co —o)', +coo)S'+'(co')des',

(,) (2') co Vsin fS ru, co 4 2c r

X f S(k —k', ~ —m';~')S"(m')d~',

(3.1)

with

S'+ (o2)=, g(co+~oo, l ()) .
(2 r2)l/2

(3.6)

{3.7)

COk= u
C

(3.2)

k' is the wave vector of the co' component of the incident
field [cf. Eq. (2. 1a)],

where g is the angle between u and eo, k is the wave vec-
tor of the scattered light,

We will now calculate the spectrum of the scattered light
in the far zone for the case when the correlation function
of the dielectric susceptibility is given by Eq. (2.13).

A. Evaluation of the generalized structure
function 4'(k —k', o) —co'; +a)0)

k'= u
c (3.3)

f f G(R T. )e
—i(K R —QT)d3gdT

(2'�) v

and S(K,A;co') is the generalized structure function of the
medium [Ref. 12, Eq. (5.11a)]

()'(K, 0;o)')

Upon substituting Eq. (2.13) into Eq. (3A) and extend-
ing the spatial integration over all space (which is
justified since o. was assumed to be small compared to the
linear dimensions of V), we find that

a 2~ ' '"
g(K II.+ )

~T —IC a /2 —(2 2/2 (3 g)
(2m. )

It will be useful to introduce the parameters

The formula (3.1) shows that the spectrum of the scat-
tered light in the far zone differs from the spectrum of the
incident light S"(co) by the effect of two factors: namely,
a factor proportional to co and a factor which is a linear
transform of S"(to), the kernel of the transform being
the generalized structure function of the medium. The co

factor is a reflection of the fact that on the microscopic
level the medium responds to the incident field as a set of
dipole oscillators (cf. Ref. 15, Secs. 2.2. 1 and 2.2.3). The
generalized structure factor 4 depends upon the correla-
tion between the oscillators. Consequently, the linear
transform represents the effect of the interaction of the
incident light with these correlated oscillators. Since 4
depends upon the momentum transfer vector"
K=k —k', it depends on the angle of scattering, and
hence the spectrum of the scattered light in the far field

I =c/o. ,

I,= 1 /w .

(3.9)

(3.10)

()'( K, Il;+coo) =
r2,

1/2

g (ICc; I )g ( 0;r, ) .

{3.11)

Since u and uo are unit vectors,

Each of these parameters has a clear physical
significance. I is the reciprocal of the time it takes light
to cross a spatial correlation length cr. I, is the band-
width of the temporal fluctuations of the medium.

Upon using Eqs. (3.9), (3.10), and (2.6), Eq. (3.8) can be
rewritten as
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I

/k —k'['= —u — uoc c
S"(ru, co) =N(r)H(0, $)co exp4 1 co+ co(0)

f'(0)

2

(co 2coco cose+co )c2

1 2. 2
co sin 0+ (co' —co cose)

c2 c2
(3.12)

(3.21)

For physically reasonable values of the parameters coo,
I 0, cr, and r, the frequency Q(0) is close to coo and f (0) is
much smaller than coo. Under these circumstances,

where 0 is the angle of scattering (u uo=cose). It follows
from Eqs. (3.11) and (3.12) that S '(ru, co) =0 when co) 0 (3.22)

1/2B 2~S(k —k', co —co';+coo) = g(co sine; I )(2~)' I',

Xg(co' —co cose; I )g (co —co', I,) .

(3.13)

B. Evaluation of the spectrum
of the scattered 6eld S"(ru, m)

for all positions in the far zone r=ru. It then follows
from Eqs. (3.22), (3.5), and (3.14) that for co) 0 the spec-
trum of the scattered light in the far zone is given by, to a
good approximation,

S"(ru, cu) =S'+'(ru, co)

=N (r)H (0,$)co exp
1 co —co(0)

It is shown in Appendix A that upon substituting from
Eqs. (3.13) and (3.7) into Eq. (3.6) we obtain, after a
straightforward calculation, the following expression for
the positive frequency part of the spectrum of the scat-
tered field:

1 co —co(0)S'+ (ru, co) =N(r)H (0,$)co exp
f'(0)

(3.14)

Here

(3.23)

where N(r), H(0, $), co(0), and f'(0) are given by Eqs.
(3.15)—(3.18).

It is evident from Eq. (3.23) that, in terms of its behav-
ior as a function of frequency, the spectrum of the scat-
tered light is a product of two factors: co and a Gaussian
function of rms width f'(0) and center frequency co(0). It
is shown in Appendix C that for all values of the parame-
ters I o, coo, o. , and ~, and for all scattering angles 0
(0~ 0~ ~),

co(0) ~coo . (3.24)

and

VAB 2'Nr=
2vrc r I,+a,I o

1/2

CX
2

a (0)

(1—case)
sin 0+

CX

co(0)=

f'(0) =

coo r'.
1+

a (0) I

(I 2+ 2g 2)1/2

a(0)

r',
a,= 1+

2 1 ~o
H(0, $)=sin /exp

2 I

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

It is also shown there that the equality holds only in the
following three special cases: (a) 0=0, i.e., for forward
scattering; (b) I ~~ (cr~0), i.e., when the dielectric
susceptibility fluctuations are spatially uncorrelated; and
(c) I o~0 and I,~O (r~ ~), i.e. , when the incident
light is monochromatic and the dielectric susceptibility
Auctuations are static.

The fact that, except in these special cases, co(0) &coo
implies that the Gaussian function in expression (3.23) is
centered at a lower frequency (i.e., is red shifted) with
respect to the Gaussian spectral line which produced it
[S'+'(co)], the magnitude of the shift depending on angle
of scattering 0. On the other hand, the factor co in the
expression (3.23) is an increasing function of frequency
and hence will produce a shift towards the higher fre-
quencies (i.e., a blue shift). Consequently, the spectrum
of the scattered light will be either red shifted or blue
shifted with respect to S'+'(co), depending on the relative
magnitudes of these two contributions.

2
roa (0)=1+4
I

2
r',

' r,'
sin (0/2)+ 1+ sin 0r'. r'.

(3.20)

In a similar way, one can show from Eqs. (3.13), (3.7),
and (3.6) that the negative frequency part of the scattered
spectrum is given by

IV. FREQUENCY SHIFT OF THE SPECTRUM
OF THE SCATTERED LIGHT

A. General form

By a straightforward calculation (cf. Ref. 11, Appendix
C), one can show that the spectrum of the scattered light,
given by Eq. (3.23), is maximum as a function of ~ when
co = coo( 8), where
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2 1/2

co'(8) = 1+ 1+
2 co(8)

(4.1)
I,f(8)=1+ r. cosO . (4.3)

co(8) =coo
(8)

a (9)

where

(4.2)

For the purposes of the present calculation, we will
rewrite Eq. (3.17) as

It follows from Eqs. (3.18) and (4.2) that

f'(8) a(e) I'.+a'.I o

co(e) f (8) co',
(4.4)

Upon substituting Eqs. (4.2) and (4.4) into Eq. (4.1), we
find, after some algebra, that

coo(9) = COp r'+~'I-'
f(8)+ f (8)+ 16az(8)

2a (8) COp

(4.5)

It is customary, especially in astronomy, to specify frequency shifts by the quantity

kp A.p cop copZ=
~o

(4.6)

where Ap=2~c/~p is the original wavelength and Ap=2mc/~p is the corresponding "shifted" wavelength. Evidently
z &0 when the line is red shifted and z (0 when it is blue shifted. Upon substituting from Eq. (4.5) into Eq. (4.6), we
find that in the present case

&I& ]g
2

COp

I 2+ 2I 2 1/2

f(8)+ f (8)+16a (8)
p

(4.7)

B. Approximate forms for z ( 8) and H (8,g)

The expression (4.7) for z(8) is too complicated to
make it possible to draw any conclusions about the roles
that the various physical mechanisms play in generating
the line shift. Similar remarks apply to the expression
(3.16) for H(8, $), which describes the strength of the
scattered light. However, if

r', +~',r,'
2

Q)p

14

cosO+ cos 0r.
+16a (8)

r', +~',r,'
2

COp

q(8)=f (8)—1+16a (8)

(4. 10)

r', « 1r'.

Io «1,r'.

(4.8a)

(4.8b)

It follows from Eq. (3.20) that to first order in the small
quantities, which appear in the inequalities (4.8),

r. ' r,'
a (8)=1+ +4 sin (9/2), (4. 1 1)

I 2

I'.+r,'
16 «1

COp

(4.8c)

(conditions which are usually fulfilled in practice), z (8) as
given by Eq. (4.7) and H(B, Q) as given by Eq. (3.16) can
be approximated by expressions which clearly indicate
the roles of the various physical parameters, as we will
now show.

It follows from Eq. (4.7) that z (8) can be rewritten as

r, ' r', +r,'V 1+q (8)= 1+ cose+8
zr. COp

(4.12)

Upon substituting from Eqs. (4.11) and (4.12) into Eq.
(4.9), we find that, to first order in small quantities,

I, Ip r', +r,' '

z(8) =2 +2 sin (8/2) —4
p2 p2

COp

(4.13)

and if we use this approximation, we deduce from Eq.
(4.10) that

z(8)= 2a (8)—If(8)+[1+q(9)]'
f (8)+[1+q (8)]'

where

(4.9) We note that in the static limit (1,~0), Eq. (4.13) has
the same form as the corresponding expression of scalar
scattering theory [Ref. 11, Eq. (4.15)]. The two terms on
the right-hand side of Eq. (4.13) have a simple physical
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interpretation as regards to the shift they provide: since
sin (8/2) ~0, the frst term represents a red shift (as long
as 8%0); on the other hand, the second term represents a
blue shift.

We will now show that each of the terms can be related
to a particular physical mechanism. Let us recall from
Sec. III B, that the total shift of the line is comprised of
two parts: the shift of the center frequency co(8) of the
Gaussian term in Eq. (3.23) from the center frequency cop

of the incident line, and a shift due to the m factor. The
shift of the Gaussian term can be described by the corre-
sponding shift parameter

z(8)
0.004—

0.003—

0.002'—

0.001—

coo —co(8)
zG(8) =

co(8)

~'(8) —f(8)
f(8) (4.14)

0--

-0.001
0

I

45
I

90
I

I

135
I

180 8

where Eq. (4.2) was used above. Upon using Eq. (4.11),
we find that to first order in small parameters,

FIG. 2. Plots of the frequency shift parameter z(0) with
I p/cop=0. 01 and I,/I =0, for two selected values of o. /kp.

zG(8)=2 +2 sin(8/2).r'. r.' (4.15)

(4.16)

i.e., it is the ratio of the time light takes to cross the spa-
tial correlation length of the medium to the correlation
time of the medium. In view of Eqs. (2.11) and (3.9), the
ratio I p/I may be expressed as

Upon comparing Eqs. (4.15) and (4.13), we see the first
term in Eq. (4.13) represents a red shift due to correlations
in the fi'uctuations of the physical properties of the medium
and the f'nite bandwidth of the incident light and the
second term represents a blue shift due to the dipole fac
tor co .

In order to discuss the details of the dependences of the
frequency shifts upon the physical parameters, we will
rewrite Eq. (4.13) in a slightly different form. It follows
from Eqs. (3.9) and(3. 10) that theratio I,/I maybeex-
pressed as

r, ~/c
r.

H(8, 1') =sin /exp
1 o
2 Ko

(1 —cos8)
X sin 0+

CX~

(4.19)

z(8)

fluctuations, as measured in units of cop, and the band-
width of the incident light, as measured in units of cc)p.

Moreover, Eq. (4.18) shows that for appropriate values of
the parameters it contains, the spectrum of the scattered
light will be blue shifted [z(8) &0] for small angles of
scattering 8 and will become red shifted [z(8) &0] for
larger values of 0.

We conclude this section with a brief discussion of the
approximate form for the factor H(8, $). Since c =coo%a
(Ko=A,o/2m), it follows from Eq. (3.9) that coo/1
=o /Ko. Therefore Eq. (3.16) may be rewritten as

'2 2

a'(8)

r,
I Lp

(4.17) 0 ~ 004—

i.e., it is the ratio of the spatial correlation length of the
medium to the coherence length of the incident light.
Upon substituting from Eqs. (4.16) and (4.17) into Eq.
(4.13), we find that the frequency shift may be expressed
as

0.003—

0.002—

z(0) =2
'2

o./c o.

Lp

r, ' +

'2

2

sin (8/2)

(4.18)

0.001—

0—

COp COp

It follows from Eq. (4.18) that the red-shift term is a
monotonically increasing function of the two ratios men-
tioned above and the blue-shift term is a monotonically
increasing function of the bandwidth of the temporal

-0.001
0

I

45 90 135
I

iao 8

FICx. 3. Plots of the frequency shift parameter z(0) with
I p/cop=0. 01 and I /I =0.02, for two selected values of o. /Kp.
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z(e)
0.005—

O.OOO-

JOHN T FOLEY AND EMIL WOLF

z(e)
0.004—

0.00a-
0.003—

0.002—
0.002-

0.00 I— 0.001-,

-0.00 f—

-0.002
0

I

45 90 135 180 8

-o.001
I

45
I

90 135
I

ieo 8

FIG. 4. Plots of the frequency shift parameter z(0) with
r /~ =0.01o o . and I,/I =0.03, for two selected values of u/Ko.

FIG. 6. Plotsots of the frequency shift parameter z(0) with
I o/co =0 and I ,/I —0.03, for two selected values of o. /Ko.

It then follows from Eqs. (3.19) and (3.20) that'
2

H(8, $)=sin /exp —2
~0

sin (8/2) (4.20)

C. Numerical results

Figures 2—6 and Fig. 7 show plots of z(8) and
H(890') res', respectively, as functions of 0, for some select-

Equation (4.20) shows that, for a fixed value of P, the
strength of the scattered light decreases with increasing
0, and may be small at the values of 0 where large red
s i ts occur. Equation (4.20) also shows that f fi d
va ue o g, the decrease of the strength of the scattered
light with increasing 0 is larger for more h hl llig y spatia y
correlated media (media with larger o.).

ed values of the parameters. They were cal 1 t d fcua e rom
qs. . and (3.16). In all the cases presented below,

conditions (4.8) are fulfilled, and hence z(8) and H(8, $)
are well described by expressions (4.13) [or (4.18 and
(4.20), respectively.

In Fig. 2, z(8) versus 8 is plotted for the cases"

sin (8/2) behavior [cf. Eq. (4.13)] is evident, and it is
se o e spatia corre-c ear from the curves that an increa f th

ation length of the medium produces larger shifts in the
spectrum of the scattered light. In Figs. 3 and 4
I /cu =0.01 o. ~K =

0
—2, 3, and I,/I is increased to

0.02, 0.03. It is clear from the figu th t thres a is increase of
the ratio I,/I produces larger shifts.

In Fig. 5, z(8) is plotted as a function of 8 for the cases
I 0/coo=0 (monochromatic incident light), r, /r. =o.o,

z(e) H(e,~o.)
0.004—

0.003— 0.8—

0.002— 0.6—

O. OO1— 0.4—

0 ~ 2—

-0.001
0

I

90
I

135 ieo 8 00
I

45
I

90 135 ieo 8

FIG. 5. Plots ofof the frequency shift parameter z(0) with
r, /~, =0 and I /I/I —0.02, for two selected values of o. /Xo.

FIG. 7. Plots of the factor H(0 90) with I /
I /I

wi o coo=0.01 and
=0.02, for two selected values of 0 /Xo.
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and o. /Xp=2, 3. Upon comparing Fig. 5 to Fig. 3, we see
that the shifts are greatly reduced when the linewidth of
the incident light is reduced. In Fig. 6, I p/cop =0,
o. /Kp=2, 3, and I /I is increased to 0.03. Upon com-
paring this figure to Fig. 5, it is again clear that an in-
crease in the ratio I /I produces larger shifts. Fur-
thermore, if we compare Fig. 6 to Fig. 4, we see again
that the shift is significantly smaller when the linewidth
of the incident light is reduced.

In Fig. 7 the factor H (8,90') is plotted versus 8 for the
same values of the parameters as were used in Fig. 3. It
is evident from this curve that the scattering is strongest
in the forward direction and is weak when 90' (0 ( 180 .
Since, for all the sets of parameter values used in Figs.
2 —6, H(8, $) is approximately given by Eq. (4.20), the
plots of H(8, 90) for the parameter sets used in Fig. 2
and Figs. 4—6 are indistinguishable from those of Fig. 7
and are not presented.
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APPENDIX A: EVALUATION OF S'+'(ru, co)

For later reference we note that Eq. (A6) can be rewritten
as

co —co /P,
where

2QP= f
~', =1+(r,/r. )',
f= 1+( I,/I ) cos8 .

(A8)

(A9)

(A10)

(Al 1)

Upon substituting Eq. (A5) into Eq. (3.13) we find that

g( k —k', co —co'; coo)

(2ir/I, )
'

g (co sin8; I )
B

(2~)'

Xg[~(1—cos8);(r'. +r', )'"]g(~'—a;r) .

(A12)

By using the definition of g [cf. Eq. (Al)], the first two
Gaussian functions on the right-hand side of Eq. (A12)
can be combined, and we find that

S(k—k', co —co', coo)
In the subsequent calculations presented in this Appen-

dix, the following product theorem for Gaussian func-
tions (Ref. 11,Appendix A) will be needed.

Theorem. If where

(2m. /r, )' g(co; I, )g(co' —co; I ),B
(2vr )

(A13)

then

—(cu —io ) /2I
g(co —

co, ;I, )=e ' ' (j =1,2), (A 1) 1

p2
1

sin 8 + (1 —cos8)
r'. r.'+ r',

g (co —coi, I i)g(co —co~, I 2)

=g[coi —
co&, (r, +1 z)' ]g(co—co;I ),

where

(A2)

sin 8 (1 —cos8)

2. Calculation of S'+'(ru, co)

(A14)

1

2

67~I 2+CO~I ~

2 2

I +I
1 1

I I1 2

1. Derivation of an alternative form
for the generalized structure function (3.13)

(A3)

(A4)

Upon substituting Eqs. (3.7) and (A13) into Eq. (3.6),
we find that

S'+ (ru, co) =M(r)(sin g)co g(co; I ~)

X f g(co co; I )g(co coo, I 0)dco

(A15)

with

It follows from the theorem we just stated that

g(co' —co cos8;I" )g(co' —co;I",)

V c4B

2 &, I.,I,
By a straightforward calculation, one can show that

(A16)

where'

1+(I,/I ) cos8

1+(r,/r. )'

1 1 1

2 I 2 P20' 7

=g[co(1—cos8);(I +r, )'~ ]g(co' —co;1 ), (A5)

(A6)

(A7)

I g(co co; I )g(co coo, 1 0)dco

2' I I

I +I p~

2~r 'I-'
2+ p2

g [co—co (I + I )' ]

g(co —
coo p; r~),

(A17)
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where Eq. (A8) was used in the last step and

I 2=P(1 +1 )' (A18)
S'+'(ru, co) =N(r)H(0, g)co exp

1 co —co(0)

I (0)

Upon substituting Eq. (A17) into Eq. (A15) we find that

S'+ (ru, co) =N(r)(sin P)co g(co; I 1)g(co c—oDP;I 2), where

(A30)

where

AB V 2' INr=
2vrc r 1,(I +I )

It follows from Eqs. (A7) and (A10) that

(A19)

(A20)

2 2
COp CX

H(0, $)=sin /exp
2 I ~ a2(0)

20+ (1—cos0)X sin 0+
9

(A31)

(A21)

Straightforward algebraic manipulations show that Eq.
(A20) can be rewritten as

APPENDIX B: SIMPLIFICATION
OF THE EXPRESSIONS

FOR Q(6), f'(6), and I q(6)

AB V 2m.Nr=
2~c4r' r2+12a2

' 1/2

(A22)
1. Simplification of Q(8)

Equation (A25) can be rewritten as

Upon again using the product theorem for Gaussian
functions [cf. Eqs. (Al) —(A4)], we find that Eq. (A19)
can be rewritten as

coo P( 0)
co(0)=

1+[1,(0)/r, (0)]' (81)

S'+'(ru, co)=N(r)(sin 1tj)g[cooP;(I, +I 2)' ]

X co g[co —co(0); f'(0)]

=N(r)(sin 1t )g[coo', 1 d(0)]

xco g [co—co(0);f'(0)],
where

(A23)

Upon substituting Eqs. (A9), (A14), (A18), and (A21) into
Eq. (Bl) we find, after some algebra, that

cooa,f(0)
co(0) =

2 2h (0)+(a,I o/I ) [a,sin 0+(1—cos0) ]

where

1

r2, (0)
P'(0)

r', (0)+r,'(0) ' (A24)
r,h(0)=f (0)+ r.

'2

[a, sin 0+(1—cos0) ] . (83)

13(0)I', (0)
co(0) =coo'r2(0)+r,'(0) ' (A25)

1

I'(0)
1 1

r', (0) r,'(0) (A26)

COp

Q(6I) =
a (0)

r2
1+ cosOr'. (A27)

( I 2+ 2I 2)1/2
I"(0)=

a(0) (A28)

1 a~ 1 . 2 (1 —cos0)
sin 0+

I „(0) a (0) I
(A29)

where a (0) is as given in Eq. (88). Using Eq. (A29) and
the definition of g in Eq. (A23) we find that

The function P(0) is given by Eqs. (A9) —(Al 1), I,(0) by
Eq. (A14), and 1 2(0) by Eq. (A18).

It is shown in Appendix 8 that co(0), f (0), and I d(0)
can be rewritten as [see Eqs. (87), (811),and (813)],

It follows directly from Eq. (Al 1) that

r, ' '

r, 'f (0)=1+2 cos0+r. r. cos 0 .

Furthermore, upon using Eq. (A10) we find that

r, '
[a, sin 0+(1—cos0) ]

(84)

=2 r.
2 r. '
cosO+

o
sin 0. (85)

h(0)=a, , (86)

where a, is given by Eq. (A10). It follows from Eq. (82)
that

co(0) =coo (0)
a (0)

where f (0) is given by Eq. (Al 1) and

(87)

Upon substituting Eqs. (84) and (85) into Eq. (83) we ob-
tain, after straightforward calculations, the following ex-
pression for h (0):
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2r,
a (0)=a,+ [a, sin 0+(1—cose) ]

Ip I,=1+ 2 sin(0/2) +r.
r,'1+ sin 0r'.

2. Simplification of the expression for f'(0)

It follows from Eq. (A26) that

r', (e)r,'(0)
r'(0) =

r', (e)+r', (0)
'

(B8)

2
1 . 2 (1 —cose) 2

sin 0+
a (0) I a

(B13)

where Eq. (A13) was used in the last step.

APPENDIX C: THE BEHAVIOR OF Q(8)

It follows from Eqs. (3.17) and (3.20) that

COp
2

coo —co(0) = a (0)— 1+ cose
a'(0) r'

Upon using Eqs. (B7) and (A9) in Eq. (B12), we find that

1 f(0) 1

r,'(0) a'(0) r', (0) f(0)

and from Eq. (A25) that Eq. (B9) can be rewritten as

r"'(0) = r', (0) .
coo/3(0)

(B10)

We then find from Eqs. (B7) and (A18) that Eq. (B10) can
be rewritten as

r'(0) =, 13'(0)(r '+ r,'),a'(0)P(0)

r,
sin (0/2)

Ip1+ sin 0
p2

+ r.
cosO

CC)p

4
a (0) r.

2

(C 1)

Therefore

f (0) P(0)
a (0)

r', +~',r,'
a (0)

I 2

, +r,'
0

f (0) 2 p2

a'(0) f(0)

Since 1 —cos0=2 sin (0/2), Eq. (Cl) can be rewritten as

I ICOp

coo —to(0) =
a (0)

sin (0/2)4 r. +2
I

2 2r, I.,
sin 0 . . (C2)

0' fT

Since according to Eq. (3.20) a (0) ~ 1, it follows from
Eq. (C2) that

(r2+a2r&)i~2
r(e)=

a(0)
(Bl 1) a(0) (C3)

3. Simplification of the expression for I d (0)

From Eqs. (A24) and (A25), it follows that

1 co(0)
r'„(0) ~,r', (0)

(B12)

with the equality holding only in the following three spe-
cial cases: (a) 0=0, i.e., for forward scattering; (b)
I ~oo (cr~O), i.e., when the dielectric susceptibility
fluctuations are spatially uncorrelated; (c) I o~0 and
r,~O (r~ ~ ), i.e., when the incident light mono-
chromatic and the dielectric susceptibility fluctuations
are static.
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The ratio o. /Xo is not necessarily small.
~7The expressions (4.7) and (3.16) for z(0) and H(0, $) can be

rewritten entirely in terms of 0, g, I o/coo, I,/I, and cr/P, ~.

For the sake of brevity we do not display such forms for z(0)
and H(0, $); however, the three ratios are used to label the

curves in Figs. 2 —7.
For the sake of economy of notation we do not show explicitly
the dependence of co (and also of the quantities a, P, f I
and I 2 defined below) on 0 throughout the main part of this
appendix.


