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Renormalized eddy viscosity and Kolmogorov's constant in forced Navier-Stokes turbulence
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The free-decay renorrnalization-group theory for Navier-Stokes turbulence [Zhou, Vahala, and
Hossain, Phys. Rev. A 37, 2590 (1988)] is extended to the case of forced turbulence. An eddy-
damping function is obtained, which is nonlocal in time and space. Using a multitime scale pertur-
bation analysis, a time-local renormalized eddy viscosity is determined as a fixed point of an
integro-difference recursion relation. It exhibits a mild cusp behavior for the particular forcing ex-
ponent that gives the Kolmogorov energy spectrum, similar to that for free-decaying turbulence.
As in the free-decay theory, the triple nonlinearity in the renormalized Navier-Stokes equation is
essential for the cusp to occur near the boundary between the unresolvable and resolvable scales.
Unlike the e-expansion theory, however, the renormalized eddy viscosity exhibits a wave-number
dependence in the supergrid scales. The standard inertial wave-number scaling of the eddy viscosity
is recovered for the Kolmogorov energy spectrum. A numerical value for the Kolmogorov constant
is obtained using the Yakhot-Orszag equivalence assumption C~ = 1.44.

I. INTRODUCTION

Recently, we' have employed the recursive renormal-
ization-group theory (RCx) of Rose to free-decaying
Navier-Stokes turbulence. The recursion relation for the
renormalized eddy viscosity' yielded a fixed point with a
mild cusp behavior near the wave number separating the
subgrid and supergrid scales. Here we extended this re-
cursion technique to the case of forced Navier-Stokes tur-
bulence, but without making the assumption that the
time dependence of the subgrid modes can be ignored rel-
ative to the large-scale (supergrid) modes as was made in
the free-decay case. ' It is also of some interest to con-
sider Navier-Stokes turbulence driven by a Gaussian ran-
dom force since this is the standard model considered in
all e-expansion RG theories. One of the consequences
of RG theories (among that of other theories) is an eddy
viscosity. However, unlike the e-expansion theories in
which the eddy viscosity has no supergrid wave-number
structure, we will find here that in the recursion RG
method the eddy viscosity will have supergrid wave-
number structure. Moreover, the eddy viscosity will ex-
hibit a cusp behavior near the wave-number cutoff be-
tween subgrid and supergrid scales.

In Sec. II, the recursion RG procedure is outlined.
Unlike the treatments in the free-decay problem, ' the
time dependence of the subgrid modes is not ignored. In
particular, we obtain a nonlocal time (and space) behav-
ior of the eddy-damping function, similar to that found
earlier by Kraichnan in his eddy-viscosity theory. After
removing the subgrid shells, one obtains an interated

Navier-Stokes equation which is very complicated —it
contains not only this nonlocal eddy-damping function
but also a triple nonlinear coupling.

In Sec. III this equation is simplified by introducing a
multitime perturbation analysis based on the assumption
that the subgrid modes evolve on a faster time scale than
the supergrid modes. The structure of the eddy-viscosity
recursion relation is significantly different from that for
free decay due to the different structure of the subgrid ve-
locity autocorrelation function.

The recursion relation is renormalized and numerical
computations are performed to find the fixed point, the
RG eddy viscosity, in Sec. IV. As in free-decay tur-
bulence, ' a mild cusp behavior is found in the eddy
viscosity near the supergrid-subgrid cutoff wave number.

Finally, in Sec. V, the Kolmogorov constant Cz is cal-
culated based on the Yakhot-Orszag —assumed equiva-
lence between the inertial range transfer theory of
Kraichnan and that for randomly forced turbulence. In
essence, the effects of initial and boundary conditions can
be modeled by a Gaussian random force with a specific
autocorrelation intensity. We summarize our results in
Sec. VI.

II. RECURSION RENORMALIZATION-GROUP
PROCEDURE FOR FORCED NAVIER-STOKES

TURBULENCE

It is customary to introduce a random force f into
the Navier-Stokes equation so as to model strong tur-
bulence. In this way, the inertial range Kolmogorov en-
ergy spectrum can be recovered without having to intro-
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duce initial and boundary conditions. In wave-number
space, the forced Navier-Stokes equation for the velocity
u is given by

+vok u (k, t)
at

=f (k, t)+ f d j M
& (k)u&(j, t)u (k —j, t),

where the coupling coefficient

M p (k) [k~D r(k)+k D p(k)]
1

2l

k kp
with D &(k)=5 &-

k
(2)

and vo is the molecular viscosity. The random force f is
specified by its autocorrelation

(f (k, t)f&(k', t')) =D &(k)D k «5(k+k')5(t t'), —

E(k)=C kE k (4)

Cz is the Kolmogorov constant and c is the rate of ener-

gy dissipation per unit volume.

where y is a suitably chosen exponent and Do defines the
intensity of the forcing. For example, ' the choice
y = —2 corresponds to thermal equilibrium, while the
choice y =+3 yields the Kolmogorov energy spectrum
for the velocity fluctuations (see, however, Ref. 6),

A. RG procedure in the removal of the Srst subgrid shell

In the iterative RG approach one introduces a scale
factor h, with 0 & h & 1, to partitions wave-number space
into

(u (k, t)) =u (k, t), (u (k, t)) =0,
(f '(k, t)) =f '(k, t), (f '(k, t)) =0, (6)

There are two mutually exclusive evolutionary equa-
tions, depending on whether k lies in the subgrid or su-
pergrid shell. In particular, for the subgrid modes, with
k, & ik/ &ko

(k~:k~:h ko k~ ):/i ko . . . k):flko ko:k~)
where kz is the Kolmogorov dissipation wave number
and k, separates the resolvable large scales (k &k, )

from the unresolvable subgrid scales (k & k, ). The RG
procedure involves the removal of the subgrid shells, one
at a time, starting with the elimination of wave numbers
k in the shell k& & ~k~ & ko.

To eliminate the first subgrid shell k& & k & ko, one in-
troduces the superscript notation & to denote the
subgrid fields and & to denote the supergrid fields

u, for k, &k &ko
u (k, t)= ' (u, for k&k,f, for k& &k &ko

f', for k&k, .f (k, t)= '

Furthermore, we introduce an ensemble average over the
subgrid modes, so that

—+vok u (k, t)=f (k, t)+ROM & (k) f d j [u& (j, t)u (k —j, t)+2u& (j, t)u (k —j, t)
at

+u& (j, t)u (k j,t)], —

where the parameter Ao is introduced to aid in the perturbation expansion (it will eventually be set equal to unity). The
supergrid modes, with k below the first subgrid shell, ~k~ & k, , evolve according to

—+vok u (k, t)=f (k, t)+Xpf &r(k) f d j [utt (j, t)u (k —j, t)+2u& (j, t)u (k —j, t)
Bt

+u p(j, t)u'(k —j, t)] .

Of course, the right-hand sid~. s of (7) and (8) are very different —not only because of the different k domains, but also
because of the different ranges in the fd j integrals.

To leading order in A,o, the subgrid velocity satisfies

u ~(k, t)= f dr GO(k, t, r)f ( ~, k)r, (9)

where the zeroth-order Green's function Go is given by

+vok Go(k, t, r) =5(t —r),
at

(l0)
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which can be readily solved to yield

G 0( k, t, r) =exp( —vok l
t —~) .

On substituting this into the supergrid equation (8) and performing the subgrid ensemble average we find that the third
term on the right-hand side of Eq. (8) does not contribute since

(fp (j,r))u~ (k —jt)=0,
while the fourth term does not contribute since ( u u ) essentially yields

M py(k)(up (J)ur (k J ) & M.p, (k)(fp (J)fr (k —j) & M.p, (k)fi(k)=0 .

Hence the leading-order subgrid solution does not influence the evolution of the supergrid scales. Proceeding to Arst
order in Xo.

(kt) , =f dc Go(k, t, r)f (k, r)

+ROM p~(k) f d j f drG0(k, t, r)[up (j,~}u (k —j, r)+2u& (j,r)u (k —j,r)

+up (j,~)u~ (k j,—r)] . (12)

Substituting Eq. (12) into (8), performing a subgrid ensemble average, and evoking closure by ignoring the triple subgrid
moment ( u u u ), we obtain

+vok2 u (k, t)=f '(k, t)+ROM p (k) d j up (j, t)u (k —j, t)
a
at

+2APf~&r, (j)f d j ' dr Go(j, t, r)[u& (j', r)u ~ (j j', r—)u (k —j, t)

+2uz (j—j', r)(u& (j', r)u (k —j, t))] +O(AO). (13)

Consider the last term in Eq. (13). Using Eqs. (9) and (3), this term equals

4A~ p (k)f d j Mp& .(j)f d j' dr Go(j, t r)u~ (j—j', r)(up (j', r)u~ (k —jt))0

=4AOM p (k) f d j Mp&~ (j)f d j' f dr 6 (jo, t, ~)u ~ (j—j', r)

X dr' dr"Go(j ', r, r')Go(k j, t, r")Dp. , (—k j)—
XDolk —jl 'fi(k —J+J )fi(r —r-)

1

draco(k,

t, r)u (k, r),
where qo(k, t, r) is a nonlocal generalized eddy-damping function defined by

(k0, t, )r= 4AoM p (k)f—1j Mpp (j)G (jo, t, )Dr(k) f dr'Go(k —j, t, r')D& (k j)Dolk —jl-
Thus, after removing the first subgrid shell, the renormalized Navier-Stokes equation becomes, for lkl & k, .

+vok u (k, t)+ f draco(k, t, )u r(k, r)
at oo

=M py(k) f d j up (j, t)u (k —j, t)

+2M p~(k) f d j Mp&~ (j) dr Go(j, t, r)u p (j'r)u ~ (k, r)u (k j,t)+f (k, t) . —(15)

Thus the RG procedure has generated (a) a triple non-
linearity and (b) a time-nonlocal eddy-damping function
go( k, t, r ), Eq. (14).

Consider (a). The generation of new types of interac-
tion is quite common in RCx theories. Indeed, in the RCr
(equilibrium} theory for the two-dimensional Ising prob-
lem, Wilson Ands that after the Arst spin decimation, not

only must one consider the original nearest-neighbor in-
teraction but also the diagonal-nearest-neighbor and
four-spin-coupling interactions. For the Ising problem,
the new interactions are found to be weaker than the
original interaction, and one can neglect the four-spin in-
teraction and still obtain accurate solutions. In our appli-
cation of dynamical RG to fiuid turbulence, we retain the
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new triple nonlinear interactions, and assume that the
higher-order nonlinearities can be neglected. Let us now
consider the e-expansion RG theories to Navier-
Stokes turbulence. For e«1, it can be shown that the
higher-order nonlinearities are irrelevant couplings and
can be ignored. However, to recover the Kolmogorov en-
ergy spectrum, one is forced to choose @=4. For @=4,
there are now no valid arguments to show that the
higher-order nonlinearities are irrelevant.

The nonlocal behavior in the eddy-damping function,
property (b), has been found earlier in the eddy viscosity
theory of Kraichnan. In our earlier free-decay' RG
theory of fiuid turbulence, we had assumed that the
subgrid scales evolved so rapidly that their time varia-

tion could be ignored. Under this approxiation, one
loses this nonlocal nature of the eddy-damping function,
which then reduces to an eddy-viscosity coefficient.
However, this approximation, in forced turbulence, will
lead to a different wave-number scaling of the eddy-
viscosity coefficient (for more details, see the Appendix).
Thus this approximation is not made here.

B. Removal of the (n + 1)th subgrid shell

We now proceed to eliminate the next subgrid shell
kz &k &k, from the renormalized Navier-Stokes equa-
tion for which ~k~ &k,

+vok u (k, t)+ drilo(k, t r)u (k, r)at QO

=f (k, t)+M p (k)f d j up(j, t)u (k j,r)—
+2M

& (k)f f d jd j'M&& .(j ) dr Go(j, t, ~)u&(j', r)u . (j —j', )ur(k —j, t) . (16)

For modes with
~
k

~
& k i, we again define the subgrid modes as those with wave number in the range k2 & k & k i and the

supergrid modes have wave numbers k & k2..

u, if k, &k&k,

u, if k&k~,
with a similar identification for the forcing function f. To leading order in A.o [reintroducing this formal perturbation
parameter in the nonlinear terms of Eq. (16)], one obtains the subgrid velocity equation

2+v,k' u ' (k, t)+ dr ih(k, r, r)u (k, r) =f ' (k, t) .
at oo

(17)

To solve Eq. (17) one introduces the Green's function G i (k, t, r),

a 2 1

+vok G&(k, t, r)+ ds go(k, t, s)G&(k, s, w)=5(t —r) .
Bt

u'(k, r)= f drG, (k, r, r)f (k, r)

+ROM & (k)f d j f dr G, (k, t, r)[u& (j,r)u (k —j, ) r2+u& (j,r)u (k —j, r)+ ] .

where the ellipsis refers to the u u term, which can be neglected because of our closure approximation.
Following the RG procedure outlined in the removal of the first subgrid shell, one finds that the triple term in Eq.

(16) will contribute to the nonlocal eddy-damping function

(19)

An analogous Green's function was introduced by Herring and Kraichnan' in their comparison of the various theories
of isotropic turbulence.

As before, the zeroth-order subgrid solution plays no role in the evolution of the supergrid velocity field. If one
proceeds to next order in A,o.

rI, (k, t, r)= 4M & (k) f f d j—d j 'M@ (j) G(oj, t, )rD~ (k)(uii (j ', r)u (k —j, t)) . (2O)

where the subgrid velocity correlation is to be evaluated using Eq. (19) to zeroth order in A,o.
The second term in Eq. (19) will contribute a triple nonlinearity to the renormalized Navier-Stokes equation after re-

moval of the second subgrid shell. However, the third term in Eq. (19) will also contribute a term to the eddy-damping
function of the form

(k, it, )=7—4M
& (k) f d j M&& .(j)G, (j, t, r)D ~ (k)(u& (j', r)u (k —j, t)) . (21)
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where again the subgrid velocity correlation is evaluated using the lowest-order expansion (in A,o) in Eq. (19).
The final form taken by the renormalized Navier-Stokes equation after removal of the second subgrid shell is

+vok~ u (k, t)+ f d r[ rto(k, t, r)+g&(k, t, r)]u (k, r)
at Qo

=f (k, t)+M &r(k) f d j u& (j, t)u (k —j, t)

+2M &r(k) f f d j d j'M&&, (j)f d r[G 0(j, t, r)+G, (j, t, r)]u tr(j', r)u ~ (j—j', r)ur (k —j, t), (22)

where

g, (k, t, r)= rtP(k, t, r) +q iT( k, t, r) .

Proceeding to the removal of the (n + 1)th subgrid shell, one shell obtains

a 2 t n

+vok u (k, t)+ dr+ rI;(k, t, r)u (k, r)
at oo i=0

=f (k, t)+M &r(k) fd'j u&(j, t)ur(k —j, t)

(23)

t n

+2M
13 (k)f f d j d j 'M&&. .(j) dr+ G;(j, t, r)u&(j', r)u (j—j.

', r)u (k —j, t), (24)
i =0

with the corresponding generalizations for the ith Green s function G;, Eq. (18), and eddy-damping function rt, , Eqs.
(20), (21), and (23). In particular,

a 2+vok G, (k, t, r)+ ds rj, &(k, t, s)G;(k, s, r)=5(t —r) .
at 00

(25)

III. SIMPLIFIED RENORMALIZED NAVIER-STOKES EQUATION

Equation (24) is very complicated. Since the subgrid scales evolve on a faster time scale than the supergrid scales
some simplification can be achieved by performing a multitime scale analysis. Under this approximation, Eq. (24}
reduces to

+v„+,(k)k u (k, t)=f (k, t)+M & (k}fd j u&(j, t)u (k —j, t)at
t n

+2M &r(k) f d j d j 'M&b (j )u&(j', t)u (j—j', t)u (k —j, t) dr+ G;(j, t, r),
i =0

where the eddy-damping function has now been reduced to a standard eddy-viscosity coe%cient
t n

v„+,(k)k =vok + dr+ rI, (k, t, r),
i=0

(26)

(27)

i.e, the nonlocal time behavior is lost under this approximation, but the resulting equations will become more tractable.
So that the final recursion relation is more amenable to numerical solution we also make a local approximation in the
subgrid velocity autocorrelation which occurs in the evaluation of the eddy-damping function. In particular, in the re-
moval of the first subgrid shell

(u& (j', r)u (k —j,r')) =(u&(j', t)u (k —j, t))
= f dr f dr'exP[ —vent' (t —r) —vo~k —

j~ (t —r'))(f& (j', r)f '(k —j,r'))

Dpy(k —j»0~k —jl '&(k —j+j')
2volk —jl' (2&)

to leading order in A,o, on using Eqs. (10) and (3). Within
the time integration, this is a somewhat mild approxima-
tion on the velocity correlation since the correlation func-
tion is weighted by an exponentially decaying Green's
function

ty

Go(k, t, r)= exp[ —vok it —r~] . (29)

v&( k) =vo+ 5vo(k ) (30)

After removing the first subgrid shell, the eddy viscosi-



5870 YE ZHOU, GEORGE VAHALA, AND MURSHED HOSSAIN

where the increment 5vo(k) to the molecular viscosity vo
is given by

, L;Q(lk-jl)
5v„(k)lt„, d„,„= g fd j v;(j)j'

(35)

5vo(k) = f d j
k vo k —j voj

with the coeKcient L& defined by

(31) This different structure in the denominator is due to the
different form of the subgrid autocorrelation in free-
decaying turbulence

L),. = —2M isr(k)Mt)ir (j )Dp(, k —j)D (k)

kj (1—
)Lt )[)M(k +j ) —kj (1+2@ ))

k2+ j2 2kjp
(32)

k.j=kjp with p=cosO. The integration limits in Eq.
(31) are k, & Ik —jl and Ijl & ko.

Proceeding to the removal of (n +1)th subgrid shell,
the subgrid autocorrelation (to be weighted by its respec-
tive exponentially decaying Green's function) is given by

(u)r (j', r)u~ (k —j, t))

Q(lk —I) = (37)

It is not related to the different treatment of the time
dependence of the subgrid scales (for more details, see the
Appendix).

(utr (j', t)u (k —j,t))
=Dt's~(k j)Q—( lk —jl )5(k —j+j'), (36)

where Q ( I
k —j I

) is related to the energy spectrum
E( lk —jl ) by

Dtr (k —j)Dolk —jl ~5(k —j+j')

The eddy-viscosity recursion relation is

v„+,(k) =v„(k)+5v„(k),

where

(28')

(33)

IV. RKNORMALIZED EDDY VISCOSITY

A. Rescaling and the renormalized eddy viscosity

Unlike the e-expansion RG, one performs rescaling
transformations in the recursive RG approach. In partic-
ular, in the removal of the (n +1)th subgrid shell, we
make the transformation

Do "
5v„(k)= g d'j

k;=0 v;(j)j v„(k—j)lk —jl
(34)

k ~k„+,k,
and define a renormalized eddy viscosity v„'(k ) by

(38)

with the integration limits k„+ ) & Ik —j I
& k„and

k, +, & Ijl &k, , i =0, 1, . . . , n.
This eddy-viscosity recursion relation for forced

Navier-Stokes turbulence differs significantly from that
for free-decaying turbulence. ' In particular, in our ear-
lier free-decay turbulence calculation, the renormalized
eddy viscosity satisfied the recursion relation (33), with

(39)

with

,(k)=h' +" [ „*(hk)+5 „*(hk)], (40)

so that the renormalized-eddy viscosity recursive rela-
tion, Eqs. (33) and (34), become

n L;-lk —jl '
g(k )

0 y h
—')y+))/3 f d3

k =o v,"(h 'j )j 'v„*( lk —jl ) Ik —jl'
(41)

and the integration limits (k & 1)

1& Ik —
ql & —,

h

1& lh'jl & —, i =0, 1, . . . , n .h'

E(k)(u u )

But from Eqs. (28') and (43), we see that
(42)

k (u u )~~ ~~k %'~+" ~~E(k)

(43)

(44)

The parameter 0(h (1 defines the coarseness of the
subgrid shell partition. The i =0 contribution in Eq. (41)
arises from the standard Navier-Stokes quadratic non-
linearity, while the i 1 terms arise from the new triple
nonlinearity introduced by the RG procedure.

We now consider the forcing exponent y, Eq. (3), and
the energy scaling of the subgrid velocity autocorrelation

since the eddy viscosity scales as [from Eq. (39)]

k
—(y+ 1)/3 (45)

Hence the choice y =3 will recover the Kolmogorov en-
ergy spectrum E(k) =k /, and the eddy-viscosity scal-
ing v =k . This eddy-viscosity scaling agrees with
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that arising from Kraichnan's inertial range theory and
from dimensional analysis. "

B. Numerical results

The renormalized eddy viscosity is defined as the fixed
point (n~ co ) of the recursion relations (40) and (41).
Unlike the e-expansion RG, which only gives the eddy
viscosity at k =0, the recursive RG procedure yields the
total k dependence of the eddy viscosity throughout the
supergrid scales.

In Fig. 1 the renormalized eddy viscosity v*(k ) is plot-
ted for the subgrid partition parameter h =0.7 for vari-
ous values of the forcing exponent y. The exponent y =3
corresponds to a forcing consistent with the Kolmogorov
energy spectrum E (k) = k . The reason for consider-
ing the exponent y =—', is given in the Appendix. We see
that the RG eddy viscosity exhibits a cusp behavior for
k = 1, i.e., for wave numbers k near the supergrid and/or
subgrid cutoff for y =3. This is in qualitative agreement
with the test-field model of Kraichnan, the eddy-damped
quasinormal Markovian approximation of Chollet and
Lesieur, ' as well as with the direct numerical simulation
results of Domaradzki et al. ' The cusp behavior is lost
fory =1.

In Fig. 2, we compare the renormalized eddy viscosity
v*(k) for free-decaying turbulence, ' forced turbulence
with and without the effects of the triple nonlinearity in-
troduced by the RG transformations, and Kraichnan's
test-field model. All relevant parameters are chosen such
that the subgrid energy spectrum is just the Kolmogorov
spectrum. It should be noticed that the cusp behavior is
somewhat stronger for forced turbulence than for free-
decaying turbulence. As in free-decaying turbulence,
there is no cusp behavior in the eddy viscosity if the triple

I.O

0.8-

0.6-
C3
CO

0.4
O
O
LLI

Cl
LLI
fV

+ 0.2-
X
Ct
O
LLI
lX

~ ~ ~ ~ ~ ~ ~

y=l

y =7/3

y=3

O. I

O.OOI O.O I 0 O. I 00
WAVE NUMBER

I.OOO

FIG. 1. Renormalized eddy viscosity for various forcing ex-
ponents y. Cusp behavior is induced by increased values of the
exponent y. y =3 recovers the Kolmogorov energy and eddy-
viscosity scalings. This choice is required in most e-RCi expan-
sion theories.

I.O

0.8-

~o 0.6
V)

~ 04
Cl
Ch
LILJ

Cl
LLJ

+ 0.2-
X
lX
OX
LLJ
lK

0.1

O.OOI O.OIO O. IOO 1.000

nonlinearity is dropped from the recursion relations
which lead to the fixed point.

If one had assumed that the subgrid scales evolved so
rapidly that one could treat all their time dependences as
irrelevant, then it is shown in the Appendix that a forcing
exponent of y =—', will yield a Kolmogorov k energy
spectrum and an eddy-viscosity scaling of k . Howev-
er, other theories '" have indicated that y = 3 is the re-
quired choice in order to recover the Kolmogorov energy
spectrum. In Fig. 3 we plot the results of the Appendix
for the forcing exponent y =3 (giving a forced energy
spectrum k and an eddy viscosity scaling k ),
y =—', , and y = 1.

The effect of a spectral gap on the eddy viscosity and
the direct effect of the triple nonlinearity in the renormal-
ized Navier-Stokes equation are similar to that for free-
decaying turbulence. These effects have been discussed at
some length in our earlier paper on free-decaying tur-
bulence' and we refer the reader to that paper for details.
If there is a spectral gap between the subgrid and super-
grid modes, then there will be no triple nonlinearity term
present into the renormalized Navier-Stokes equation.
Thus the resulting RG eddy viscosity does not exhibit a
cusp behavior near the subgrid-supergrid cutoff. ' The tri-
ple nonlinearity in the RG Navier-Stokes equation yields
an extra damping effect near the subgrid-supergrid cutoff.
This could account for the weaker cusp seen in the RG
theory over that of the theories of Kraichnan and Chol-
let and Lesieur' in which there are no triple nonlineari-
ties present in the evolution equation.

WAVE NUMBER

FIG. 2. Renormalized eddy viscosity in the supergrid scales
for forced turbulence, including the triple nonlinearity effects
with forcing exponent y =3. This is contrasted with the corre-
sponding eddy viscosity for (a) forced turbulence, but dropping
the triple nonlinearity terms: (b) forced turbulence with triple
nonlinearity effects, but the time scales of the subgrid modes ig-
nored (and this requires the choice of forcing exponent y =

—,:

see the Appendix): (c) free-decaying eddy viscosity as found in
Ref. 1; and (d) that from Kraichnan's test field model (Ref. 8).
Note that if the triple term is neglected, case (a), there is no cusp
behavior in the eddy viscosity near the supergrid-subgrid wave-
number cutoff.
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renormalized eddy viscosity, we have

v(k) =v, (k)(2~Do) k

so that

(50)

(51)

v(k) =0.1904' E' k

with

(52)

Following Yakhot and Orszag, the Kolmogorov con-
stant Cz is evaluated by relating this energy spectrum to
that determined by Kraichnan in his inertial-range
transfer turbulence theory. In particular, Kraichnan has
shown that

M!A'tIE NUMBER E (1 )
—C 2/3J 5/3 (53)

FIG. 3. Renormalized eddy viscosity for various forcing ex-
ponents j, but with the du /dt neglected. In this case the
choice y =

~
is required if one wanted to recover the accepted

energy and viscosity scalings.

V. EVALUATION OF THE KOLMOGOROV
CONSTANT

We now use these numerically determined values of the
renormalized eddy viscosity to calculate the Kolmogorov
constant. We shall invoke the Yakhot-Orszag equiva-
lence assumption between the inertial-range structures
satisfying initial and boundary conditions and the tur-
bulence driven by a random force of appropriate strength
Do.

The discussion will be restricted to the case of three di-
mensions. The energy spectrum

E(k, t)=2mk~U(k, t) .

where the velocity covariance

U(k, t)=D z( k)( u (kt)uz( , k, t))—
since

(46)

(47)

DOD p(k)lkl
(u (k, t)u~( —k, t))=

2v(k)k
(48)

where Do defines the intensity of the forcing. Eq. (3), and

y =3 in three dimensions. Substituting Eq. (48) into (47)
and (46), we obtain

2~D k
E(k, t)=

v(k)
(49)

To relate this eddy viscosity v(k) to the numerical results
in Figs. 1 —3, we must fold back the rescaling transforma-
tion used in Sec. IV. Letting v„(k) denote the numerical

[D p(k)] =2 .

At the fixed point of the renormalized eddy viscosity,
the covariance is determined from Eq. (28) and (28'),

Equating (51) and (53), we find that the Kolmogorov con-
stant is given by

C
1

2~~ v~ —3.02v~
(0. 1904)

(54)

Now the effect of the eddy viscosity is usually made in its
asymptotic form' v, (k ~k„= 1) with k ((k, where k, is
the wave number separating the supergrid and subgrid
scales. Hence we predict a Kolmogorov constant of

C~ =1.44 . (55)

VI. CONCLUSIONS

Recursion RG has been applied to turbulence driven
by Gaussian random forces. The eddy-damping function
exhibits nonlocal behavior in time and space. To proceed
further, we assume that the subgrid modes evolve on a
faster time scale than the large-scale (supergrid) modes.
Under this assumption, we lose the nonlocal time behav-
ior in the damping function, and after RG obtain a fixed-
for-the-eddy viscosity. A mild cusp behavior is found
near the subgrid-supergrid cuto6' wave number, as in
free-decaying turbulence. ' The triple nonlinearity has the
same qualitative effect on both the eddy-viscosity cusp
and on dissipation properties in the renormalized
Navier-Stokes equation itself as in free-decaying tur-
bulence, ' and the reader is referred to that paper for fur-
ther discussions on these points.

However, we do not assume that the one can ignore the
time dependence of the subgrid modes as has been done
in free-decaying turbulence. ' This question is examined
in the Appendix. We find that if the subgrid time scales
are ignored, then one recovers the Kolmogorov energy
spectrum scaling E (k) =k / and eddy-viscosity scaling
v(k)=k 4/ only if the forcing exponent y =—', . This is

considered inappropriate, since in most e-expansion RG
theories the forcing exponent must be chosen to be
p —3.

The Kolmogorov constant is evaluated using the
Yakhot-Orszag assumption that the inertial range struc-
tures can be modeled by randomly driven turbulence pro-
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vided the intensity of the random force is suitably chosen.
We find Cz=1.44, which is an acceptable value. ' ' A
more sophisticated theory was attempted along the lines
of Dannevik et al. ' However, the emergence of the tri-
ple nonlinearity in the renormalized Navier-Stokes equa-
tion forces one into further assumptions which would
cloud any claims to a successful value for Cz.
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with

5 (k)= Jdj (A5)

Equation (A5) should be compared to Eq. (31). Note the
different dependence on the viscosity in the integrand.

Proceeding to the removal of the nth subgrid shell, we
obtain the eddy-viscosity recursion relation

v„+,(k) =v„(k)+5v„(k), (A6)

with

2Dp n Lk. k —j
5v (k)= g d~j

;=p v; J J v„k j k
(A7)

Equation (A7) should be compared to Eq. (34).
The RG transformation differs from Eq. (39) due to the

extra viscosity dependence in Eq. (A7). Indeed, under the
transformation

APPENDIX: EFFECT OF THE TIME EVOLUTION
OF THE SUBGRID MODES

k~k„+,k,
we define the renormalized eddy viscosity v„'(k ) by

(A8)

Here we shall assume that the subgrid modes evolve on
a much faster time scale than the supergrid modes so that
we can make the approximation

(Al)

v„*(k ) =k„'++, ' v„(k„+,k ), (A9)

so that the renormalized eddy-viscosity recursive relation
becomes

This approximation had been used by Rose in his RG
analysis of passive scalar advection and by us in our free-
decaying turbulence calculation. The Green's function
Go, Eq. (11),will reduce to

so that to leading order the subgrid autocorrelation

(;(k—j,&) z (j', r))
vp k —j vg'

v„*+,(k)=h' + [v„*(hk)+5v„*(hk)] .

The energy scaling of the subgrid modes is

(0 0 )
E(k)

Ic

so that from Eqs. (A3) and (A7) we have

k (g gg') k ~ k~+'» E—(k),k

vk
with the eddy-viscosity scaling as

k
—(y+ 3)/4

(A10)

(A 1 1)

(A12)

(A13)

(A3)

v, (k) =vo+5v„(k), (A4)

Under these approximations, the eddy viscosity arising
from the removal of the first subgrid shell is

The Kolmogorov energy spectrum E(k) =k and the
eddy-viscosity scaling v=k are recovered by the
choice of y =—', for the forcing exponent. The standard
choice of y =3, however, leads to energy scaling
E(k)=k and eddy-viscosity scaling v=k
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