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A nonlinear collisional-radiative model for determination of nonequilibrium production of elec-
trons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary
partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities
are calculated in plasma with 8000 < T, <15000 K and 10'2<N, 10" cm~3. Transport of radia-
tion is included by coupling the rate equations for production of the electrons and excited atoms
with the radiation escape factors, which are not constant but depend on plasma conditions.

I. INTRODUCTION

The objective of this work is to formulate a collisional-
radiative model for nonequilibrium, caused by escape of
radiation, in stationary, uniform atomic nitrogen where
8000<T,<15000K and 10"2<N,<10" cm~3 Such
conditions are close to conditions in many applications
(electrical discharges, light sources, plasma processing,
arcs in high-power electric thrusters, hypersonic flows,
etc.) and they correspond to situations in which the plas-
ma is partially ionized, i.e., when the electron density is
much lower than the atomic density. At higher tempera-
tures the plasmas become highly ionized and the ionic in-
elastic processes (not included in this work) must be con-
sidered (see Ref. 1). The model will allow for a reliable
interpretation of related experiments on atomic physics
and plasma diagnostics. For example, the lack of such a
model has been one of the main sources of difficulties in
interpretation of measurements of cross sections for elec-
tron inelastic collisions with nitrogen atoms.>® In partic-
ular, the contribution of different transitions to produc-
tion of radiation being measured must be known with a
reasonable accuracy. This requires reliable cross sections
and Einstein coefficients for the inelastic processes con-
sidered in the model. Therefore a substantial part of this
work has been devoted to the determination of the best
possible atomic cross sections and Einstein coefficients.

Earlier models"*~7 of the nonequilibrium nitrogen
were linear models neglecting dielectronic recombination
and the dependence of the radiation reabsorption on plas-
ma conditions. In addition, those models were using pop-
ular, but often unrealistic, predictions for many of the
atomic cross sections and Einstein coefficients. Unfor-
tunately, the predictions are not able to provide a
sufficient differentiation (reaching beyond the impact-
energy dependence and the energy-threshold dependence)
between (a) collisions involving metastable levels and col-
lisions involving radiative levels, and (b) collisions with
small energy thresholds and collisions with large energy
thresholds. It should be emphasized that these
differences are of fundamental importance in the plasmas
considered here because of properties of the electronic
structure of nitrogen atom. For example, the two lowest
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excited levels in nitrogen atom, 2s22p32D° and
2522p32P°, are metastable, with the radiative lifetimes
equal to about 10° and 10? sec, respectively, and with low
excitation energies (2.38 and 3.58 eV, respectively). The
atoms excited to the metastable levels are strongly col-
lisionally coupled with the ground state and they form a
large reservoir of particles that can be ionized much more
easily than the ground-state atoms. Also, the metastable
atoms play a crucial role in production of the upper radi-
ative levels. Therefore the inelastic processes involving
metastable and radiative levels must be treated in a
correct (i.e., different) way, as prescribed by quantum-
mechanical theories of the atomic transitions.

In general, a consistent collisional-radiative model for
steady-state gas should be able to determine (1) the parti-
cle energy distributions, (2) the production of plasma par-
ticles including excited species, and (3) the production
and transport of radiation within the plasma. Thus the
model should consist of three groups of equations cou-
pled together: (i) a set of Boltzmann transport equations
for the plasma particles, solution of which will yield the
particle distribution functions; (ii) a set of rate equations
for the production of electrons and the excited atoms;
and (iii) the radiative-transport equation describing the
transport of radiation in the plasma. Solution of these
equations would yield a complete information about plas-
ma microscopic properties (particle densities and temper-
atures, energy distributions, intensities of the spectral
lines, etc.). Since solution of such a complex model is a
very difficult task, we reduce the number of the equations
by making some physically justified assumptions. In the
plasmas considered here, the ionization degree is not
small and Coulomb collisions play a role in redistributing
the electron energy. Also, the first two excited levels of
nitrogen atoms are not coupled radiatively with the
ground state. Therefore deviation of the electron-energy
distribution from Maxwellian, caused mainly by the elec-
tron collisions with these levels,®° is rather small in the
temperature range considered in this work; the energy es-
caping from the plasma in form of radiation (forbidden
lines) produced by these levels is negligible in comparison
with the energy of the electrons. Thus one can assume
that the electron-energy distribution is Maxwellian. In
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addition, the atom-atom and ion-atom inelastic collisions
can be neglected!®!! so that the forms of the energy dis-
tributions for ions and atoms are not important.

The rate equations for production of electrons and the
excited atoms take into account the following inelastic
processes: (1) electron-impact excitation, deexcitation
and ionization of atoms, and three-body recombination
and (2) photoexcitation, spontaneous emission, photoion-
ization, and dielectronic and radiative recombination.
We do not include atom-wall interactions because it
would limit our model to a specific plasma-wall systems.
In addition, atom-wall interactions are still poorly under-
stood and their rate coefficients are often inaccurate.

The reabsorption of radiation is taken into account by
using the concept of the radiation escape factors,'? which
represent the ability of the plasma to reabsorb radiation
produced in the plasma. For example, the escape factor
k;; for the transition from an atomic level j to a lower lev-
el i is defined by

Ni(r)A;xi;=N;(r)4;

N,.rB; | ax
—N. R I e A LI e LS
NinBy 1= |
X [ L;i(r,v)¢(vidv, (1)

where N; is the density of the atoms excited to the jth
electronic level and B;; and Bj; are Einstein coefficients
for absorption and induced emission, respectively; I; is
the radiation intensity and ¢,; is the line profile. In gen-
eral, the values of the escape factors are between zero
(when the plasma is optically thick for the line) and 1
(when the plasma is optically thin for the line). The num-
ber of photons produced by j-—i spontaneous emission,
per unit volume and per unit time, is equal to N; 4.
N; Ajk;; of these photons leaves the plasma while the rest
of the photons [N; 4,(1—k ;)] are reabsorbed. Thus the
escape factor for a line is the average probability that the
photons of the line will escape from the plasma volume.
In the first-order approximation the escape factors can be
treated as constants, which makes the system of the rate
equations linear. In the more realistic case considered in
this work, the escape factors depend on plasma condi-
tions. Then, the rate equations for the production of
electrons and the excited atoms become nonlinear. Such
a nonlinear system is solved here with the radiation es-
cape factors calculated in the way discussed below.

Solution of our stationary, collisional-radiative model
has established the following properties of uniform atom-
ic nitrogen plasma in nonequilibrium: (a) the production
of electrons and excited atoms as a function of plasma
temperature and density, (b) the deviation of the excited
atom populations from thermal equilibrium, (c) the inten-
sities of bound-bound, dielectronic and continuum lines,
(d) the contribution of photoabsorption to the production
of electrons and excited atoms, and (e) the relaxation
times for the atomic levels.

II. ATOMIC MODEL

Electronic energy structure assumed for atomic nitro-
gen is shown in Fig. 1. Each of the atomic terms (called
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hereafter levels) are numbered sequentially, with i =1 for
the electronic ground state, i =2 for the first excited lev-
el, etc. In general, the interaction between the atomic
electrons in nitrogen atom can be approximated by an
LS-coupling scheme. In addition to the usual assignment
of quantum numbers n, /, L, and S, all the atomic terms
have also the spin (S,) and orbital (L,) angular momen-
tum numbers of the corresponding atomic ‘““cores.” The
ground ionic term 2s5%2p? 3P is taken as the “core” for all
atoms.

The 14 atomic levels assumed in the present calcula-
tions provide a good representation of the atomic proper-
ties in the collisional-radiative model. We tested this
statement by performing calculations for n_,, =6, 10,
and 14 levels. A comparison of the results shows that as-
suming the 14 atomic levels in the model is sufficient for a
reliable prediction, under the conditions considered in
this work, of (a) the electron and the excited atom densi-
ties and (b) the production of the plasma radiation.

One may add that the six-level model can be used in ki-
netic analyses of atomic nitrogen if high accuracy is not
required. For example, the differences (in the electron
and excited atom densities and in the total plasma radia-
tion) between the results of the six-level model and the
14-level model are within a half an order of magnitude.

III. COLLISIONAL-RADIATIVE MODEL

In a uniform plasma, where the atom-atom inelastic
collisions are neglected, the net production of the excited
atoms can be determined by balancing all inelastic pro-
cesses populating and depopulating each atomic level.
Similarly, the electron density can be determined by
balancing all the processes leading to atomic ionization
and recombination. Thus the net production rates for
atoms excited to the ith level and for plasma electrons
can be given, respectively, by13

oN;
—a—’z > NN Cy+ 3 NNR;+ 3 N,;A4;x;
L <n ) P>
+N9N+(a§ikci+azp<’(ai>+NeBci)
N | X Necij+ > N.Ry
j (> k (<i)
+ 3 Apkyp+NS (2)
k (<i)
and
oN,
ot zzNeNiSic_zNeNeN+Bci
i i

— 3 NN, (aRk;+aPlk,;)), (3)

where N, and N, are electron and ground-state ion den-
sities, respectively. The quantities C;; and Rj; are the
rate coefficients for the electron-impact excitation and
deexcitation, respectively; 4 is the transition probability
(Einstein coefficient) for the j —i radiative transition; S,
is the electron-impact rate coefficient for ionization of the
atom excited to the ith level; a® and B, are rate
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coefficients for radiative and three-body recombination, spectively.

respectively, producing an atom excited to the ith level; In a steady state, Eq. (2) can be rewritten as'*

aP is the effective dielectronic recombination rate N, 3 N.C,

coefficient for dielectronic transitions to the i =1, 2, and _ ek (<i) ko

3 “terminating” levels (see discussion below); k ;, k.;, and N;= S Aduki+N, S Ry +8;., @)
(K, ) are radiation escape factors, discussed below, for k(<i) k(<i)

bound-bound, free-bound, and dielectronic radiation, re- where

J

N, ¥ (N;R;—N,Cj)+ 3 NjAj,-Kﬂ+Ne[N+(af,-Kc,-+a,p(Ka,-)+NeBc,-)-‘N,-S,-C]

j (>1) j(>1i)
§,=—-1 5
! 2 Ak +N, 2 Ry ®
k (<i) k (<i)

i,Ei(eV)

(15,14.54) continuum 2432p? 3P (9=9)

(14,12.92) 2422p%4s 3P (6)

(13,12.86) 2:32p*4s ‘P (12)

(12,12.12) 23s32p?3p *P° (6)

11,12.01 2s32p%3p 3D° (10

210,12.003 5:’2:’25 ‘IS)" 24))

(9,11.84) 2472p%3p ‘P° (12)

(8,11.76) 2s32p33p ‘D° (20)

(7,11.60) 2s32p%3p 28° (2)

(6,10.93) 202p* ‘P (12)

(5,10.68) 2422p%3s P (6)

(4,10.33) 2422p%35 ‘P (12)

(3,3.57) ' 2422p% ?P°  (6)

(2,2.38) 2s22p* ’D°  (10)

(1,0.00) atomic ground state 20025 45°  (4)

FIG. 1. Energy levels of the nitrogen atom assumed in the present work. Energies E; of the levels (not to scale) are measured with
respect to the ground state (i =1) and g denotes the statistical weights of the levels. The vertical arrows indicate the electric dipole-
allowed transitions.
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is negligible if
Ne 2 Nkcki>>Ne 2 (NjRji_NiC,'j)
k (<i) Jj(>i)
T 3 N4k
Jj(>i)
+N€[N+(a§i‘(ci +a1D< Kgj ) +NeBci)
_NiSic] . (6)

The density of atoms excited to the ith level can be ob-
tained from Eq. (4) in a convenient Boltzmann-like form

=B,F, , (7)

where E; —E is the energy gap between the ith level and
the ground state, and g; is the statistical weight of the

level i. If the condition (6) is met, B; can be given as
(B,=1)
S Byt
k (<i)
B=————— fori>1
AT or i R (8)
k (<i)
with
NeRik
Tk S Ak ' ©
k (<i)

Similarly, analysis of the ionization and recombination
balance in steady state [Eq. (3)] leads to the Saha-like
J
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32
N+Ne =H geg+ 27TmekTe ex _ Ul
Nl " max g1 h2 p kTe
Hnmax
= G, ’ (10)
where
2 B;Y;
Hnm=——'_‘ , (11
I+ 37;
i=1
and
N.B.
Y= P . (12)
2 (achk +a£(Kak >)
k=1

Here, g, and g, are statistical weights of the ion and
electron, respectively, U, is the ionization potential for
the ground atomic state, n,,,, is the number of the energy
levels taken into account, and the coefficients af >3=0.

Assuming charge neutrality, one can determine the
atomic densities N; from Egs. (7) and (10). However, in
some cases, the requirement (6) is violated. Therefore we
obtain the solution for the steady-state population N;
from the rate equations (2) as

N, 3 NCu+N, 3 NR;+ I NjAﬁKj,-+NeN+(ac,Kc,+aD(Ka,>+NeBci)

k (<i) Jj (>0 Jj (>0

N;= (13)
Ne[ > R+ > Cij+Sic]+ > Auki
k (<i) j(>i) k (<i)
Dividing the above by N, and the Boltzmann factor F;, the general expression for B; (B;=1) is
N, 3 B.F,C,+N, 3 B,F;R;+ 3 B;FA;x;+(H, /G NaRk,+aP{k,;)+N.B)
B = k(<i) j (>0 j(>i) mer (14)
! F; [Ne > Rk+ > Cij+Sic]+ S Apki
k (<i) j (>0 k(‘<i)

The value of B, is then iterated from Eq. (14), using B; of
Eq. (8) as an initial guess; subsequently, the value of
H, in Eq. (11) is corrected.

IV. EXCITATION CROSS SECTIONS
AND RATE COEFFICIENTS

The main theoretical approach used here for calcula-
tion of the excitation cross sections and rate coefficients is
that formulated by Vainshtein and his co-workers.!%17
Their formalism uses the Bates-Damgaard electron radial
wave functions to derive the Born cross sections o;;. The
electron-atom interaction is reduced to the interaction
between the incident electron and an optical electron of
the target atom, the latter being in the field of the atomic

[

core consisting of the nucleus and the other atomic elec-
trons. Since the energy of the electronic electrostatic in-
teractions in light atoms is much greater than the energy
of the spin-orbit interactions, the LS-coupling scheme for
the angular momenta is used for the description of the
properties of the excited states considered in this paper.
The general form of the electron-impact cross section
for a bound-bound or bound-free transition from an ini-
tial atomic term y; to a final term y; (where y; represents
sets of quantum numbers n, [, L, S,Lp, and SP character-
izing the ith atomic term) is given in the Vainshtein ap-
proach as'®
k

max

t;?tr, g)= 2 [Qkay v (e,0;,1)+ Qi 0y, (e,1,1))], s
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where € is the energy of the incident electron. The single
prime denotes the contribution due to direct and interfer-
ence parts of the excitation and the double prime denotes
the contribution due to pure exchange. 0';,[},](8,1,-,1]) and

a'y'vy‘(s,l,»,lj) are cross sections for the optical electron
il

transition n;l;—n;l; (n and [ being principal and orbital
angular momentum quantum numbers, respectively), and
Q; and Q' are angular factors that depend only on the
angular momenta of the initial (y;) and final (y;) quan-
tum states of the atom. Values of the subscript k are be-
tween kmm=|l,-—lj| and k. = !l,-+lj|. In the first case
(single prime), k represents the multipole order for the
transition, hence cr'mj differs from zero only for k of the
same parity. In the second case (double prime), k is just
the summing index of arbitrary parity.

Several transitions (called hereafter ‘“‘difficult” transi-
tions), involving excitation of two atomic electrons, can-
not be treated by the Vainshtein approach (see discussion
below).

The rate coefficients for electron-impact atomic excita-
tion are defined as

87
C,-J-(Te)—m—e2 AEUEfM(g)UU(E)de , (16)
where f),(e) is the electron Maxwellian distribution
32
(e)= e exp |— 17
I ©O= 50T P\ 7%,

Assuming the distribution (17), the principle of detailed

balance is applied to obtain the deexcitation rate
coeflicients,
8i E,—E;
R-~=_ -
J! g; €xXp kTe ij (18)

A. Electron-impact excitation with |AS|=0

1. 2— 3 transition

The cross section for the 2—3 transition was taken
from the close-coupling calculations of Henry, Burke,
and Sinfailam'® (their results seem to be more accurate
than those obtained earlier by Smith er al.'®? and
Seaton?!).

2. Other transitions

All the |AS| =0 transitions, except the 2— 3 transition,
are calculated by using the Vainshtein approach.'® Only
the direct excitation part of the total cross section is con-
sidered for the transitions since the contribution due to
exchange is negligible.

The following analytical formula, fitting the results of
theoretical calculations, is used for the rate coefficients
for the electron-impact atomic excitation:

¢ 372

(B)=10"8
Cy(B) AE;; U, 21, +1

exp( —B)G(B), (19)

i
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in cm”s™ °, where the sum in Eq. (15) has been reduced to
the first term with nonzero Q, (k=k_;, or k ;,,) be-
cause the higher-order cross sections are negligible. The
function G, (B) is

_ AVB(B+1) _
G.(B) Bty In(l6+1/B), k=1 (20)
AVBBFI)
G, (B)=—"""—— k#*I1 21
(B B4y 21
where
_AE,
p= kT, , (22)

with the parameters A and y compiled in Table I. We as-
sume that the interaction energy of the optical electron
with electrons in the atomic core is considerably less than

TABLE 1. Parameters in the rate coefficients for electron-
impact excitation (|AS|=0 transitions) of atomic nitrogen. The
designation of the inner shell 1s? is omitted in all electronic
configuration in all tables.

i—j Transition A X
1—4 2522p348°—2522p23s 4P 2.62 0.12
16 2522p34S°—252p* 4P 6.483 0.442
18 2522p348°—2522p?3p *D° 0.101 0.033
1—10 2522p34S°—252p?3p 4S° 0.231 0.081
1—13 2522p348°—>25%2p24s 4P 0.155 0.731
25 2522p32D°—2522p23s *P 0.134 0.241
27 2522p32D°—25%2p23p 1S° 0.979 1.218
211 2522p3iD°—252p*3p *D° 1.784 0.793
212 2522p3iD°—252p?3p *P° 0.019 0.316
214 2522p32D°—2s5%2p24s *P 0.132 0.487
35 2522p32P°—2522p23s 2P 0.222 0.232
311 2s%2p*2P°—>25%2p?3p D" 0.167 0.373
312 2522p3iP°—2522p23p 2P° 1.762 0.779
314 2522p3iP°—2522p24s 2P 0.139 0.307
46 2522p23s *P—252p**P 2.424 0.977
48 2522p?3s 4P —2522p*3p *D° 5.467 0.659
4—9 2522p?3s ‘P —252p*3p 4P° 5.528 0.622
410 2522p?3s *P—252p?3p 4S° 5.563 0.549
413 2522p?3s ‘P —252p*4s 4P 2.679 1.149
57 2522p?3s 2P —252p*3p 2S° 4.409 0.829
511 2522p*3s 2P —2522p*3p 2D° 5.373 0.611
512 2522p?3s 2P —2522p?3p 2P° 5.413 0.550
514 2522p?35 2P —2522p24s 2P 3.126 1.121
6-—8 252p**P—252p*3p “D° 4.439 0.818
6—9 2s2p*iP—2s2p23p 4P° 4.776 0.773
6—10 252p*4P—2522p23p 4S° 5.129 0.676
7—11 2522p?3p 2S°—25%2p*3p ’D° 1.438 1.279
7—14 2522p?3p 28°—252pr4s 2P 0.442 0.154
8—9 2522p¥3p *D°—2522p*3p *P° 0.054 0.485
8—10 2522p?3p *D°—252p*3p 4S° 0.567 0.907
8—13 25s22p23p *D°—2522p%4s P 0.867 0.231
913 252p?3p *P°—252pr4s 4P 0.990 0.251
10—13 2522p23p *S°—2522p24s 4P 1.357 0.320
11—12 2522p23p 2D°—25%2p*3p 2P° 0.246 0.324
11— 14 25%2p23p 2D°—>2522p%4s 2P 1.107 0.267
12— 14 2522p23p 2P°->252p4s 1P 1.393 0.319
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the energy of the interaction among the core electrons.
The energy of the atomic system is then composed of the
energy of the electrons from the atomic core and the en-
ergy of the optical electron moving in the field of the
core. The conservation of the core orbital (L,) and spin
(S,) angular momenta implies the conservation of the to-
tal atomic orbital (L) and spin (S) angular momenta as
well. As a result, the angular factors Qi (v,,v ;) for tran-
sitions between atomic levels can be given as follows.

(i) Transitions not involving groups of equivalent elec-
trons:
, L L)

L I, k

Oy, 7 )=L+ DL +1) ,  (23)

where { } are the 6j symbols for angular momentum vec-
tor addition.
(ii) Excitation from a shell of equivalent electrons:
Qk(y,-,yj)=m(GLL;§p 221+ 1)2L;+1)

2

I, L L,
X , (24)
L, I, k

LS . . .
where G, ' 1is the fractional parentage coefficient of the
pp

atomic core (parent ion) term L,S,,.
(iii) Transitions between two different groups of

equivalent electrons [ Y17 —15 ~lim+1.

Quyiy)=(41,+2—m )(G,:::p (20, +1)(2L; +1)

I, L, L,

L I, k

X (25)

(iv) Transitions between terms of the same config-
uration:

(21,+1)

ka,-,?’j):(

mr kipmp, $H|%, 26
2L ) | LSIUHLS )| 6)

where the matrix element for the transition is

("L, S||UM|IL;S)

=m 3 [Gy's Gl (—D) T
LpSp PP PP
[li L, L,
XV (2L;+1)(2L;+1) ,
j L, I, k
Q7
and
(I"L,S|UX|I™L;S)=—UR""L, S| UHI®~"L;S),
(28)

with R =2(2/+1).

The dependence of the rate coefficients for transitions
between closely spaced levels (those with AE;
<< U;,U;,kT,) on AE;; is weak. In such cases it is more
convenient to express the rate coefficients by

_ 4,8”
Cy(B)=10 8(21,.+1)<1+Bl/)(1) ’ 29
incm®s™!, and
B,= k7;e , (30)
with the modified fitting parameters
= AR - = AR 3D

I—XAEU’ X1 AE, .

B. Electron-impact excitation with |[AS|=1

1. 1—2 and 1— 3 transitions

The electron-impact cross sections for the 1—2 and
1—3 transitions were taken from the close-coupling cal-
culations of Henry, Burke, and Sinfailam.'?

2. Other transitions

For the collisional model assumed, the exchange be-
tween the optical electron and the incident electron is the
only possible mechanism for change in the total atomic
spin. Cross sections for all the |AS|=1 intercombination
transitions, except for the two cases mentioned above, are
obtained from the Vainshtein approach when only pure
exchange [the second term in Eq. (15)] is considered. The
rate coefficients are given in a numerically fitted form as
products of angular and radial factors,

372
cpB=10"4 |- " —exp(—BIG"(B)
o AE;U; 21, +1 ’
(32)
in cm®s ™!, where k has disappeared because it is either

single valued or is summed over all its values [Eq. (15)];
for |AS|=1 transitions

k=lli—lj|,|1i—lj|+1,...,|I,-+Ijl . (33)
The function G"'(B) is
AIIB B 1/2
GII — )
B=TBry |B+1 B4

where the parameters A4’ and y'’ are given in Table II.
The angular factors Q', summed over the multipole or-
der k, for transitions between a lower term ¥, and an
upper term v ;, are as follows.

(i) Transitions not involving groups of equivalent elec-
trons:

" =5 o e +1)
Q"(viv; _§2(23p+1) i i
y L L L,)?
L I, k
28,+1

T20s,+ 0 33
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(ii) Transitions from shells of equivalent electrons:

28, +1

" = e
Q" ey )= EmGLs ) 505 )
I L; L, ’
XQLADQRL A+ g
28, +1
— L;S; 2 )
m(GLpsp) 2(28,+1) .

The rate coefficients for the transitions between closely
spaced levels are given in the following form:

TABLE II. Parameters in the rate coefficients for electron-
impact excitation (|AS|=1 transitions) of atomic nitrogen.

i—j Transition A" X"
1—5 2s22p345°—25%2p23s 2P 3.886  0.090
1—7 2s22p348°—25%2p?3p 28° 40.648  2.739
1—11 252p348°—2522p23p 2D° 3.649 0219
1—12 2s22p348°—2s2p23p 2P° 3.855  0.008
1—14 2s2p348°—252p24s 2P 3.993  0.396
24 2522p3iD°—252p23s 4P 1.263 0.031
26 25s22p32D°—2s2p**P 20.596 1.512
28 2s2p32D°—2522p*3p *D° 50.966 1.958
29 2s2p32D°—2s22p*3p 4P° 40.559  2.547
2—10 2522p32D°—2522p?3p 4S° 19.128 1.643
2—13 252p32D°—2522p s *P 4.354  0.397
34 2s02p32P°—>2522p?3s 4P 1.084  0.019
36 2522p32P°—2s2p* P 22.700 1.524
3-8 2s2p32P°—25s%2p?3p *D° 67.457  0.989
39 2522p32P°—252p3p *P° 58.186 1.473
310 2522p32P°—2s22p%3p 4S° 35964  2.656
313 25%2p32P°—2522p%4s P 4.482  0.433
45 2522p23s5 4P —2522p?3s 2P 1.588  0.007
47 2522p?3s *P—252p?3p 2S° 18.408 1.288
411 2522p?3s *P—252p23p *D° 15.188 1.717
412 25s2p23s *P—252p23p 2P° 13.897 1.782
414 2522p?3s *P—25%2p24s P 0.804  0.550
58 2522p?3s 2P —25%2p23p *D° 16.728 1.307
59 2522p?35 2P —2522p23p *P° 16.574 1.423
510 2522p23s 2P —25%2p23p 4S° 15.633 1.625
513 252p?3s 2P —252p24s ‘P 3.180 1.106
78 2522p?3p 28°—2522p%3p *D° 0.419  0.387
7—9 2522p23p 2S°—2s2p23p *P° 7.880  0.879
7—10 2s22p23p 28°—252p23p 4S° 15.016 1.618
713 2522p*3p 1S°—>2522p%4s P 1.192  0.508
8—11 2s%2p23p *D°—2522p*3p *D° 7.816  0.730
8—12 2522p?3p *D°—25%2p*3p 2P° 7.355 1.360
8—14 2522p?3p *D°—25%2p?4s P 0916  0.573
911 2522p23p *P°—252p*3p *D° 3.355  0.390
912 2522p%3p *P°—252p*3p 2P° 12.145  0.906
9->14 2s2p23p *P°—2522p%4s 2P 1.117  0.739
10—11 2522p?3p 4S°—25%2p23p *D° 18.135 0.149
10—12 2522p?3p 4S°—25%2p23p 2P° 1.221 0.209
10— 14 2522p23p 45°—>25%2p24s 2P 1.732 1.111
11—13 2522p?3p 2D°—25*3p24s ‘P 2.714 1.468
12—13 2s22p?3p 2P°—252pr4s 4P 3.917 1.791
13— 14 2522p?ds P —252p4s 2P 0.561 0.013

A"B3/2
C//(B)=10"8 -1 — (37
(21, +1)(1+B,/x})
incm3s™!, and
ay=4 v X'R (38)

7’ X1 = AE,‘j s
where f3, is given in Eq. (30).

C. “Difficult” transitions

As said before, the term ‘“difficult” is used here to
denote the electron-impact transitions involving excita-
tion of two atomic electrons. The cross sections for these
transitions are calculated using the quantum-classical for-
mulation of the binary-encounter approximation.’? In
this approximation, the exchange electron-impact cross
section for atomic excitation is given as (with symbols
defined in Fig. 2)

et 1
= 10924 | ——
Tl )= 500 e+U,—AE,
B 1
e+ U, —AE;
2U; 1
3 | (e+U,—AE;; )
-—L 11 G
(e+U,—AE;)

where AE;,, is to be replaced by ¢ when AE;
Se<AE; . In the situation when there are more than
one electrons in the outer shell, the cross section (39) is to
be multiplied by the number of electrons in the shell.

We use Vainshtein’s rate coefficient for the 4—6

continuum

AE; AE;;n Ui

ground state 1

FIG. 2. Meaning of the symbols used in Eq. (39). AE;; and
AE;; ;, represent the energy gap of the i —j transition and the
energy gap for excitation to the next (j+ 1) upper level, respec-
tively. U; is the ionization potential for the ith level.
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difficult transition. We have done so because a compar-
ison of the binary-encounter cross section (39) for the
transition with the Vainshtein cross section and with the
Monte-Carlo trajectory calculations of Mansbach and
Keck?? indicated that the binary-encounter cross section
is probably too high. The rate coefficients for the 6—38,
6—9, and 6— 10 transitions were also obtained from the
Vainsthein approach.

V. IONIZATION CROSS SECTIONS
AND RATE COEFFICIENTS

A. Experimental cross sections

The cross section used here for the electron-impact
ionization from the ground state is that measured by
Brook, Harrison, and Smith.?*

B. Ionization from the two lowest excited levels

The Vainshtein approach is used to determine the rate
coefficients for electron-impact ionization from the excit-
ed 2p3 shell (the levels i =2 and 3). Since these levels be-
long to the same shell as the atomic ground state we use
the same constants A4 and Y for all the three levels. The
constants were obtained from a numerical fitting of the
ionization rate coefficient for the ground state (obtained
from the cross section measured by Brook, Harrison, and
Smith?*) to the expression

7 132 _
= -8 ! —_ .
S..(B)=10 7 21i+lexp( B)G;(B), (40)
in cm3s ™!, where
8 172 y
G;(B)= W m ) 41)
and
U;
B= kT (42)

The parameters 4 and y for the levels i =1, 2, and 3 are
27.71 and 5.58, respectively.

The angular factors Q; for ionization from the outer
shell I} with m electrons are

Q,(I"L.S, 11" _‘LPSP)=m(GLL;§; 2. (43)

The angular factor for the i =1 level is equal to 3 and it is
equal to 3 for the levels i =2 and 3.

C. Ionization from excited levels with i > 3

The cross sections of Gryzinski and Kunc? are used
for the electron-impact ionization of excited nitrogen
atoms with i > 3. These cross sections are in good agree-
ment with experimental values for ionization from the
ground states of various atoms and they should be an ac-
ceptable approximation for ionization from the inter-
mediate levels considered in this work. (A more accurate
version of the cross sections can be obtained by using the

approach of Gryzinski and Kunc with the atomic elec-
tron distributions formulated recently by Kunc.?®) The
cross sections have the analytical form

a_(£)=1r_e4 m
“ U} [(M+k, )2 +17
2 2 1
X [1+—"——+= |1+—
(A2 4k 3 A2 }
1
X\|1l—=1, (44)
}\’2

where m is the number of electrons in the outer shell, U,
is the ionization potential for the level i, A2=¢/ U;, and
k,=W/Uj; Uj is the first ionization potential of the
outer shell and W is the average binding energy of the
electrons in the shell

1 m
2 (U 45)

ji=1

W=—
m

The three-body recombination rate coefficients are ob-
tained from the principle of detail balance

hz 372 U

i
2om kT, | P |%&T,

8i
geg+

B.= S - (46)

VI. SPONTANEOUS EMISSION

Considering the important role of radiation in the
nonequilibrium plasmas, it is important to use reliable
values of the Einstein coefficients 4. To calculate many
of the coefficients (especially those for the intercombina-
tion transitions) one must include the possibility of strong
spin-orbit magnetic interaction. A summary of the selec-
tion rules used in this work for electric dipole (E1), mag-
netic dipole (M), and electric quadrupole (E2) transi-
tions is given, with decreasing order of restriction, in
Table III.

The probabilities for j—i transitions involving terms
with fine structure are obtained as multiplet averages

1
= + (TT) . 4
=3 1)121.,,]_(21’ 1) A;(J;,J;) 47)

I

A

A. Transitions with |AS|=0

The magnetic interaction makes a negligible contribu-
tion to the oscillator strengths for the |AS|=0 transi-
tions?”?® and the assumption of LS-coupling scheme is
valid.

(i) Electric dipole (E1) lines. The Einstein coefficients
for the electric dipole lines were obtained from work of
various authors.?? 37 Due to the large volume of experi-
mental and theoretical results available for the lines, only
the most recent and commonly accepted Einstein
coefficients are used. These coefficients are averaged and
the averaged values are used in this work (Table IV).

(ii) Electric quadrupole (E2) lines. The oscillator
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TABLE III. Selection rules used in the present work for E1, M1, and E2 radiation. S and L are
atomic spin and orbital angular momentum quantum numbers; J and M are atomic total angular
momentum and magnetic orbital momentum quantum numbers, respectively; n and / are the principal

and orbital angular momentum quantum numbers for the .optical electron.

Electric dipole (E1)

Magnetic dipole (M1)

Electric quadrupole (E2)

1&

(1) AJ=0,%1 AJ=0,%1 AJ=0,£t1,%+2
(except 0<50) (except 0<50) (except 0450, 141,041)
(2) AM=0,%1 AM=0,%£1 AJ=0,%1,%+2
(except 0«40 (except 0<50
when AJ=0) when AJ=0)
(3) parity change no parity change no parity change
(4) one electron jump no electron jump one or no electron jump
Al==1 Al=0 Al=0,%2
An arbitrary An=0 An arbitrary
For LS coupling only
(5) AS=0 AS=0 AS=0
(6) AL=0,%1 AL=0 AL=0,%1,%2
(except 0<40) (except 0+450,0441)

strength for the 3—2 transition has been calculated by
Butler and Zeippen® and this result is used here. The
Einstein coefficients for electric quadrupole lines, except
the difficult transitions, are calculated from Eq. (48) as-
suming the oscillator strength f,;=6.8X107'°.

B. Transitions with |AS|=1

In this case, both magnetic dipole (M1) and electric
quadrupole (E2) interactions are considered. The
coefficients 4 (for magnetic dipole M1 plus electric
quadrupole E2) averaged over the multiplet for the 2—1
and 3— 1 transitions are available in literature?®3” 3% (we

use in this paper the recent calculations of Butler and
Zeippen3®). The oscillator strength for the 5—1 and
14— 1 transitions are taken from Ref. 30.

A simple approach, based on the results discussed
above and on a survey of oscillator strengths for other in-
tercombination lines, is used here to estimate the Einstein
coefficients for the rest of the |AS|=1 transitions. We
assume values of Ef,»j——-1.1><10'5 for lines with wave-
length A, $2500 A and f;=7.25X107"? for all lines
with Aj,->2500 A. Using these values, the transition
probabilities are obtained from

TABLE IV. Electric dipole (E1) lines in the nitrogen atom. A, f;;, and A4 are the line wavelength,
absorption oscillator strength, and Einstein’s coefficient, respectively.

i Transition Ay (A) £ A 7Y
41 2522p?3s ‘P —2522p34S° 1199.9 2.7X107! 4.16 X108
6—1 252p*4P—2s2p3is° 1134.6 7.2X107?2 1.24 X 108
131 2522p24s ‘P —2522p34s° 965.1 3.6X1072 8.7Xx 107
552 252p?3s 2P —252p32D° 1493.3 7.0X107! 3.5x 108
14—2 2522p%4s 2P —2s22p32D° 1177.8 3.0x1073 2.39x 107
53 2522p?3s5 2P —2s22p32pP° 1743.6 6.1X1072 1.3X10°
14—3 25%2p?4s 2P —>2522p32pP° 1328.1 6.0X1072 227X 108
8—4 2522p3p *D°—25%2p*3s P 8700.6 59x107! 3.1x10’
94 252p13p *P°—25%2p?3s ‘P 8216.6 3.6X107! 3.57%x10’
10—4 2522p3p 4S°—2522p23s 4P 7456.2 1.3x107! 4.56Xx 10’
7—5 2522p?3p 28°—252p?3s 2P 13544.8 9.6X107? 1.05x 10’
11—5 2522p23p 2D°—2522p?3s 2P 9406.4 5.8x107! 2.64 X 107
12—5 2522p23p 2P°—2s5*2p*3s 1P 8628.0 34x107! 3.04 X 10’
8—6 2522p23p *D°—2s2p*4P 14930.3 7.6X1072 1.37X10°
96 2522p?3p 4P°—252p* 4P 13559.6 3.1x107! 1.13X 107
10—6 2522p?3p *S°—252p* 4P 11 606.2 1.2X1072 1.71X 108
14—7 2522p24s 2P —252p?3p 28° 9435.0 1.0 2.55X% 10’
138 2s2p?4s *P—252p*3p *D° 11299.7 1.1X1072 9.59 % 10°
13—9 2522p24s *P—25%2p23p *P° 12235.8 4.3X1072 1.9x10°
13—10 2522p24s *P—2s%2p?3p *S° 14426.8 43x107! 4.56X10°
1411 2522p?4s 2P —252p*3p 2D° 13 604.2 9.2X1072 5.55Xx10°
14—12 2522p24s 2P —2522p?3p 2P° 15645.7 4.9%x1072 1.32X 10°




>

4 = 6.67x10" &

i Sij» (48)
Ji A’i gj '

with the wavelength A in angstroms and the Einstein

coefficient in s~ .

C. Difficult transitions

The value of the oscillator strength f;;= 10~ was as-
sumed?’ for these transitions. Consequently, Eq. (48) is
used to estimate the corresponding transition probabili-
ties. This simple approach seems to give reasonable esti-
mates of the Einstein coefficients for the E2 and M1 tran-
sitions [in any case, the possible error resulting from this
approach cannot introduce any significant inaccuracy to
the collisional-radiative model because the collisional
deexcitation (N;N.R ;) always dominates the radiative
deexcitation (N; 4 ;k;) in the j —i difficult transitions].

VII. DIELECTRONIC RECOMBINATION

Dielectronic recombination is a result of two-stage pro-
cess: dielectronic capture (with the reverse process—
autoionization) followed by radiative stabilizing transi-
tion,

e—+-Xp+ —X,—>X,+hv, (49)

where p denotes an initial state of the atomic ion X, a
and [ represent an autoionizing (doubly excited) and a
“true” bound (singly excited) state of the atom X.
Nussbaumer and Storey*""*° showed recently, including
the contributions due to the outer electron, that the
dielectronic recombination can be more important than
the radiative recombination at temperatures below 20 000
K and that the efficiency of the process is much higher

than that obtained from the Burgess formula*""*? (see Fig.
3).
10" | . | T
w2k___  _oe===—TT
1013F ——= == e
— - -
'm 1 0-‘4 - . P - - n
S 107" L’ 3\ - =
BAP s
%§ 10-16/ ( )// ]
ng 1017 ,/\ a
108 /, (Iss) N
’
1079/ .
/
10'20 L 1 1 1 1
08 1.0 1.5 20 25 3.0
T, (10* K)

FIG. 3. Comparison of the total dielectronic recombination
rate a2, =3 3., aP (dot-dashed lines) and the total radiative
recombination rate aft,=3!% af (solid line) of the present
work. (BAP) represents the total dielectronic recombination
rate of Aldrovandi and Pequignot (Ref. 83) based on the Bur-
gess model neglecting stablizing transitions of the captured elec-
tron. (JSS) represents the total dielectronic recombination rate
of Shull and van Steenberg (Ref. 84) based on the Jacobs model
also neglecting stabilizing transitions of the captured electron.
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We use here the approach of Nussbaumer and Storey
(NS) assuming that the population of the excited ionic
levels is much lower than the population of the ground
state of the recombining ion [p =1 in Eq. (49)]. Since the
first excited level (2p2'D) of NV ion is metastable and
has the excitation energy about 2 eV, the assumption re-
quires the ratio N, /N, to be much less than one in the
plasmas discussed here. Another important assumption
of the NS model is that only radiative transitions satisfy-
ing LS-coupling electric dipole selection rules are includ-
ed.

It has been shown by a number of authors**~ %’ that
various collisional effects (collisional stablization by elec-
trons and atoms and collisional transitions between
close-lying autoionizing levels) can influence dielectronic
recombination at moderate and high plasma densities.
As electron density increases (from lower values) the con-
tribution of the angular-momentum-changing electron
collisions between the autoionizing levels increases most
rapidly.***’ A crude estimate of this contribution (de-
tailed calculations for the N© ion are not available in
literature) can be made by comparing the rates for the
angular-momentum-changing collisions with the rates for
stablizing radiative transitions in the way discussed for
highly charged ions by Jacobs and Blaha.*” The compar-
ison indicates that the angular-momentum-changing col-
lisions become important in atomic nitrogen when
N,2 10" -10" cm™3. (Jacobs and Blaha also discussed
the validity of LS-coupling approximation when these
collisional processes are included.) One should add that
at higher electron density (N, 2 10'* cm™3) the effect of
screening the Coulomb potential of the ion by surround-
ing electrons and ions must be included.***® The screen-
ing reduces the number of bound states, causing a de-
crease in the recombination coefficient. Also, at very
high atomic densities the atom-stabilized transitions,*
e+X"+X=X,+X, should be included. Taking the
above into account, one can say that the collisional effects
discussed above can be important for the dielectronic
recombination in the plasmas considered here if
N,>10"-10" cm 3.

The NS approach allows one to calculate (neglecting
the collisional effects discussed above) the dielectronic
recombination coefficients for the effective (direct plus
cascade) transitions to the ‘‘terminating” levels i (the
coefficients @?). The terminating levels are the metasta-
ble levels at which the cascades terminate, that is, the
probability of further downward radiative transitions is
very small. The effective dielectronic recombination
coefficient a? is defined in such a way that the rate of
population (resulting from dielectronic recombination
only), per unit volume and unit time, of the ith terminat-
ing level is given by

dN?P
dt’ =N,N  aP{k,) , (50)
and similarly,
dN?P 3
“=—3 NN, aP(x,;), (51)
dt i=1
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and these terms are included in the rate equations (2) and
(3) when i =1, 2, and 3. The effective dielectronic recom-
bination rate coefficient a” can be fitted to the following
expression:’!

aP=10""%(a/t+b+ct+dt?)t 3 %exp(—f/t) (52)

in cm®s™ !, where t=T,(K)/10000 K and the constants
for the i =1, 2, and 3 levels are listed in Table V. The
dielectronic rates a?, a?, and a? are compared with the
radiative recombination rates aX, a®, and af, in Fig. 4.
One should add that the plasma total dielectronic recom-
bination coefficient a2, of the present work is very close
to the sum of the coefficients a? taken over the i=1, 2,
and 3 levels. Examples of autoionizing states @ and a —i
direct transitions populating the /=1, 2, and 3 atomic
levels are shown in Fig. 5.

VIII. RADIATIVE RECOMBINATION

The cross section for radiative recombination to the ith
atomic level can be obtained from Milne’s relation®

8 (hv)?

g,.(v), (53)

where o,.(v) is the photoionization cross section, v is the
continuum line frequency, and ¢ is the kinetic energy of
the incident electron. It was established by Bates and
Dalgarno®! that direct application of the photoionization
cross sections for hydrogenlike species to the low-lying
states of multielectron atoms is inappropriate. The pho-
toionization cross sections for multielectron atoms can be
obtained from the formalism of Burgess and Seaton’? and
of Peach;*>™% for a L,S,nl LS—L,S,e'l'L'S transition
the cross section is

_5.45X107 Pn;

T e,y
X 3 CllGneglie’l")cos®|? , (54)
r=I+1
in cm?, with
O=mng+u(e)+xinglel)], (55)

where n.4=(R /U,)""? is the effective principle quantum
number for the ith level and the ejected electron energy
e’=hv—U; is given in rydbergs. u,;(g’) is the quantum
defect of the /'L’ series and it may be extrapolated to
positive energy in the continuum spectrum as u;(0)
+be’.5%% The functions G(n.gl;e'l’) and x(n.zl;e'l’)
were calculated by Peach.®* The values of y,(0) and the
slope b of the /'L’ series, obtained from calculations of

TABLE V. Constants in the effective dielectronic recombina-
tion rate coefficients a?.

i a b c d f

1 0.0102 —0.0032 0.0754 —0.0068 3.1555
2 0.0017 0.5661 0.1008 —0.0121 0.4443
3 0.0000 0.1264 0.0273 —0.0031 0.4570
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FIG. 4. T, dependence of the effective dielectronic recom-
bination rates a” (dashed lines) and radiative recombination
rates a® (solid lines) obtained in the present work.

Peach,> are summarized in Table VI. The coefficient C;.
in Eq. (54) is
2

l

! L L,
L'

C,= 3 @L'+1)

L'=L*1

e (56)

where [, is the larger of the two numbers / and /.
The formula (54) is also applicable to photoionization

E(eV)
19.63 f=————- 1——2p%5p ‘P (g9 =12)
19.15 - ———r—1——2p%p ‘P (12)
17.90 —+——2p%3p ‘P (12)
Ef = 1643 2p? 'D (5)
“e| | | {0 em———— —— 2p'3d7°P (6)
14.90 - 2p?3d D (10)
14.86 ————r1—— 2p%3d °F  (14)
14.78 - 2p’44 ’D (10)
E} =14.53 2p? *P (9)
3.57 2p* pe (8)
2.38 2p® 3D (10)
atomic ground state

0 2p° 45" (4)

FIG. 5. Some of the a — i direct transitions, indicated by the
vertical arrows, populating the “terminating” levels i =1, 2, and
3 in atomic nitrogen. The doubly excited autoionizing levels are
represented by the dashed lines, whereas the singly excited
atomic and ionic levels are represented by the solid lines. E and
g are energies (not to scale) and statistical weights of the levels,
respectively, and E{ and E; are energies of the ground and the
first excited ionic levels, respectively.
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TABLE VI. Quantum-defect parameters p,(¢') for the I'SL’
series.

r 25+1 L (0 b

0 2 1 1.100 —0.080
0 4 1 1.165 0.000
1 2 0 0.798 —0.246
1 2 2 0.619 —0.361
1 4 0 0.651 —0.214
1 4 2 0.751 —0.198
2 2 1 0.067 0.000
2 2 2 0.009 0.000
2 4 1 0.030 0.000
2 4 2 0.058 0.000

from the ?.p3 shell of the nitrogen atom (i =1, 2, and 3).
However, we use here a simpler (but accurate) formula of

Henry.’” His photoionization cross section, based on
work of Seaton®® and Dalgarno and Parkinson,>* % is
—s —(s+1)
- v
o, V=107 %y |la|— | +(1—a)|— ,
Vth Vth

(57)

in cm?, where the photon frequency v and the threshold
frequency vy, are

U, +¢ U;
PG

The parameters (o, a,s) for photoionization from levels
i=1, 2, and 3 to the ground ionic state are
(11.42,4.287,2.0), (4.41,3.847,1.5), and (4.20,4.337,1.5), re-
spectively.

The radiative recombination cross sections (53) are
used with the Maxwellian electron distribution to obtain
the rate coefficients @R for radiative recombination to
each atomic level i; the major contribution to the total
rate comes from the recombination to the lowest levels

(with i <3) since af «<vn .
eff

IX. RADIATION ESCAPE FACTORS

The line profiles ¢,;(v) assumed in the present calcula-
tions are those resultmg from superposition of the
Doppler and Lorentz lines (the Voigt profile). The
frequency-dependent photoabsorption cross section for
the i — j transition can then be given by

oij(v)=%fij¢ij(v) , (59)
where
In2 2
by(v)= ALD 2 1 Has), (60)
with
a= Av, (61)
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(v—v;)
bZT;‘J““(an)l/Z , (62)
D

and where the Voigt function H(a,b) is
+ oo —yp2
H(a,b)=2 [ =SR2 (ZyTdy (63)
—w g+ (b—y)
with normalization condition

f ¢,,(vd(vv) ‘/ﬂ

+

H(a bdb=1. (64)

The half-widths of the Lorentz and Doppler profiles are

Aj;

AVL=4—7T s (65)
and

1/2
Avp =2 |1n2 Loy
ma
172
=Y \in2 . ‘(l+p2) , (66)

where m, and T, are atomic mass and temperature, re-
spectively, ¥V is the most probable microturbulent flow
speed of the atoms, and p is the ratio (neglected in the
present calculations) of the microturbulent flow speed to
the average thermal speed of the atoms. 4;, v;;, and the
atomic constants c,e, h,k,m, have their usual meanings.

Values of the Voigt function are calculated using the
numerical approach of Armstrong,% which leads to re-
sults in very good agreement with results of other calcula-
tions®? % in a wide range of the parameters @ and b. One
may add that numerical calculations show that under
most of plasma conditions considered in this work, the
Doppler profile dominates the broadening of spectral
lines.

The j—i escape factor for a plane-parallel geometry of

width L with a Doppler absorption profile can be given
65,66
as™™>

' Q
Kji(T,Q)—lT‘

B
509 1 ] , (67)

where B is the Planck function,

a= ﬁ ’ (68)
N, R ) hvj,- (69)
n= —exp ’
A kT,

and the source function is related to the optical depth =
by

stn=0-a) [k (1=s)sdi+0B , (10
with
K (n=1 [ 7763 (u)Ei (¢, (u)du . (1)

The mean optical depth {7), defined in terms of the aver-
age absorption coefficient (k(v)), is
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L cesses other than dielectronic recombination.
= k . 72 . . .
() fo {k(v))dx 72 The escape factors for the ¢—i continuum lines are

Otsuka, Ikee, and Ishii®® % derived the upper and lower
limits for the escape factors from studies of the upper and
lower bounds of the source function.®’” Numerical calcu-
lations of the factors k;({7,) =(7)/2) at the symmetry
plane of the slab (x =L /2) [Eq. (67)] over the range
1078<Q <1 and 1073=<{7r) <10°% consistently satisfy
the two limits. In addition, at large optical depth {(7),
the functional dependence of the escape factors

1.8
(o) (mIn{ry))' 72

for (r)>10° (73)

Kji(<TO>=<T>/2):

agrees with the asymptotic result of Holstein'> within
10% over the 10> < {(r) <10’ range. (It should be added
that in our approach the j—i escape factor evaluated at
the center of the uniform slab is equal to the average
probability that the photons produced in the j—i transi-
tions, in a column across the plasma slab, will reach the
edge of the slab.) The escape factors are poorly sensitive
to the variation of . It is noteworthy that the earlier es-
cape factors of Drawin® [k; <exp(—Q(7))] show
strong dependence on (), violating the upper and lower
limits of the escape factors used in this work.

The average absorption coefficient in uniform plasma is
1 & ] , (74)

(k(v))=No;(v)) N,

and the mean optical depth is

(Vji)
2

giNj

g;N;

O;:
(r)=N,—~ 1— L, (75)

if one replaces the average absorption cross section
(U,-j(v)) by half of the maximum absorption cross sec-
tion evaluated at the line center frequency v ;.

The radiation escape factors k, for the dielectronic
recombination lines are calculated in the way similar to
that used above for the transitions between singly excited
atomic levels. The effective radiation escape factors
(x, ), used below in the calculations of the intensity of
radiation produced in the dielectronic recombination to
the terminating levels, were estimated from the properties
of the direct, dipole-allowed dielectronic transitions end-
ing on the ith terminating level. This is a good assump-
tion at lower densities when the reabsorption of the
dipole-allowed lines is weak and the contribution of the
dielectronic radiation associated with cascades is small.
At higher plasma densities the direct, dipole-allowed
dielectronic lines are well ceabsorbed and the contribu-
tion of the dielectronic radiation resulting from the cas-
cades may become large enough to question the assump-
tion. However, this contribution would not change the
overall picture of plasma radiation, because at higher
densities the part of the radiation produced in the j—i
transitions forming the cascades that originate on the au-
toionizing levels is smaller than the part of the radiation
produced in these transitions as the result of atomic pro-

calculated by assuming the exponential dependence
K, ~exp(—(1,)), (1571 (76)

with the average optical depth given by

i—1
<Tci>= 2 Njch(<V,*))+ 2 Nkakc(<vi>) L,
k=k'

j(zi
(77)

where the levels k (k' <k <i—1) are all the atomic levels
lying within the energy gap 3kT,/2 below the ith level
(see Fig. 6). The relationship (77) was obtained by assum-
ing that most of the recombining free electrons have ini-
tial energy equal to 3kT, /2. Then, most of the continu-
um photons produced in the ¢—i recombination have
average frequency
( U;+3kT,

v;)= p . (78)
These continuum photons can be reabsorbed by the
atoms excited to the level i and levels j>i and by the
atoms excited to the energy levels within the energy gap
E,—E, <3kT,/2.

As the optical depth increases ({7, ) > 1), the rapid ex-
ponential decay of the k., does not describe the free-
bound continuum radiation correctly. Emission and ab-
sorption of radiation (both spectral and continuum)
should be closer to balancing each other with the increase
of the optical depth. At higher density, the free-bound
emission in plasma slab of width L is proportional to
N,N,o0,(v)L. Therefore, for the absorption to balance
the emission, the escape factors «, should rather be

average energy of the free electron

— - .
continuum

h(v)
U;
J
i .
i-1
H k
 —— k

energy of the atomic ground state

1

FIG. 6. Atomic levels able to reabsorb the average-energy
photon 4 {v,) produced in the ¢ —i transitions: (a) all the levels
with j>i, (b) the level i, and (c) all the levels k with
E,—E, <3kT,/2.
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, (Ti)>1. (79)

X. LINE INTENSITIES

The intensity (defined as the net power radiated in all
directions from a unit volume of uniform plasma slab) of
the j —i spectral line in a homogeneous plasma is

I;,=N; A

jin,-h Vi - (80)

It is of a spectroscopic interest to estimate the intensity of
radiation, produced in a 1 cmX 1 cm XL column across
the plasma slab, reaching the edge of the slab. This in-

tensity, per unit solid angle, is
I;L
p=i 1)
4

and similarly for continuum radiation.

The total net intensity of the bound-bound atomic
emission is taken as a sum over all the j —i atomic transi-
tions,

In=3 3 I . (82)
Joit<i
The line intensity ratio of two radiative transitions j—i
(with frequency v;;) and m — I (with frequency v,,) is

,},jf[=_IL:—.Ajinihvji £L. _N_j (83)
" ImI AmIKmlh Vi Bm Nm eq
where
N; g; E.—E
J — °J J m
—— | =——exp|——"7— (84)
N,, Lq m kT,

is the density ratio in Boltzmann equilibrium.
The intensity of radiation produced by dielectronic
recombination to a terminating level i is

I[D=NeN+a:p<hVai>(Kai) ’ (85)

where {hv,; ) is the average energy of the photons emit-
ted in the @ — i transitions and (k) is the effective es-
cape factor for these transitions. Thus the total intensity
of radiation produced in the plasma by all the dielectron-
ic recombinations can be given as

3
I3=73, IiD . (86)

i=1

The autoionizing levels participating in populating of
the terminating levels are spread out over a certain inter-
val of energy. Therefore we calculate the average photon
energy {hv, ) as a weighted average,

<hvai>=2ga<Ea—Ei>/zg,, , 87)

where E, and g, are energy and statistical weight, respec-
tively, of the ath autoionizing level. The sums in Eq. (87)
are taken over all the autoionizing levels available for
recombination to the ith terminating level.
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The continuum spectrum of the free-bound radiation is
specified in terms of the net power radiated per unit plas-
ma volume, per unit solid angle, and per unit frequency

range. The free-bound monochromatic emission
coefficient*® j® in Wem ™ 3sr!sis
fd h(zva0)3 ﬁﬁ 32 8
.fb — -7 i
(v)=10 —_— o, (V)
Jv ; c 2 kTe ic ci g4
hv—(U,—AE )
XN,N  exp |— kT, ,
(88)

if the assumption of Maxwellian distribution for electrons
is valid. The possible shift (lowering) of the ionization en-
ergies in a high-density plasma can be estimated assum-
ing that ions are much less mobile than the electrons and
can be treated as point charges. Then, the reduction of
the ionization potential is***®

_ ze?

AE =—, (89)
Pp
where
kT 172
=|— (90)
PP 4me (N, +N )

The coefficient for free-free emission (bremsstrahlung)
caused by the acceleration of electrons in the field of
nonhydrogenic ions, with the assumption of Maxwellian
electron distribution, is given by48

_5.44X107%Gg(v,T,)2’N,N Lexp(—hv/kT,)
- Tel/z

X[14+D(v,T,)] o1

if(v)

in Wem ™ 3sr!s. In the emission frequency and electron

temperature ranges consider in this work, the Gaunt fac-
tor Gy is close to unity.%® The correction factor D(v,T,)
for the nonhydrogenic effects, evaluated by Asinovskii,
Kirillin, and Kobsev,” is

D(v,T,)=—0.084—0.0182(1.3—T,)

—0.1455in(0.6898v) , (92)

where T, and v are given in units of 10* K and 10* cm ™!,

respectively.

The total power emitted in all directions per unit
volume for the free-bound and free-free continuum radia-
tion can be obtained by multiplying Egs. (88) and (91) by
4mdv and integrating over all possible frequencies v.
The integral does not exist in close form in case of the
free-bound intensity. However, this intensity for the
¢ — i transition can be calculated as

I,=N,N_ oR«k.(e;), 93)

where the average photon energy (¢;) is taken as equal
to U;+3kT,/2. One should add that the total free-
bound intensity (Ig =3, I,) calculated by using the ex-
pression (93) agrees within several percent with the nu-
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merically integrated value.
The total intensity of the bremsstrahlung emission
(neglecting the reverse bremsstrahlung) is*®

I3=1.426X10"*(Gg(v,T,))z*N, N, T}"?
X[1+{(D(v,T,))] (94)

in W cm 3 where the averaged Gaunt factor { Gg(v,T,))
and the average nonhydrogenic correction factor
(D(v,T,)) are close, in the temperature range con-
sidered in this work, to 1.2 and —0.15, respectively. The
total intensity of the plasma radiation is calculated as
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Lo =Ty +14+1In+1I;. (95)

XI. RELAXATION TIMES

If population of an atomic level departs (as a result of a
small change of plasma parameters) from its steady-state
value, then some time 7 (called the relaxation time) is
needed to reestablish the steady-state population of the
level.

Rearranging the terms populating and depopulating
the ith level [Eq. (2)] one obtains®®7!

N, __ N,
5 =N k(};,i)(NeR,-k+A,-k)+j(z>” Necij+7VT(1—K,i)Aj,.
N,N
+N,S,. + N_*[(1—xci)a§+(1—<xa,.>)a?]
N; R D
+k2 N, NeCrit (1w ) e | + S Ni(N.R;+4;)+N,N (aR+aP+N,B,), (96)
(<i) j(>i)

and the relaxation time for the ith level

Ti=

2 (NeRki+ Aki)+ 2

k (<i) J(>i)

NCH—ﬂ(I— )A
e“i TN Kji)Aj

The expression (97), when used for the ground state
(neglecting the deexcitation terms), gives rather the time
for complete ionization of the ground state than the re-
laxation time defined above. However, this ‘“ionization”
time can be used as a crude measure of order of magni-
tude of the relaxation time for the ground state.

The relaxation times obtained in this work are given in
Table VII. These times were calculated without taking
into account the transient coupling between levels.
Therefore they should be treated as estimates of order of
magnitude of real relaxation times. One should also
remember that any comparison of experimental data
characterizing collisional-radiative nonequilibrium with
results of theoretical steady-state calculations must be
made with a great deal of caution. Steady-state models
often assume that the populations of all levels, including
the ground state, are time independent. Experimental
plasmas are not quiescent but rather in transient condi-

+N,S;.+

-1
[(1=k )l +(1—(xk,; ))aP] .97

NEN+

1

tions. Usually, the transients are much longer than the
relaxation times for the excited electronic levels, but they
are often much shorter than the relaxation times for the
atomic ground state (see Table VII and Refs. 68, 71, and
72). In such cases the assumption of the quasisteady state
(when all levels, with the exception of the ground state,
do not suffer a temporal change in population density)
can be used to obtain the time rate of change for popula-
tion of the ground state.'> If the experimental transient
times for the excited levels are shorter than the levels re-
laxation times then the transient solution of the rate
equations must be obtained (see, for example, Refs. 72
and 73, and references within).

XII. RESULTS AND DISCUSSION

The results of this work are presented as a function of
the electron temperature T, and the particle density N,.

e

TABLE VII. Relaxation times (in seconds) for the i =1,2,4,5 levels of atomic nitrogen.

T, (K) N, (cm™3) i=1 i=2 i=4 i=5
8000 10'° 3.6x107"! 2.6X1072 2.4%X107° 2.1x10°°
108 3.5x107* 2.6X1077 2.3X107° 2.0x107°
10'¢ 3.6X1077 2.6X1078 3.9x107 ! 42x107"
10000 10'° 1.4x107! 2.0X107? 2.4X107° 2.1%x107°
10" 1.3x107% 2.0X107° 2.3x107° 2.0Xx107°
10' 1.4x1077 2.0X10°% 3.4X107 1 3.9x107 "
13000 10%° 6.0Xx107?2 1.5X 1072 24X107° 2.1X107°
10 6.0X107° 1.5X 1073 22X107° 2.0X107°
10'° 6.0x107% 1.5x1078 3.0x107 " 3.7x107 M




40 COLLISIONAL-RADIATIVE NONEQUILIBRIUM IN PARTIALLY ...

The density N, is the total density of charged particles
(bound and free) considered in the model, i.e.,

N,=2N,+N, +N, , (98)

where N, =3, N; is the total atomic density. We assume
in our calculations that the free ions are singly ionized.
This and the assumption that the plasma is electrically
neutral imply that the total density of the free charged
particles is N, +N,, while the total density of the
charged particles bound in atomic species is equal to 2N,
[one electron and one ion (the atomic core)]. It should be
emphasized that T, and N, are the natural constants of
the steady-state plasma with no applied fields. Each set
of these two constants uniquely specifies the nonequilibri-
um properties of the stationary plasma; all the other
properties, including N,, depend on T, and N,. The com-
mon procedure, presenting the properties of plasma as
function of T, and N,, is often inappropriate because it
forces a strong nonequilibrium; in particular, the plasma
may not be able to produce the assumed N, at a given T,.
Therefore the appropriate and practically useful way of
presenting nonequilibrium properties of stationary plas-
mas is to show these properties as functions of the parti-
cle density N, (representing the conservation of particles
in the plasma) and electron temperature 7, (representing
the thermal energy of electrons), with the assumption of
plasma charge neutrality (one should remember that in
partially ionized plasmas N, =2N,).

The range of plasma density and temperature chosen in
our calculations is limited by the following assumptions:
(i) the atom-atom inelastic collisions do not contribute to
the properties of the plasma, and (ii) the role of doubly
ionized ions and excited singly ionized ions is negligible.
The first assumption requires that 7, 2 8000 K (at higher
densities),'®!! while the second is justified if N, /N, <<1
(see Ref. 1). Therefore some of the high-temperature re-
sults (those for which the later requirement is not closely
followed) presented in some figures should be treated as
crude estimates.

Numerical calculations show that the densities of the
atoms excited to the i =2 and 3 levels are in Boltzmann
equilibrium with the ground state in the entire range of
conditions considered here (Fig. 7). In addition, the pop-
ulations of atoms excited to these two levels are close to
the population of the ground-state atoms. This is mainly
due to the lack of radiative coupling of these levels with
the ground state and the relatively small energy gaps be-
tween the levels (Fig. 1). The fact that the fraction of
atoms excited to the i =2 and 3 levels is large, is impor-
tant for the redistribution of energy in the plasma and for
the plasma transport properties (the electric and thermal
conductivity, electron mobility, etc.). These properties
depend on the electron-atom cross sections for elastic
scattering, which are greater for electron scattering by
excited atoms than for scattering by the ground-state
atoms.

The populations of several upper levels are given, as ra-
tios B; [Eq. (7)], in Fig. 8. The populations show almost
linear N, dependence at low densities. At higher densi-
ties, the frequencies of collisions producing the upper lev-
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FIG. 7. Densities N; of nitrogen atoms in the ground state
(i=1), in the first excited (i =2), and in the second excited
(i=3) levels. N, is the atomic density and 7, is the electron
temperature. The total particle densities N, are 10'* cm ™3 (solid
lines) and 10'® cm ™3 (dashed lines).

els and the reabsorption of radiation increase. Then, the
populations of the upper levels reach Boltzmann equilib-
rium (B;=1).

It is convenient to introduce a ratio

N; B;

I i

pi=NiS=H ’

(99)

™ max

where N,-S is the Saha population of the level i. (This ratio
is a measure of the departure of the ith level population
from Saha equilibrium.) The ratios p; for several levels
and several temperatures are shown in Fig. 9. As expect-
ed, the lowest three levels are far from Saha equilibrium,
for all temperatures, at low and medium densities since
these levels are far from continuum and their populations
are totally controlled by the collisions involving the lev-
els. The upper levels (i = 4) are close to each other and to
continuum. Therefore their departure from Saha equilib-
rium is always smaller than that of the levels i =1, 2, and

10°

10
102
103} \
S [0
10 -
10F1

I 1 1
10" 10" 107 10"

N, (cm-s)

0 1
10?2 10" 10™

FIG. 8. Population (coefficients B;) of nitrogen atoms excited
to the i =4, 5, 6, and 14 levels. N, is the total particle density.
The electron temperatures are 8000 (solid lines), 10000 (dashed
lines), and 13 000 K (dot-dashed lines).
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FIG. 9. Population (coefficients p,) of nitrogen atoms excited
toi=1, 2, 3,5, and 6 levels. N, is the total particle density.
The electron temperatures are 8000 (solid lines), 10000 (dashed
line), and 13000 K (dot-dashed lines).

3. As the plasma density increases, the departure of the
upper levels from Saha equilibrium reaches maximum (at
10°-10' ¢m™3) corresponding to the maximum ioniza-
tion degree of the plasma (see Fig. 11). This is because
the reabsorption of the dipole-allowed radiation, increas-
ing with density, improves conditions for Boltzmann
equilibrium. Further increase of the density causes only
a small increase in reabsorption of the radiation but a
substantial increase in electron density. Then, all the lev-
els are in collisional Saha equilibrium with electrons.

The production of electrons in atomic nitrogen is
shown, as function of T, and N,, in Figs. 10 and 11. One
can see that the population of electrons is quite high (in
other words, it is quite easy to ionize atomic nitrogen) in
the entire range of T, and N, considered. This is due to
the fact that the lowest, highly populated metastable
atomic levels contribute significantly to the ionization of
the gas. The ionization degree (x =N,/N,) increases
significantly when N, approaches values of 10'°-10!¢
cm 3 because at these densities the overall efficiency of
the electron-impact upward processes and reabsorption

10'6 T T T

15
10 13 000 K

N, (em™)
8_
1

108 P | 1 1 1
10%2 10" 104 10'® 10'6 10"7 10'8
N, (em™)

FIG. 10. Production of electrons (solid lines) in the atomic
nitrogen plasma as a function of the particle density N, and
electron temperature T,. The dashed lines give the electron
density when dielectronic recombination is neglected.
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FIG. 11. Ionization degree x=N,/N, (solid lines) of the
atomic nitrogen plasma as a function of the particle density N,
and electron temperature 7,. The dashed lines give the ioniza-
tion degree when dielectronic recombination is neglected.

of the dipole-allowed radiation reaches its maximum. At
higher N,, the electrons reach Saha equilibrium. As can
be seen from Figs. 10 and 11 the dielectronic recombina-
tion is important for the production of electrons at lower
densities (N, $10' cm ™) in the entire range of tempera-
tures considered.

The plasma radiation escape factors were calculated by
assuming plasma thickness L =4 cm and atomic temper-
ature T,=T, (an accurate value of the atomic tempera-
ture is not of significant importance because the Doppler
width [Eq. (66)] is not a strong function of T,). The es-
cape factors k; for several electric dipole-allowed transi-
tions are given in Figs. 12 and 13 as functions of N, and
T,. At low density the plasma is transparent (k; ~1) to
the radiation. At higher N,, the dipole-allowed lines are
absorbed efficiently due to the high density of the absorb-
ing atoms (those with i <3) (then the escape factors «;
approach the Holstein!? limit [Eq. (73)]). The reabsorp-
tion of the electric dipole-forbidden radiation is weak
over the entire range of conditions considered here be-
cause of the very small values of the oscillator strengths
for the transitions.

10° g

107!

Kji

-

o
©

108

10'6 1 1 1 1
10" 10" 10'% 10'6 107 10'8
N; (em™)

FIG. 12. N, dependence of the radiation escape factors «; for
the 4—1 and 6—1 electric dipole-allowed lines in the atomic
nitrogen plasma. The electron temperatures are 8000 (solid
lines), 10 000 (dashed lines), and 13 000 K (dot-dashed lines).
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FIG. 13. N, dependence of the radiation escape factors «; for
the 5—2 and 5—3 electric dipole-allowed lines in the atomic
nitrogen plasma. The electron temperatures are 8000 (solid
lines), 10 000 (dashed lines), and 13 000 K (dot-dashed lines).

The intensities of several electric dipole-allowed lines
are shown in Figs. 14—-16. As expected, these intensities
increase with 7, due to simultaneous increase in produc-
tion of the upper radiative levels which results from the
increase of frequency of collisional excitation. At low
and medium densities (N, $10'> cm™?), the line intensi-
ties are proportional to the plasma density. At higher
densities the atomic levels are in Boltzmann equilibrium
and plasma electrons are in Saha equilibrium. Then, the
net production of the dipole-allowed radiation is density
independent.

Various kinds of radiation produced in the atomic ni-
trogen plasma are discussed in Figs. 17-19. At low and
medium densities bound-bound radiation dominates the
plasma radiation, whereas the much smaller total intensi-
ties of the free-bound and dielectronic radiation are com-
peting with each other within an order of magnitude. At
higher densities, the free-bound and free-free radiation is
becoming important and at 7, > 10000 K the latter radi-
ation is dominant. This is caused by the fact that at these
densities the reabsorption of the dipole-allowed radiation

T T

10"+

I (Wem™)
=)
S

10'7 1 A1
10'S 10'® 10"7 10'®

N, (cm™)

FIG. 14. N, dependence of the line intensities I; for the
41, 6—1, 52, and 5—3 electric dipole-allowed transitions
in the atomic nitrogen plasma. The electron temperature is
8000 K.
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FIG. 15. N, dependence of the line intensities I; for the
4—1, 61, 5—2, and 5—3 electric dipole-allowed transitions
in the atomic nitrogen plasma. The electron temperature is
10000 K.
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FIG. 16. N, dependence of the line intensities I; for the
4—1, 6—1, 5—2, and 5—3 electric dipole-allowed transitions
in the atomic nitrogen plasma. The electron temperature is
13000 K.
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FIG. 17. N, dependence of the ratios of the bound-bound
(I,), dielectronic (I%), free-bound (I%), free-free (I%), and the
total radiation intensity (7%, ) to the Planck (blackbody) intensi-
ty (If) in the atomic nitrogen plasma. IL,=I_,L /47 and
L =4 cm. The electron temperature is 8000 K.
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FIG. 18. N, dependence of the ratios of the bound-bound
(Ik,), dielectronic (IL), free-bound (1), free-free (I4), and the
total radiation intensity (I5,) to the Planck (blackbody) intensi-
ty (I£) in the atomic nitrogen plasma. The electron tempera-

ture is 10000 K.

is much stronger than the reabsorption of the free-bound
and free-free radiation. Dielectronic radiation, compet-
ing at low densities with the free-bound radiation, is
strongly reabsorbed at higher densities and its relative
importance becomes negligible. Finally, one should note
that the total plasma radiation emission is far from the
blackbody emission even at higher densities.

Temperature-dependent intensity ratios of several
dipole-allowed lines are given in Fig. 20. Some of them
can be useful for plasma diagnostics (when the ratios are
strong functions of T,; see discussion in Ref. 74, but in a
rather limited range of the electron temperature. In situ-
ations when the weak emission of some of the forbidden
lines is detectable, the ratios of the forbidden line intensi-
ties to the allowed line intensities can be quite suitable for
the plasma diagnostics. An example of a particularly use-
ful choice of such ratios is given in Fig. 21.

Relaxation times for various atomic levels are given in
Table VII. Lack of radiative transitions from the two
lowest excited levels to the ground state causes the relax-
ation times for the ground atomic state to be unusually

- total
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N, (cm‘a)

FIG. 19. N, dependence of the ratios of the bound-bound
(1), dielectronic (I%,), free-bound (I ), free-free (I%), and the
total radiation intensity (I5,) to the Planck (blackbody) intensi-
ty (I}) in the atomic nitrogen plasma. The electron tempera-
ture is 13000 K.
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FIG. 20. T, dependence of the line intensity ratios ¥, of the
dipole-allowed 5—2 and 5— 3 transitions to the dipole-allowed
6—1 transition in the atomic nitrogen plasma with N,=10"3
(solid lines), 10'° (dot-dashed lines), and 10'® cm™? (dashed
lines).

short (for example, the corresponding times for atomic
hydrogen plasma are much longer®®). Thus (a) the as-
sumption of the quasisteady state in atomic nitrogen plas-
mas is quite realistic, and (b) the assumption of steady
state in the plasmas can often be extended to the atomic
ground state.

Experimental work on kinetics of high-temperature ni-
trogen is very limited; the only existing data are
frequency-dependent measurements of continuum (free-
free plus free-bound) radiation produced in high-density
nitrogen behind gas-dynamic shocks’> and in arc
discharges.””’®77 A comparison of these measurements
and our calculations for the total emission coefficient
j,=Jj®+jTis given in Fig. 22. (The typical “sawtooth”
form appearing in the theoretical predictions is due to the
merging of the continuum lines.”®) The calculations in-
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N T, (100 K)

FIG. 21. T, dependence of the line intensity ratio y3; of the
dipole-forbidden 3—2 transition to the dipole-allowed 6—1
transition in the atomic nitrogen plasma with N,=10"* (solid
line), N, =10"* (dotted line), 10'* (dot-dashed line), 10'® (double-
dot—dashed line), 107 (triple-dot—dashed line), and 10'* ecm ™3
(dashed line).
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Total emission coefficient j, (Wcm™3sr=!s)

FIG. 22. Comparison of the calculated (solid lines) and mea-
sured total continuum emission coefficients j,=;®+ ;T for
T,=10000 K, P=0.61 atm (Ref. 75, squares), 7,=12000 K,
P=0.78 atm (Ref. 75, circles), and 7,=15000 K, P=1 atm
(Ref. 70, triangles).

clude the free-bound and free-free radiation with the elec-
tron density N, obtained from the solution of the 14-level
collisional-radiative model (as discussed above, this num-
ber of the atomic levels leads to a reliable prediction of
plasma properties, including the electron density). Since
part of the measured continuum spectrum is in the low-
frequency region we calculated the total free-bound emis-
sion as a sum of radiation produced in the free-bound
transitions to 24 atomic levels; the highly excited
(14 <i =24) levels are in Saha equilibrium with electrons
under the experimental conditions. The hydrogenic pho-
toionization cross section,*®

R

hv

372 4

= 264_(1 Z—G,-(n,u),
n

oR(v) 455 5 (100)

and the cross section (53) are used in calculations of the
intensity of the free-bound emission to the highly excited
(14 <i =24) levels. Here n is the principal quantum num-
ber for the excited level and the Gaunt factor G; can be
approximated by>!

G;(n,u)=1+0.1728n "2 (u +1)"23(u—1)

—0.0496n ~*(u+1)"* 3w +4u+1) (101

and

u=n’", (102)
with €' in rydbergs and a being the fine-structure con-
stant. The hydrogenic cross section (100) can be used for
determination of the free-bound radiation resulting from
the transitions to the levels with i > 14 because the quan-
tum defects for the transitions are close to zero. Then,
the nonhydrogenic photoionization cross section (54)
converges to the hydrogenic cross section (100).

The continuum radiation is dominated in the low-
frequency part of the spectrum in Fig. 22 by bremsstrah-
lung. In the higher-frequency region
(4X10"<5v<$1.2X10% s71), the free-bound radiation
[mainly to the intermediate (3 <i < 14) levels] dominates
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the production of the continuum radiation. The agree-
ment of the measured continuum emission coefficient
with the present calculations is good over the tempera-
ture range from 10000 to 15000 K. (One should note
that a difference of a factor of 2 in the emission coefficient
means only 40% difference in the electron density be-
cause the coefficient is proportional to N2 in electrically
neutral plasmas.) The calculated total continuum emis-
sion coefficient differs slightly from the measured values
only at lower T, (10000 K). The uncertainty of T, for
the shock tube measurements was several hundred de-
grees, which could mean a noticeable uncertainty in
determination of N,. The uncertainty in 7, would have
greater effect on the low-temperatures measurements
than on the higher-temperature measurements because
the frequency of inelastic collisions (important for pro-
duction of electrons) changes more rapidly at the lower
values of T,. A part of the difference between the mea-
sured and calculated values of the coefficient j, at lower
temperatures could also result from the fact that the
atomic ground states in the experimental plasmas were in
transient states (i.e., the plasmas were in a quasisteady
state, as discussed above in conjunction with the relaxa-
tion times). In a quasisteady state dN,/dt=—dN, /dt,
so that the experimental electron density might have been
different than the value used in the calculations and this
difference would be more visible at lower temperatures
(see Table VII). However, this effect should not have
been large due to the high electron density in the dis-
cussed experiments.

It was hypothesized’””>~77 that the excess of radiation
might have been caused by photon emission associated
with production of negative ions N~ by radiative attach-
ment. However, some recent work’>%" has clearly indi-
cated that the ground-state (*P) N~ ion is not stable.
One can see that inclusion of the N~ negative ion contin-
uum emission in collisional-radiative models of atomic ni-
trogen is neither appropriate nor needed for correct inter-
pretation of the mechanisms producing the plasma con-
tinuum radiation. This conclusion is also in agreement
with the conclusion of Cooper,®! who did not observe
negative ion continuum radiation in his experiments.

The accuracy of the final results of this work depends
on the accuracies of the cross sections and Einstein
coefficients used in the rate equations (in general, the
latter are far more accurate than the former). As dis-
cussed above, experimental data on almost all the con-
sidered cross sections are not available in literature.
Therefore one has to use the theoretical predictions of ac-
curacy that cannot be verified by a direct comparison
with experiment. However, some conclusions can be
drawn from a comparison of the theoretical cross sections
for various atomic systems with the available measure-
ments. The comparison suggests that the accuracy of the
theoretical cross sections should be better, in most cases
(with possible exception of transitions between highly ex-
cited levels), than a factor of 2. More accurate quantum-
mechanical methods such as close-coupling and R-matrix
methods are available (see the cooperative opacity pro-
gram of Seaton®?). These calculations include strong cou-
pling effects, electron correlation effects, and polarization
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effects, but they are very computer and people time inten-
sive and have been completed for only a few systems.
Therefore, using approximate methods, such as, for ex-
ample, the Vainshtein approach, is practically necessary
in the modeling of collisional-radiative nonequilibrium in
most gases, including atomic nitrogen. It should also be
added that reasonable inaccuracies in the cross sections
for transitions in these gases often do not lead to
significant quantitative inaccuracies and/or qualitative
differences in the nonequilibrium properties. This can be
seen in the widely studied case of collisional-radiative
nonequilibrium in atomic hydrogen. Even though
different sets of cross sections were used in almost each
study, in many cases (including plasmas with different op-
tical thickness) the differences in overall nonequilibrium
properties of hydrogen were not large. However, in order
to establish a detailed dependence between the reliability
of the collisional-radiative models and the accuracy of
the cross sections used in the models one should use the
sets of cross sections obtained either from experiment or
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from the complex and time-consuming calculations such
as the cooperative opacity program.

In summary, it seems that the present model gives ac-
ceptable predictions for nonequilibrium populations of
electrons and excited atoms, as well as the production of
radiation in partially ionized atomic nitrogen. One
should keep in mind, however, the remarks given above
and the fact that the radiation escape factors of this work
are based on the two-level model, which neglects the mul-
tilevel coupling effects.
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