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Scattering of electromagnetic fields of any state of coherence from space-time fluctuations
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A theory is developed, valid within the accuracy of the first-order Born approximation, of the

scattering of electromagnetic fields that applies under much more general conditions than do the
current theories. The incident field is assumed to be statistically homogeneous and stationary, of ar-

bitrary state of coherence, of arbitrary state of polarization, and to have arbitrary spectrum. The
medium is assumed to be linear and spatially and temporally random, with the randomness being
characterized by an ensemble that is statistically homogeneous, isotropic, and stationary. The
analysis is not restricted to scattering from a medium in thermal equilibrium and applies in both
off-resonance and near-resonance regions of the medium.

I. INTRODUCTION

As is well known, light scattering phenomena are of
great importance in physics, astronomy, chemistry,
meteorology, biology, and in other fields. Systematic
studies of light scattering have spanned a long period of
time, dating back to the pioneering researches of Tyndall
and Rayleigh, made around 1870. Since then, other dis-
tinguished scientists, such as Smoluchowski, Einstein,
Brillouin, Raman, and many others, have made substan-
tial contributions to this field. A new chapter in the de-
velopment of the subject came with the development of
the laser in 1960, which has produced light whose spec-
trum is exceedingly narrow and which is highly direction-
al. These properties of laser light have made it possible,
in recent years, to obtain important detailed information
not previously accessible to experiment about the interac-
tion of light with liquid„solids, and gases and about mi-
croscopic properties of matter.

Much of the existing literature on the theory of light
scattering is restricted to scattering of monochromatic
light and assumes that the density Auctuations of the
scattering medium may be described by equilibrium ther-
modynamics. The first of these restrictions makes it im-
possible to explain some phenomena, such as the recently
discovered frequency shifts of spectral lines that may be
produced under appropriate circumstances by the
scattering of partially coherent light from a spatially ran-
dom medium;" and the assumption of thermodynamic
equilibrium has in some cases led to disagreement of at
least one order of magnitude between theory and experi-
ment.

In this paper we present a theory of scattering of elec-
tromagnetic waves, valid within the accuracy of the first-
order Born approximation, that applies under much more
general conditions than do the current theories. In par-
ticular, the incident field can be any statistically homo-
geneous and stationary field and be of arbitrary state of

coherence, of arbitrary state of polarization, and can
have arbitrary spectrum. The medium is assumed to be
linear and spatially and temporally random, with the ran-
domness being characterized by a statistical ensemble
that is homogeneous, isotropic, and stationary. Our
analysis is based on statistical continuum theory and is
not restricted to scattering under equilibrium conditions.
Moreover, the results apply in both off-resonance and
near-resonance regions of the medium. The central
quantity of this theory is a generalized analogue of the
Van Hove correlation function, well known in the theory
of neutron scattering.

We illustrate the generality of our theory by showing
that, when appropriate assumptions are made about the
incident field and the scattering medium, our main for-
mula for the spectrum of the scattered field yields several
well-known results of conventional scattering theory. In
the accompanying paper we show that, under appropri-
ate circumstances, our theory also predicts frequency
shifts that depend on the state of coherence of the in-
cident light and on the correlation properties of the fluc-
tuating medium, a fact that may be of particular interest
for astronomy.

II. DIELECTRIC RESPONSE OF A LINEAR,
INHOMOGENEOUS, ISOTROPIC MEDIUM

E(r, co)= f E(r, t)e'"'dt,
277

(2.1a)

P(r, co)= J P(r, t)e'"'dt
277

(2.1b)

of the (real) electric field E(r, t ) and the induced polariza-

It will be useful to begin by recalling some standard re-
sults relating to an electromagnetic field in a linear, inho-
mogeneous, isotropic, and nonmagnetic medium, whose
macroscopic properties do not depend on time. In such a
medium the Fourier transforms
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tion P(r, t), respectively, (r denotes a position vector of a
field point and t denotes the time) are connected by the
simple constitutive relation

P(r, co) =g(r, co)E(r, co), (2.2)

N(r)a(co)gr, co =
1 (4v—r/3)N (r)a(co)

(2.3)

Equation (2.3) is one form of the well-known Lorentz-
Lorenz relation (Ref. 9, Sec. 2.3.3).

On taking the Fourier transform of Eq. (2.2) and mak-
ing use of the fact that the response of the medium must
necessarily be causal, we obtain the following constitutive
relation valid in the space-time domain:

j
P(r, t)= f q(r, t'}E(r, t t')dt', —

2K 0

where

(2.4)

where il(r, co) is the dielectric susceptibility that describes
the response of the medium at frequency co.

It is known from microscopic theory that for many
media i}(r,co) may be expressed in terms of the average
number N(r) of molecules per unit volume and the mean
polarizability a(co) of each molecule by the formula

P(r, t)=q(r, t; +coo)f E(r, co')e ' 'dco'
0

+rt(r, t; —coo) f E(r, co')e ' 'dco' . (2.10)

the generalized dielectric susceptibility, which depends
[via Eqs. (2.8) and (2.7)] on two, rather than one, tem-
poral arguments.

When the eff'ective frequencies of the electric field are
not too close to any of the resonance frequencies of the
medium, the constitutive relation (2.6) may be aproximat-
ed by a more familiar formula, as we will now show. For
this purpose we first rewrite Eq. (2.6) in the following
form that readily follows by the use of Fourier integral
representations of rl(r, t;t') and E(r, t t') in—the integral
of Eq. (2.6):

P(r, t)= f rt(r, t; co')E(r, co')e '"'dco' . (2.9)

Suppose that ~E(r, co)~ is appreciable only in the neigh-
borhood of frequencies +m0. If these frequencies are not
close to any of the resonance frequencies of the medium,
the variation of il(r, t;co') with co' in the neighborhood of
co'=+coo (coo&0) may be neglected and Eq. (2.9) then
gives

i}(r,t)= f" il(r, co)e ' 'dco . (2.5)
Now, since il(r, t;t') and E(r, t) are real, it follows at
once from Eqs. (2.7) and (2.1a) that

Suppose next that the macroscopic properties of the
medium change in the course of time, in either a deter-
ministic or a random way, but that the response is still
linear and isotropic. Then, in place of Eq. (2.4) we have
the more general causal, linear relationship'

and

q(r, t; —coo) =il *(r,t;coo)

E(r, co')=E*(r, —co') .

(2. 1 1)

(2.12)

P(r, t)= f q(r, t;t')E(r, t t')dt'—
2' 0

that contains a generalized dielectric susceptibility func-
tion rt(r, t;t') which depends on two time arguments. Its
dependence on the second temporal argument t' charac-
terizes the response of the medium to sufficiently short
pulses.

To obtain some insight into the behavior of the gen-
eralized dielectric susceptibility function let us take its
Fourier transform with respect to its second argument:

Hence, Eq. (2.10) may be rewritten as

P(r, t ) =2 Re g(r, t;coo) f E(r, co')e ' 'dco'
0

(2.13)

where Re denotes the real part. Now, since we assumed
that cu0 is not too close to any of the resonance frequen-
cies of the medium, the imaginary part of il(r, t;coo) will

be negligible and hence Eq. (2.13) may be rewritten as

il(r, t;co')= i}(r,t;t')e'" 'dt' .
27T 0

(2.7)

T

P(r, t }=g(r, t;coo) 2 Re f E(r, co')e ' 'dco'
0

If the response of the medium is time independent, g =g,
and for many media g is related to the time-independent
number density N(r) of the molecules by Eq. (2.3). How-
ever, if the response of the medium changes in time, the
number density also becomes a function of time, N(r, t ),
say. If the temporal variations are not too rapid, we may
expect that the following generalization of Eq. (2.3) will
hold:

N (r, t )a(co')
il r, t;co

1 — N (r, t)a(co')
4m.

3

(2.8)

Although the precise range of validity of this equation
can only be determined from detailed microscopic con-
siderations, these remarks indicate the physical origin of

(2.14a)

or, using Eq. (2.12) again,

P(r, t ) =g(r, t; coo)E(r, t ) . (2.14b)

Frequently the constitutive relation of a time-
dependent medium is written, without any justification,
in the form P(r, t)=q(r, t)E(r, t). Comparison of this for-
mula with Eq. (2.14b) reveals the real significance and the
approximate nature of the time-dependent response func-
tion g(r, t) Moreover, our . analysis indicates that, unlike
Eq. (2.6), such a constitutive relation will not describe
adequately the response of a medium under cir-
cumstances when the field contains frequencies that are
in the resonance region of the medium.
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III. DETERMINISTIC SCATTERING
IN THE FIRST-ORDER BORN APPROXIMATION

polarization induced by the incident field, i.e., that

(3.12)
In Sec. IV we will investigate the scattering of elec-

tromagnetic waves of arbitrary state of coherence from a
medium which fluctuates both in space and in time. The
incident and the scattered fields, and the dielectric sus-
ceptibility, will then be random functions of position and
time. It will be useful, however, to derive first some gen-
eral formulas that we will then need, pertaining to situa-
tions where the fields and the response of the medium are
deterministic.

Let E"(r,t) and H"(r, t) denote the electric and the
magnetic field vectors of a deterministic electromagnetic
field incident on a deterministic medium that occupies a
finite volume V in free space. We assume that the medi-
um is of the kind considered in Sec. II. Its dielectric
response is then characterized by formula (2.6). Further,
let the scattered field vectors produced by the interaction
of the incident field with the medium be denoted by
E"(r,t) and H"(r, t). The total field (inside and outside
the medium) may then be written as

E(r, t) =E"(r,t)+E"(r, t ),
H(r, t)=H"(r, t) +H"'(r, t) .

It will satisfy Maxwell's equations

1 BH(r, t)
c Bt

1 BE(r, t) 4vr BP(r, t)VXHr, t =—
c Bt c Bt

V E(r, t)= —4vrV P(r, t),
V.H(r, t ) =0,

(3.1a)

(3.1b)

(3.2)

(3.3)

(3.4)

(3.5)

where c is the speed of light in vacuo. If we make use of
the fact that the incident field satisfies the source-free
Maxwell equations [Eqs. (3.2) —(3.5) with P—:0], subtract
these equations from Eqs. (3.2) —(3.5) and use Eqs. (2.6)
and (3.1), we obtain the equations

(,)

"
1 BH"(r, t)
c Bt

(3.6)

1 BE"(r,t ) 4vr B[P((r, t )+Pz(r, t )]
V X H')(r, t )

=- +
c Bt c at

(3.7)

and also that

BP2(r, t ) BP)(r, t)

IV P (r, &)l «IV P, (r, &)~ .

(3.13a)

(3.13b)

Under these circumstances, Eqs. (3.6)—(3.9) give the fol-
lowing equations for the scattered field:

(s)( )
1 BH"(r, t)
c 8t

(,) 1 BE"(r,t) 4m BP) r~ t

(3.14)

(3.15)

V E"(r,t)= —4mV. P)(r, t),
V H"(r, t) =0,

(3.16)

(3.17)

where P, (r, t) is given by Eq. (3.10). Equations
(3.14)—(3.17), together with Eq. (3.10), characterize the
behavior of the scattered electromagnetic field with the
same kind of accuracy as the first-order Born approxima-
tion characterizes the scattered field in quantum collision
theory.

The solutions of Eqs. (3.14)—(3.17), which behave as
outgoing waves at infinity, can be expressed in the form
(Ref. 9, Sec. 2.2.2)

E"(r, t ) = V X V X II(r, t ),
1

V
BII(r, ~)

c Bt

where II(r, t) is the Hertz vector

P ,(r', t —R /c)
II(r, t) =

v R

with

R= r —r'~ .

(3.18a)

(3.18b)

(3.19)

(3.20)

For later purposes it will be more useful to consider the
fields in the space-frequency domain, rather than in the
space-time domain. We, therefore, introduce Fourier
transforms, defined by formulas of the form

V.E"(r, t ) = —4m V [P,(r, t )+P2(r, t )],
V.H"(r, t ) =0,
where

P, (r, t ) = g(r, t; t')E"(r, t —t')dt',2' 0

(3.8)

Equations (3.18) then imply that
3.9

E"(r,a)) =V X V X Il(r, co),

H "(r,co) = ikV X II(r,—co),

w~ere

(3.21)

(3.22a)

(3.22b)

(3.11)

Suppose now that the scattering medium is weak in the
sense that for all values of its arguments the polarization
induced by the scattered field is much smaller than the

and

ikR
II(r, co)= f P)(r', co) d r'

v
' ' R

k =co/c

(3.23)

(3.24)
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r=ru, k=ku=(cole)u, ~u~ =1, (3.25)

and consider the asymptotic behavior of Eqs. (3.22) as
kr ~ ~, with u being kept fixed. By elementary
geometry, we have, in this limit, R —r —u. r' and, with
this approximation, the expression (3.23) becomes

ikr
II(ru, co) —(2n) P1(k, co) (3.26)

where

P, (k, co)=
2 f P, (r', co)e '"'d r',

(2~)'
(3.27a)

We are mainly interested in the far field. Therefore, we
will set

domly fluctuating medium. We will retain the assump-
tions that the medium is linear, isotropic, and nonmag-
netic, but we will allow its generalized dielectric suscepti-
bility function q(r, t;cu') [cf. Eqs. (2.6) and (2.7)] to be, at
each frequency co', a random function of both position (r)
and time (t). More specifically we will assume the follow-
ing.

(i) The dielectric susceptibility function is statistically
homogeneous and stationary, at least in the wide sense, '

and of approximately zero mean. Then the correlation
function (g*(r, , t, ;co')q(r2, t2, cu')), where the angular
brackets denote average over an ensemble of the random
medium, depends on r& and r2 and on t, and t2 only
through the differences r2 —

r& and t, —t, , respectively,
i.e., it has the form

or, in terms of P1(r, t) rather than P1(r, co),
(21 *(r 1t '1'')g(r 2t 2'') ) =G(r2 r1, t2

——t1, co') . (4. 1)

P, (k, co)=
~ f d r'e '""f P, (r', t')e'"'dt' .

(2m) v 00

(3.27b)

With II given by Eq. (3.26), Eqs. (3.22) may be shown
to give the following expressions for the scattered field in
the far zone:"

ikr
E "(ru, co)- —(2') k uX [uXP, (k, co)]

r
ikr

H "(ru, co) —(2~) k [uXP, (k, co)]

(3.28a)

(3.28b)

For later purposes it will be useful to express the quan-
tity P1(k, co) in a different form. We find, after using the
Fourier integral representations of g(r, t;t') and
E"(r,t —t') in Eq. (3.10), that

p, (r, t ) = f 21(r, t;co')E "(r,cu')e '" 'des', (3.29)

and hence, on taking the Fourier transform, that

P, (r, co) = f 21(r, co —co';co')E "(r,co')des', (3.30)

where

( +I (rl tl )+ (r2 t2) ~ ~l (r2 rl t2 tl ) (4.2)

Here the angular brackets denote the average taken over
the ensemble that characterizes the statistical properties
of the incident field. We will also need the cross-spectral
density tensor W&" (r2 —r„co) of the incident electric
field. It may be defined formally by the equation

(ii) The spatial extent of the susceptibility correlation is
small compared to the size of the scattering volume V,
i.e. , the separation distances R = ~R~ = ~r2

—r, ~
for which

~G(R, T;co'~ has appreciable values are much smaller
than the linear dimensions of V.

(iii) The scattering is so weak that, to a good approxi-
mation, it may be described within the framework of the
first-order Born approximation.

As regards the incident electric field we will assume
that it is statistically homogeneous and stationary, at
least in the wide sense, ' which implies that the correla-
tion tensor (, E&'(r, , t, )E"(r2,t2)) (the subscripts 1 and m
labeling Cartesian components) is a function of the
differences rz —r, and of t2 t] only. Hence the correla-
tion tensor of the incident electric field has the form

21(r, ;co')= f" 21(r, t;co')e'"'dt .2' (3.31) ([E&'(r, , cu)]*E "(r2,co')) =W&'(r2 —r, , co)5(co —co'),

On substituting from Eq. (3.30) into Eq. (3.27a) we obtain
the following expression for the vector function P1(k, co)
that enters the expression (3.28) for the scattered field in
the far zone, within the accuracy of the first-order Born
approximation:

P&(k, cu)= d r'e1

(2') v

X f g(r', co —co';co')E "(r',co')des' .

(3.32)

IV. SCATTERING FROM SPACE-TIME
FLUCTUATIONS IN THE FIRST-ORDER

BORN APPROXIMATION

We will now consider the problem of the scattering of a
randomly fluctuating electromagnetic field from a ran-

(4.3)

where E &' and E"are the Fourier transforms of E&' and
E", respectively, ' and 5 is the Dirac delta functon. Ac-
cording to the Wiener-Khintchine theorem' the electric
cross-spectral density tensor is the Fourier transform of
the electric correlation tensor, i.e.,

(4.4)

We stress that the expectation values in Eqs. (4. 1) and
(4.2) [or (4.3)] are taken over two different ensembles. In
Eq. (4.1) it is taken over the ensemble that characterizes
the fluctuations of the dielectric susceptibility, whereas in
Eq. (4.2) it is taken over the ensemble that characterizes
the fluctuations of the incident field. We will assume that
these two kinds of fluctuations are statistically indepen-
dent. The assumption is evidently reasonable if the in-



SCATTERING OF ELECTROMAGNETIC FIELDS OF ANY. . . 583

cident field is not exceptionally strong.
We will now derive expressions for the angular and

spectra1 distribution of energy of the scattered field in the
far zone. For this purpose we first note that the quantity
P, (k, co), given by Eq. (3.32), is now a random variable

I

because both g and E"are themselves random variables.
Hence the (generalized) Fourier transforms E"and H"
of the scattered field in the far zone, given by Eqs. (3.28),
are also random variables. For each realization we have
from Eq. (3.28a),

[E"(ru, co)]*.E"(ru, to') =(2') e"" "'"Iu X [u XPf(k, co)] I [u X [u XP&(k', ~o')]],6 k k i(k' —k)r

T
(4.5)

where

k =ku= —u, k'= k'u=
C

u . (4.6)

I

We show in Appendix B that under the assumptions stat-
ed at the beginning of this section the double average on
the right-hand side of Eq. (4.8) is given by

It is shown in Appendix A that the right-hand side of Eq.
(4.5) may be simplified by the use of an elementary vector
identity. Equation (4.5) then reduces to

[E"(ru, to)]* E"(ru, co')

(2 )6 ei k(' —k)r
r2

'

((P*„(k, )P, (k', ')) )

d3& —,~ Rd Re
(2~) v

X 6 R, co co],co[

X WI"(R, to, )dto, , (4.9)

X (5i —ui u )P*,i(k, co)P, (k', co'),

where 5I denotes the Kronecker symbol, and summa-
tion over repeated suffices is implied.

Let us now take averages of Eq. (4.7) over the ensem-
bles of the incident field and of the fluctuating medium.
Denoting this double average by double angular brackets,
we have at once from Eq. (4.7) that

( ([Ei'(ru, co]" E"(ru, to')) )

= (2~)6 e'" "'"($ —u&u )
7

where G is the Fourier transform, defined by the formula

G(R, A;co') = f G(R, T;to')e' dT,2' (4.10)

of the correlation function (4.1) of the generalized suscep-
tibility function g(r, t;to') of the scattering medium.

Finally, on substituting from Eq. (4.9) into Eq. (4.8) we
find that

( ( [E"(ru, co)]* E"(ru, to') ) ) =S"(ru, co)5(co—to'),

(4.11)

X ( (P*,i(k, co)P, (k', co') ) ) . (4.8) where

VIcS"(ru, to)= (5&
—

u&u )f dc', f G(R, to to& , to, )R—'t(R', o,t)e '" d R,
r 00 V

(4.12)

with k and k being defined in Eq. (4.6).
It is clear from (4.11) that the function S"(ru, to) is

proportional to the expectation value of the electric ener-

gy density at frequency m, of the scattered electric field at
a typical point ru in the far zone. According to well-

known properties of the far field [cf. Ref. 11, Eqs. (4.10)
and (4.11)] it is also proportional to the expectation
values of the magnetic energy density a~d of the magni-
tude of the Poynting vector at frequency co in the far
zone. We will therefore refer to S'"(ru, co) as the spectral
density (spectrum) of the scattered field

Formula (4.12) is the main result of this investigation.
It expresses the spectral density of the scattered field

throughout the far zone as a linear transform of the
cross-spectral density tensor 8'&" [defined by Eq. (4.3)] of
the fluctuating incident field. The kernel of the transform
is, apart from a simple geometrical factor, the Fourier
transform [Eq. (4.10)] of the two-point correlation func-
tion G [defined by Eq. (4.1)] of the generalized dielectric
susceptibility of the scattering medium. This two-point

V. SOME SPECIAL CASES

A. Plane, polychromatic, linearly polarized incident wave

Suppose that the incident field is a fluctuating po-
lychromatic plane wave, propagating in a direction
specified by a real unit vector uo, with its electric vector
linearly polarized along a direction specified by a unit
vector eo (uo co=0). Then each realization of the in-
cident electric field may be represented in the form

E"(r t)=eof A(co)e ' de, (5.1)

I

correlation function is somewhat analogous to the well-
known Van Hove time-dependent two-particle correla-
tion function' (known also as the pair distribution func-
tion), frequently employed in the theory of neutron
scattering. We will now specialize formula (4.12) to some
special cases of practical interest.
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where A (co) is, for each frequency co, a random vari-
able. '

The Fourier transform of E"(r,t) evidently is

is just the trace of WI" (O, co), and hence we have from Eq.
(5.3)

E "(r,co)= A(co)e eo .

Hence, Eq. (4.3) gives, in this case,

(~*( )~( )).'"'

(5.2)
( A*(co) A(co') ) =S"(co)6(co—co') .

It follows from Eqs. (5.3) and (5.4) that

8'&' (R, co) =S"(co)e '
eo&eo

(5.4)

(5.5)

= W(' (r~ —r„co)5(co—co') . (5.3)

Now the spectral density S"(co), say, of the incident field

I

On substituting from Eq. (5.5) into Eq. (4.12) we obtain
for the expectation value of the spectral density of the
scattered field the expression

Vk Sin 6 ~ (') 1'(k ko) R 3S' (ru, co) = dco' G(R, co —co', co')S '(co')e d R
QO V

(5.6)

where

COk=ku= —u
C

(5.7a)

S(K,Q;co')= f d R
(2~) v

X g* r, t;co' g r+R, t+T;co'

I

kp= k Up= Up (5.7b)

is the wave vector of the co' component of the incident
field, and g is the angle between the direction of observa-
tion (u) and the direction of polarization (eo) of the in-
cident electric field, i.e., cosit =u eo. We have also made
use here of the identity

(6& —uru )eo&eo = 1 —(u eo) = 1 —cos it =sin g .

(5.8)

If we define a function S(K, fl;co') by the formula

is the wave vector of the cu component of the scattered
field,

(5.11b)

i.e., it is the space-time Fourier transform of the two-
point correlation function of the dielectric susceptibility
of the scattering medium. We may thus regard the func-
tion $(K, Q;co') as the generalized structure function of
the medium. ' Hence we see from Eq. (5.10) that when
the incident field is a linearly polarized polychromatic
plane wave, the spectral density of the scattered field is
equal, apart from simple geometrical factors, to a
"weighted integral" taken over the spectrum of the in-
cident field, the weighting factor being the generalized
structure function of the medium.

B. Plane, monochromatic, linearly polarized incident wave

g(K, Q;co') = G(R, Q co')e 'R'Rd3g1

(2m) v
(5.9)

Suppose that the incident field is again a linearly polar-
ized plane wave, but that it is monochromatic. Then the
spectrum S"(co) has the form

Eq. (5.6) reduces to S"(co)= —,'ID[6(co —coo)+5(co+coo)], (5.12)

(,) (2~) Vk sin 1(S ru, co
2

X f S(k —ko, co —co';co')S "(co')dco' .

(5.10)

where cop and Ip are positive constants. The formula
(5.10) now reduces to

(2~) IOVk sin gS"(ru, co) =
2T

The function S(K,Q;co'), introduced by the formula
(5.9), has a simple meaning. If in Eq. (5.9) we substitute
for G from Eq. (4.10) we see at once that

where

X [4(k —ko, co —coo, coo)

+4( k +ko co + coo' coo ) ] (5.13)

S(K,Q;co')= f d 8 I G(R, T;co')
(2vr) v

~ e
—i(K R—nT)dT

Cdp

kp —
Up

C
(5.14)

or, more explicitly, using Eq. (4. 1)

(5.11a) If the fluctuations of the dielectric susceptibility are
slow compared to the optical period 2~/cop, then for
co) 0,
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S(k+ka, co+cu0, —e~0) —=0,
and Eq. (5.13) reduces to

(5.15)

(2m ) IDVk sin gS')(ru, co) = 4'(k —ka, co —era, co0) .
2r

(5.16)

This formula is essentially a well-known expression of
classical scattering theory for the intensity of the scat-
tered light. '

C. Static limit

Finally, let us consider the special case when the physi-
cal properties of the scattering medium do not change in
the course of time but they still change randomly with
position. i)(r, t;cu') will then be independent of t [in
which case we will write i)(r, ())') in place of g(r, t;co') as
we did before —cf. Eq. (2.2)]. The correlation function
G(R, T;co') defined by Eq. (4.1), will then be independent
of the temporal argument and we will denote it by
g (R, co'). Instead of Eq. (4.1) we now have

(i) '(r„co')i)(r2, co') ) =g(r~ —r), cd'),

and Eq. (4.10) gives

G(R, A;co') =g(R, co')5(O) .

(5.17)

(5.18)

X f g(R, ~)W"(R,co)e '" d 8 .
V

(5.19)

Two special cases of this formula are of particular in-
terest. When the incident field is a linearly polarized po-
lychromatic plane wave [Eq. (5.1)], the cross-spectral
density tensor of the incident field is given by Eq. (5.5),
and, if we also make use of the identity (5.8), Eq. (5.19)
reduces to

3 4 2
(, ) (2~) Vk sing k k ) (;)( )

r

(5.20)

where, as before, k=(co/e)u, k0=(co/c)uD, and g(k, co) is
the three-dimensional Fourier transform of the function
g (R, cu), i.e.,

g(K. ,co)=, f g(R, co)e ' '
d R,1

(2~) v

or, more explicitly, using Eq. (5.17),

(5.21)

g(K, co)= f (i) '(r, co')i)(r+R, co'))e ' ' d R
1

(2m) v

(5.22)

On substituting from this equation into the general for-
mula (4.12) we obtain the following expression for the
spectral density of the scattered field in the static limit:

S ' (ru, co) = (6( —u(u )
(, )

Vk

r

different manner.
Finally, let us suppose that the field incident on the

scatterer is monochromatic. Then S' (co) is given by Eq.
(5.12) and Eq. (5.20) reduces, when co )0, to

(2m. ) IDVk sin gS")(ru, co) = g(k —ka, co)5(co—co0) .
2r

(5.23)

A formula of this kind was first derived by Einstein ' in a
well-known investigation that was the starting point of
the statistical theory of light scattering.

VI. CONCLUDING REMARKS

We have developed, in this paper, a statistical continu-
um theory of scattering of electromagnetic fields, valid
within the accuracy of the first-order Born approxima-
tion. The theory has a much wider range of validity than
those that are currently available. In particular the in-
cident field may be of any state of coherence and polar-
ization and have arbitrary spectrum, provided only that
it is statistically stationary and homogeneous. The medi-
um is assumed to be linear, statistically homogeneous,
isotropic, and nonmagnetic, and of linear dimensions that
are large compared with the spatial correlation lengths
over which the random variation of its physical proper-
ties are correlated at each effective frequency contained
in the spectrum of the incident field. No assumption is
made regarding the thermodynamic state of the scatter-
ing medium.

The response of the scattering medium is described by
a generalized "two-time" dielectric susceptibility func-
tion, which takes into account the effects of both its spa-
tial and its temporal variations. Our analysis elucidates,
as a by-product, the physical significance and the approx-
imate nature of the "one-time" response function that is
employed in the usual theories.

Our main formula [Eq. (4.12)] expresses the spectrum
of the scattered field as a linear transform of the cross-
spectral density tensor of the fluctuating incident field.
The kernel of the transform is, apart from a simple
geometrical factor, a Fourier transform of the two-point
correlation function of the generalized dielectric suscepti-
bility of the scattering medium. We show that many of
the well-known formulas of the usual scattering theories
readily follow from it as special or limiting cases. In par-
ticular, Eq. (4.12) yields a well-known expression derived
by Einstein in a classic paper that was the starting point
of the statistical theory of light scattering, as well as vari-
ous formulas that are frequently in the analysis of
modern scattering experiments with laser light.

In general, the interaction of an electromagnetic field
with a random medium produces changes in the spec-
trum of the field. In an accompanying paper we show on
the basis of the present theory that the modification may
be such as to produce frequency shifts of spectral lines.
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APPENDIX A: A VECTOR IDENTITY USED
IN THE DERIVATION OF EQ. (4.7)

%'e start with the vector identity

( AXB).(CXD)=( A.C)(B D) —( A.D)(B C) . (Al)

It follows at once from this identity that

[u X [u X Pi (k, co)]].tu X [u XP, (k', co')] ]

=(u u)[uXPi (k, co)] [uXP, (k', co')]

(A2) the identities

I u X [u XP*, (k, co)] J
. Iu X [u XP, (k', co')] )

=P*, (k, co) P, (k', co') —[u P;(k, co)][u.P, (k', co')]

=(5, —u(u )P*„(k,~)P, (k', ~'), (A3)

where P» and P, denote the Ith and the mth com-
ponent, respectively, of P„5& denotes the Kronecker
symbol, and summation over repeated suSxes is implied.

—u [uXP, (k', co')]I[uXP*, (k, co)] uI

=[u XPi (k, co)] [u XP,(k', co')] . (A2)
APPENDIX B: DERIVATION

OF FORMULA (4.9)

On using the identity (Al) once again we obtain from Eq.
I

It follows from Eq. (3.32) that

((Pl&(k, co)Pl (k', co')) ) =
6 f d rl f d r2 f dcol J dco2e

(2m) v v

X ( I (rl, & Ml, &1)'g(r2, M N2, &2) )'

X ( [E i'(r„co, )]*E"(r2,co2) ), (81)

where we have made use of the assumption that the fluctuations of the medium and of the incident field are statistically
independent Now according to Eq (4 3) the second expectation value that occurs on the right-hand side of Eq. (Bl) is
given by

( [E 'l' (rl, co, )]*E"(r2,co2) ) = W&' (r2 —rl, col)5(co2 —col) . (82)

On substituting from Eq. (82) into Eq. (Bl) and on carrying out the trivial integration with respect to co, we find that

((Pi&(k, co)Pl (k', co')) ) = f d rl f d3r2 f dcol e'
(277) V V —co

X (2) *(r„co—co„co, )21(r2, co' —co, ;co, )

X Wi
' (r2 —r, , co, ) .(I ) (83)

Now the expectation value on the right-hand side of Eq. (83), which involves the dielectric susceptibility, may be ex-
pressed in a simpler form. We find from Eqs. (3.31), (4.1), and the Wiener-Khintchine theorem that

(2) *(r,, Q;co'}2)(r2, II', co') ) = G(r2 —r, , Q;co')5(Q —II'),

where

G(R, II, co') = f G(R, T;co')e'" dT,
277

(8&)

G (R, T; co') being the correlation function defined by Eq. (4.1), viz. ,

G(R, T;co')=(2) *(r, t;co')2)(r+R, t+T;co')) .

On substituting from Eq. (84) into Eq. (83}we obtain the formula
/

((P*„(kco)P, (k', co')) ) = f d r, J d r e
(2~) v ' v

dco, G(r2 —r, , co —co, ;co, ) Wl' (r2 rl, co, ) . —(i)

(86)

(87)

Because of our assumption that the spatial correlation length of the dielectric susceptibility fluctuations is small com-
pared with the linear dimensions of the scattering volume, the above expression can be readily shown to reduce to

((P*„(k,co)P, (k', co')) )=, f d'R e '" f ™
dco, G(R, co —co, ;co, )Wll'(R, co, ),(2~)' oo

where Vis the volume occupied by the scattering medium.

(88)
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