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It is shown that, introducing quantum-mechanical degrees of freedom for the pump field, one can
model optical-pumping processes of a laser with sub-Poissonian statistics. For a class of pump mod-
els containing regular pumping at one end of the range and Poissonian pumping at the other, the ex-
act stationary moments for the pump-field-averaged laser field are calculated in the strong-
saturation limit of the lasing transition. It is demonstrated that, in a photodetection experiment of
the laser output, complete noise suppression in the photocurrent fluctuation spectrum is, at least in

principle, achievable. Finally, an approximate Fokker-Planck equation for photon distribution of
the laser field with explicit appearance of the pump-light intensity correlation function in the
diffusion term is derived and solved in the stationary limit.

I. INTRODUCTION

In the wake of successful generation of squeezed light
and particularly of light exhibiting antibunching, recent-
ly interest has also turned to questions on the possibility
of sub-Poissonian statistics in laser systems: For example
sub-Poissonian laser statistics have been predicted and
found in the micromaser. Marte et al. have studied the
influence of a squeezed environment on laser atoms.

Especially reduced laser noise due to pump fluctuation
suppression has been the topic of recent investigations;
Yamamoto and co-workers have demonstrated that con-
trolling the pump fluctuations a sub-Poissonian output
from a semiconductor laser is achievable. Cxolubev and
Sokolev have shown in their analysis based on the
Scully-Lamb laser theory that deterministic regular
pumping by short laser pulses of a laser results in a pho-
tocurrent fluctuation spectrum of the laser output which
drops below the shot-noise 1evel. Recently Haake et al.
have calculated and simulated the effect of pump fluctua-
tions, including fluctuations due to spontaneous emission
from the upper lasing level in their treatment. Kennedy
and %'alls compare atomic and semiconductor lasers
with regular pumping and inhibited spontaneous emis-
S10n.

In this paper we present a novel stochastic treatment of
pump fluctuations: Instead of characterizing the pump
mechanism by a simple pumping rate 8 on one hand or
by averaging the laser field over Poissonian pump field
statistics (as, e.g. , in the Scully-Lamb laser theory), on the
other hand, we explicitly introduce quantum-mechanical
degrees of freedom for the pump field. This has the great
advantage that the theory can be made su%ciently gen-
eral to contain the results of both regular pumping and
Poissonian pump light as special cases.

The paper is organized as follows. Section II briefly
outlines the Scully-Lamb laser theory for later reference.
In Sec. III we introduce a quantum-mechanical model for
the pump-light field so that pump field averages of the
laser field are found by tracing over the pump degrees of
freedom. Following a recent analysis by Carmichael, ' a

connection to the experimentally relevant photocurrent
fluctuation spectrum is established. Section IV specifies
these general considerations to a class of pump-field mod-
els ranging from regular pumping to Poissonian pump-
ing; in the strong-saturation limit the stationary moments
of the corresponding laser equations can be calculated ex-
actly. Finally in Sec. V an approximate Fokker-Planck
equation is derived and used to calculate the stationary
photon distribution. It is shown that in the ideal case of
regular pumping with subsequent ideal photodetection
complete noise suppression in some frequency com-
ponents of the photocurrent is theoretically achievable.

II. LASER MODEL

In the following we will briefly outline the laser theory
of Scully and Lamb. Besides the laser problem their ap-
proach has been, for example, particularly useful when
studying the micromaser, ' as it deals with the contribu-
tion of single incoherently pumped atoms, entering a
high-Q cavity, to the laser field inside. Recent work ' on
pump fluctuations in lasers have been based on this laser
treatment and it has also proven convenient as a basis for
our pump-noise model.

Figure 1 schematically depicts a model atom entering
the cavity: The incoherent pumping process prepares the
atom in an excited level ~2) at a rate R; laser action takes
place in the inverted transition ~2)~ ~1), which is as-
sumed resonant with the single-mode cavity. The levels
~1) and ~2) decay according to the atomic decay rates y,
and y2 to some lower levels and subsequently the atom
becomes "invisible. "

The cavity damping of the resulting laser field is
modeled by a zero-temperature bath, i.e., the equation of
motion of the reduced-field density matrix contains the
following damping terms:

dpF
dt

=LpF with LpF =—(2ap~a —«pF pF«), —
2

(2.1)

where ~ denotes the cavity decay rate.
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((pF(t))) =( —R+I )((p+(t) ))+RF((pF(t ) )) .

FIG. 1. Schematic diagram of effective levels in the laser
atoms: The transition ~2) ~~1), which is assumed resonant
with the laser frequency co, in the cavity, is pumped at a rate R.
y2 and y& are the atomic decay rates.

pF(t;+t;„, )=Fpz(t, ) . (2.2)

We assume the interaction time to be very short com-
pared to the cavity lifetime, i.e., t;„, &&1/~. This means
that each atom sees an e8'ectively undamped field during
its interaction time with the cavity. Obviously, F has to
satisfy Tr„FpF =TrFpF = 1 for any density operator pF.

Combining n atomic contributions and the cavity
damping yields the following density matrix for the field:

L(t —r„) L(t„—f„&)
pF(t ~t„, . . . , t, )=e Fe

XF Fe 'FpF(0) . (2.3)

Usually at this stage one carries out an averaging pro-
cedure over the distribution of excited atoms entering the
cavity and assumes this distribution to be Poissonian. '

The Poisson distribution can be characterized by the fact
that the conditional probability density c(r) that, given
an atom was excited at t =0 in state ~2) or entered the
cavity at time t =0, the next one will appear at time ~, is
given by

Let sotne operator F (=—1+u ) denote the change of
the cavity field that an excited atom (entering the cavity
at time t; ) brings about after having interacted for a time

t;„, with the cavity:

where

+R(13.p. ) &.—+)—p. » (2.8)

n ln, y)P„=P, with P, = (2.9)

Here n, denotes the saturation photon number

n, =y )y214g with g being the atomic dipole coupling
constant.

The stationary solution of Eq. (2.8) is found to be

&k R
&. =No H k

(2.10)

(with No being a normalization constant), and for Pk ap-
proximately constant it agrees with a coherent state.

III. PUMP STATISTICS AND AVERAGES

In the above laser theory pump fluctuations have been
incorporated in form of fluctuations in the beam of excit-
ed atoms passing through the cavity. Alternatively, in-
stead of dealing with the statistics of the atomic beam,
one can study the influence of the photon statistics of the
pump light field on the cavity field. In this section we
will develop a formalism for incorporating pump-field
statistics and calculating the pump-field averaged laser
field.

A. Characterization of the pump-light field

(2.7)

Since we are only interested in fluctuations of the in-
tensity, in the following we can restrict ourselves to
the diagonal elements of the field density operator
p„(t)—:((pF(t) ))„„in the number state representation.
In the Scully-Lamb laser theory the corresponding equa-
tions of motion explicitly read

~$'n
lr[n—p„(n—+1)p„+,j

dt

c(r)=R e (2.4)

Thus the averaged-field density matrix is given by

XpF(t ~t„,. . . , t, ), (2.5)

As we are dealing with incoherent pump light, the
relevant quantities in order to characterize the pump pro-
cess are the mean intensity as well as the intensity corre-
lation function. Adopting a notation which resembles the
photodetection theory of Srinivas and Davies, "we write
the mean intensity (in units of a rate) as

with (I ) =Trt (Jpt, ), (3.1)

—R(i —f )
—R(r —I: ) —Rt

p(0, )(t„,. . . , t) )=e " Re " " ' R Re

(2.6)

Differentiating Eq. (2.5) with respect to time, this aver-
aged density operator is seen to obey the following master
equation (which is also encountered in the micrornaser
theory ): Jpp =Ã+ppE (3.2)

where p~ is the pump-field density matrix in the Hilbert
space &~ of the pump degrees of freedom and Trp stands
for the trace in &t, . We assume the pump light to be sta-
tionary, i.e., (d Idt)p~ =Ap~ =0, with A being the Liou-
ville operator governing the time evolution of the pump
field. The operator J acts on pz in the following way:
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[with E+b—eing the positive (negative) frequency part of
the electric field Schrodinger operator and g a constant
conversion factor to units of photon fiux].

A characterization of the intensity fluctuations of the
pump light is achieved by specifying the two time intensi-
ty correlations (with:: denoting normal and time order-
ing)

c(r ) =Trt, (Je 'Jp~ ) /Trt, (Jpt, )

= &:1(r)1(0):& /& I(o) &,

c(r)=Trz(Je' 'Jpp)/Trp(Jpp)

:1(r)e p x—J II t )dt ItO):) (IIO))
0

(3.3a)

(3.3b)

(The last equalities may be derived from the Kelly-
Kleiner photodetection formula, analogous to the pro-
cedure in an Appendix of Ref. 10.) Here again the opera-
tor A is the not-yet-specified Liouville operator belonging
to the dynamics in &t, . Equations (3.1)—(3.3) throughout
reflect a strong parallel to the Srinivas-Davies theory:
The stochastic pump process is modeled in analogy to the
photodetection of pump photons. Given a pump photon
excited an atom at time t =0, c(r) represents the proba-
bility that another (not necessarily the next one) will ar-
rive at time t =r, whereas c(~) is the probability density
for subsequent photons at times t =0 and t =~.

With Eqs. (2.5) and (2.6) in mind we interpret

(A —J)t[XJ Je 'p~) (3.4)

as a conditional probability density for pumping the laser
field (or equivalently preparing the laser atoms in the lev-
el ~2 & ) at times t, & . . ~ t„ in a time interval [0, t ).

B. Pump-field averages

By means of Eq. (2.5) we will now define stochastic
averages « » over the pump statistics of the field densi-
ty operator pF(t), given a hierarchy of distributions

p(0, )(t„,. . . , t, ) [compare Eq. (3.4)]. To this end it is use-
ful to construct a density operator W(t) in an extended
product Hilbert space &F&t, (with gf'F the Hilbert
space of the laser field), defined by

QO

W(t)= g f dt„. . . f dti e "JF
n=0

with respect to time, it is straightforward to prove that
W( t ) obeys the equation of motion

d
W(t ) =(A J—+L ) W(t )+JFW(t )

dt
(3.7)

+J(P„W„,—P„+,W„) . (3.8)

[Note that W„(t) is still an operator in & .] With the
help of the solutions W„(t ) the intracavity moments such
as the mean photon number can be calculated:

& n &
= g np„(t ) with p„=Trp W„.

n=0
(3.9)

In a similar fashion, one can obtain the Mandel Q param-
eter

with initial condition W(0)=p~(0)pt, (0). Here the
terms involving A and I describe the evolution of the
pump field and cavity damping, respectively, whereas the
terms proportional to J and F constitute the pumping.
Tracing Eq. (3.7) over the cavity field, the pump-field
density matrix can be recovered according to
pp(t ) =Trz W(t ) [which follows from Eq. (3.7) in view of
TrFLW(t)=0 and Tr~JFW(t)=Jp~(t)]. To summarize,
given a hierarchy of distributions (3.4) for the pump
statistics, the average-field density operator can be found
by solving Eq. (3.7) and tracing over the pump degrees of
freedom.

The Scully-Lamb laser theory with Poissonian pump is
recovered, if one specializes Eq. (3.7) assuming & to be
one-dimensional: the operators A and J then become c
numbers, J=8 and A =0, where 8 is the pump rate and
the last equality follows from the requirement Tr AR'=0
[compare Eqs. (2.5) or (2.6)]. In view of this, one can re-
gard the present formulation as a generalization of the
prevailing laser theory to include a quantum-mechanical
pump process: Instead of modeling the pump statistics
by stochastic c-number pump rates, one treats the pump
field as additional quantum-mechanical degrees of free-
dom. This difference is of great importance, as it opens
up the possibility for quantum effects such as sub-
Poissonian statistics, as we shall see later.

Inserting Eq. (2.1) for the cavity damping L and
(2.8) for the operator F describing the interaction of the
laser field with the atoms, the diagonal elements
& n

~
W( t )

~
n &

= W„( t ) satisfy the equations of motion

W„(t)=(A ~n)W„+~(n+1)W„+,d
dt

(L+A —J)(i —i )
Xe n n —

1 g=[&n(n —1) &
—&n &']/&n &, (3.10)

XJFe 'pF(0)pp(0) .

(3.5)

The motivation for the construction (3.5) is that the
averaged-field density matrix Eq. (2.5) is found by tracing
W(t ) over the pump degrees of freedom,

which will be of interest later on, when discussing the
measurement of the laser output intensity fluctuation
spectrum. Q negative/positive indicates sub/super-
Poissonian deviations in the photon statistics from the
Poissonian distribution of a coherent state which has

=0.

«p (t)»=Tr W(t) . (3.6) C. Photocurrent fluctuation spectrum

(Note that the operators A and J operate in &t, whereas
L operates in gf'F. ) Furthermore, differentiating Eq. (3.5)

Following a recent analysis by Carmichael, ' we shall
briefly explain the relation of the theoretically derivable
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intracavity moments of the preceding section
'

with
measurable quantities.

In an experiment the laser output falls on a photo-
detector converting incident photons into photoelectrons.
A single detector, positioned at a distance zd from the
(single) laser output port, with quantum efficiency il and
amplification 6 measures a mean photocurrent given by'

i ( t ) = riGe ~ & a ( t —zd /c )a ( t —
zd /c ) )

Here again:: denotes normal and time ordering, i.e.,

j &:I(zd,0),I(zd, ~):)=x [&a (0)a (r)a(r)a(0))
—

& a'(0)a(0) )'],

DC=g (Ge) g &I(zd, 0)) (3.13)

and stationarity of the field is assumed. DC and SH
stand for a dc contribution and a 5-correlated "shot-
noise" contribution, given by

—=qGeg& I(zd, t ) ), (3.11)
and

(with $=2eocA /Aai a conversion factor to photon flux
units, e the electronic charge, and A the transverse area).

However, in this context, where one is interested in
noise properties, one rather looks at the spectrum of the
photocurrent fluctuations, which is related to the two
time correlation functions by Fourier transform. Recent-
ly Carmichael has discussed in detail the photocurrent
spectrum of squeezed light in a homodyne detection
scheme. His general results are applicable to the present
case (with the modification that the amplitude of the local
oscillator is zero here) and yield

SH=g(Ge) /&I(zd, O))5(r), (3.14)

P(co) =—f d icos(cur)i(0)i(r)
7T 0

=Ps„(co)[1+gS(co)] . (3.15)

In the last expression P(co) has been factorized into the
flat shot-noise background

respectively. The observable power spectrum (which is
symmetric in co) is the Fourier cosine transform

i(0)i(r ) =DC+ SH PsH(co) = il(Ge ) ~& a (0)a(0) )
1 (3.16)

+g ( Ge ) g &:I(z„,O), I(zd, r): ) . (3.12)
I

and the positive variance V= 1+gS(co) with

S(co)=2Re f dec' '[&a (0)a (r)a(r)a(0)) —&a (0)a(0)) ] a &a (0)a(0)) .
0

(3.17)

V= 1 is the coherent (vacuum) level which is often re-
ferred to as "standard quantum limit. " For a classical
field the function S(co) can be shown to be positive
semidefinite; for quantum fields S(co) can become nega-
tive and thus subtracts from the vacuum level V=1. In
the ideal case one reaches S(co)= —1 over some frequen-
cy interval; with g=1 this means perfect noise suppres-
sion in the photocurrent.

The stationary two-time correlation function
&a (0)a (r)a(r)a(0)) may be calculated for r~0 with
the help of a quantum-regression theorem generalized to
include the pump degrees of freedom,

&a (0)a (r)a(r)a(0))

=Tr~+F(a Ie' + + "'[aW(0)a ]Ia ) (3.18)

with W(0) the stationary density matrix in &~s&p.

IV. EXACTLY SOLUBLE MODEL

A. A class of sub-Poissonian pump fields

In this section we will introduce a whole class of
pump-field models, containing Poissonian pump light at
one end of the spectrum and deterministic (regular)
pumping at the other end as special cases. As explained
in Sec. III A, the photon statistics of the pump-light field
can be characterized by the conditional probability densi-

ty c(~) [cf. Eq. (3.3)]. Thus we introduce a class of proba-
bility densities c~(r) parametrically dependent on an in-
teger WE[1, ~ ),

( )N
—i

(X—1)!
(4.1)

The corresponding variance is found to be

(«)'= & + &
—

& r)'= &'/X, (4.3)

and thus the relative error br/& ~) =1&% clearly goes
to zero for large N, i.e., when approaching the limit of
regular pumping. Figures 2 and 3 illustrate the situation.

with r=N/T and T=const. The above choice for the
probability density is motivated by the fact that this set
contains the Poissonian and the regular pump limit and
furthermore leads to simple closed form expressions: ob-
viously, setting N= 1 yields Poissonian statistics; on the
other hand, in the limit X~ oo c~(r) approaches the 5-
function 6(w —T) corresponding to regular pumping. '

Other values N) 1, but finite, specify a whole range of
sub-Poissonian pump-light fields which exhibit anti-
bunching, i.e., c~(0)=0.

The constant T implicit in Eq. (4.1) can be interpreted
as the main time interval between two subsequent pump
photons, since

&r) —= f dirc~(r)=N/r=T . (4.2)
0
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4.5

3.5—

2.5—

laser photon distribution, we will return to the general
case keeping the n dependence. ) In the present case it is
possible to compute the stationary moments of the pho-
ton distribution of the laser by means of a generating
"function" G(z, t ) (which is actually a density matrix in

p),

Z)o 1.5 I-

,L
0 0.5 1 1.5 2.5

G(z, t)= g z"W„(t)
n=0

(4.5)

[with G(z= 1,t):p—p(t)], satisfying the differential equa-
tion

FIG. 2. The conditional probability density c~(~) for N=1
(curve a), N = 10 (curve b), and N= 100 (curve c).

(I&=Trp(Jpp)=1/T . (4.4)

In Fig. 2 the functions c~.(~) and in Fig. 3 simulated pho-
ton emissions according to the statistics determined by
c~(~) are plotted for some values of N.

Note that a link to the framework of Sec. III A can be
made. There exists a matrix representation for the opera-
tors J and A, satisfying Eq. (3.3) with c~(r). The explicit
form of these matrices is given in Appendix A. One can
show that the parameter 1/T is the pump rate,

BG = [A+P,J(z —1)]G —1~(z —1) aG
at Bz

Obviously the following relations hold:

(n &=Trp BG
az z=1

0G(n(n —1) &
=TrP

z=1

Differentiating Eq. (4.6) we derive

(n &
= —Ir(n &+P,Trp(JG~, , ),d

dt

d (n(n —1) &
= —21~(n(n —1)&+2P,Trp JBG

dt P

(4.6)

(4.7)

(4.g)

(4.9)

B. The strong saturation limit

(4.10)

Identifying the last term in Eq. (4.9) with the stationary
pump rate (I &

= 1/T according to Eq. (4.4), i.e.,
In the limit of strong saturation, that is (n & ))n, the

laser model with pump-field statistics specified by Eq.
(4.1) becomes exactly soluble. According to Eq. (2.9), in
the strong-saturation limit one can ignore the dependence
of p„on the subscript n(p„=p, =const). For constant p
one could speak of a "kicked cavity" in analogy to the
kicked rotator: The field in the cavity is pumped or
"kicked" by a constant amount, the kicks being distribut-
ed in time according to the probability density c~(r). (In
Sec. V, when deriving a Fokker-Planck equation for the

(I&=Trp(Jpp)—=Trp(JG~, r r),
and inserting the stationary solution

az
=(x —A) 'P, Jp

into Eq. (4.10), we get the stationary moments

&n &=p, &r&/~,

Q= —P, [(I&/a. Trp[J(~ A) —'JPp]/(I —
& I .

By means of the Laplace transform

c(s ) =Trp[J(s —A) 'Jp ]/Trp(Jp )

(4.11)

(4.12)

(4.13)

(4.14)

(a)
of c(w), defined by Eq. (3.3a), it is possible to rewrite Eq.
(4.14) in the following way:

Q = [c(s =~)—( I & /~]P, —:Qp( ( n & )P, . (4.15)

As shown in Appendix A, by means of the explicit opera-
tor representation (J,A) compatible with Eqs. (3.3a) and
(3.3b) one derives

N

(b) Q, (& &)= 1+
(n &N

—&n &/P, . (4.16)

FIG. 3. Simulated photon emission; each line corresponds to
an emitted photon. (a) N=1 Poissonian statistics; (b) N=10 an-
tibunching.

In Fig. 4 the Mandel~ parameter is plotted as a func-
tion of b, r/(r& = I/i/N assuming p, =1, that is, spon-
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FIG. 4. The Mandel Q parameter as f ' f
(t & or (I&/le=10; P, = 1 (solid line) and P, =0.5 (dashed

line).

FIG. 5.Cx. 5. The spectral variance V(co) for (I)/@=100; g=0. 5

(curve a) and g = 1 (curve b).

taneous emission from the upper compared to the lower
level is ignored. There the lowest achievable Q=Qt
value is seen to be —0.5 for N~ Th'is can be made
obvious in an expansion in the limit ( n ) = (I ) /i n = K»1—
w ic is t e case of interest —yielding the following lead-
ing terms for Q~:

2

S(co)=aI2Re[g( ice) ——(n ) /( —ice)]j/(n )

with

(4.18)

trum S
regression theorem are given in Appendix B. Thix . e spec-
rum S(co) Eq. (3.17) expressed in terms of the Laplace

transforms g(s) [with c(s) given in Appendix A] is found
to e

Q(( )) 1N —1 1 N —1

(n & 12N'
1

(n) g(s) =
2 [se(s =a) —Kc(s )] .

S K

1 1—
2

2

4
1 1

&n) 12 &r)
2

1

&n)
(4.17)

Note that for a number state one h ~~ = —1

to the optimum value of Q = —
—,
' in the present case t"is

is analogous to the 50% squeezing attainable in the intra-
cavit mode. ' Hy .' However, in the subsequent section it will
be demonstrated that this lower limit on Q leads (for a
single port laser cavity and an ideal photodetector) to
perfect noise suppression in the photocurrent fluctuations
outside. In this sense Eq. (4.17) really is the optimum
theoretically achievable value. To lowest order in 1/(n )
and for N~ac our result Eq. (4.17) agrees with the
theories by Sokolev and Golubev and Haake et aI in
spite of the fact that there one deals with a nonstationary
pump for which only stroboscopic Incan values at times
0, T, 2T, . . . are calculated.

We now turn to the stationary pump field averaged
normally and time ordered correlation function

g (r)= (( a (0)a ( r)a (~)a (0) )) .

The technique of calculation is similar to the method of
etails on the calculation of g(r) and its La-

place transform &sg(s) by means of a quantum-fluctuation

The results are graphically shown in Fig. 5. The vari-
ance (co)=1+riS(n~) is plotted for some N values:
N= gives a straight reference line (normalized to one)
corresponding to a Poisson distribution, such as for a
fie in a coherent state: N= 1000 displays almost perfect
noise suppression —provided the quant fBn um e ciency g o
the detector is close enough to unity and the spontaneous

spontaneous emission, a nonideal detector or a second
aser output port lead to an accordingly diminished e6'ect.

the result by Sokolev and Golubev.

V. FOKKER-PLANCK EQUATION

dW =(A+L+ Ju ) W(t), (5.1)

where u:—F 1) operates in th—e following way on the
pump-field-averaged density matrix in the number state
representation [compare Eq. (2.8)]:

(u &(p » )„„=—p„ ip„+p„p„
We realize that this may be rewritten by means of a
difference operator 2) between terms with subscript n

shifted by 1, i.e., p„p„,—p„+ ip„—=N(p„+ tp„).

large mean photon numberIn the limit of la

1 T
n =,/ IrT, that is, in the case that the pump'
/ largely exceeds the cavity decay rate, one can derive

an approximate Fokker-Planck equation. To this end we
recall Eq. (3.7)
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Approximating the discrete index n by a continuous
variable n, we rewrite 2) in terms of the continuous dis-
placement operator as 2)=(e ~ "—1). Thus increasing
powers of u roughly correspond to increasing powers of
8/Bn; in the Fokker-Planck approximation one retains

terms up to second order in 8/Bn. This motivates a
second-order perturbation treatment of u in Eq. (5.1).

Perturbation theory to lowest order in the cavity
damping I. and second order in u leads to the following
second-order equation for ((pF ( t ) )) =Trt W( t ):

((pF(t))) = L +Tr~[ Jp (t)]u+ f dt'Trp[Je " ' 'Jp (t')]—f dt'Trt, [Jp~(t)]Tr p[ Jp (t')] u ((pF(t)» .
dt

(5.3)

In view of previous results we recognize

Tr~[Jp, (t )]= (I(t ) )

as the mean pump rate and, from Eq. (3.3a),

Trp[Je " ' 'Jp (t')] —Trt, [Jp (t)]Trp[Jp (t')]

Poissonian pump light Qp leads to a negative contribu-
tion to the diffusion resulting in reduced fluctuations.
Again the regular pump case has the same structure as
the heuristic Fokker-Planck model for the micromaser.

Since the problem is one-dimensional, a stationary po-
tential solution

= [c(t —t') —(I(t) ) ](I(t') )

= (:I(t),I(t'): ) (5.4)

p(n ) =Ne

can be found' with N a normalization constant and

(5.8a)

as the intensity correlation function. Assuming a station-
ary pump field Trp[Jp (t)]=(I) and using Eq. (4.15) in
the relation

V(n)= f dx
1 D(x ) —2A(x )

~o D(x) (5.8b)

f dt'(:l(t ),I(t'): ) = lim c(s ) — (I )
(I)

0 s~O S

—= Q ( )(I), (5.5)

one arrives at the approximate equation

((pF(t)»=[L+(I)~+(I)Qp(ec )tt ']((pp(t)» .

(5.6}

a = a 1 a'
p(n, t)= — A(n)+ — D(n) p(n, t)

dt
'

Bn
(5.7a)

Note that in view of Eq. (4.17) Qp( oo ) is equal to —
—,
' for

regular pumping; this follows in analogy to the discussion
of Eqs. (4.15)—(4.17} concerning the Mandel Q of the
ou tput field in the strong-saturation limit. The case
QP=0 corresponds to the usual laser theory with Pois-
sonian pump. An equation of the form of Eq. (5.6) has
also been derived by Sokolev and Golubev for the special
case of regular pumping.

Finally, inserting a continuous variable version of Eq.
(5.2), we get a Fokker-Planck equation for p„, valid for
1/(n ) =ir/(I )P, «1:

It is straightforward to carry out this integration; the re-
sults are displayed in Fig. 6, where the normalized distri-
bution is plotted as a function of n /n„with n„denoting
the semiclassical stationary solution

1n„= (I )P, n,—, — (5.9)

0.06
p

0.05—

0.04—

P 003 [

l",

l

/b'',
, i

ch

0.02—

found by setting the diffusion D in Eq. (5.7) to zero. The
case Qp =0 has been compared with a Poisson distribu-
tion of the same mean value and excellent agreement was
found. The curves clearly demonstrate that Qp (0 and

Qt )0 lead to a narrowed or broadened distribution, re-
spectively, compared to the corresponding Poissonian
distribution. The effect of subtracting Qt is strongest for

with drift term

A(n) =

1m�+�(I

)P(n )—
and diffusion

(5.7b)

0.01—

0
0 02

/Ii
/)

0.4 0.6 O.S 1 1.2 1.4

n/(n &

1.6 1.8 2

D(n)=(I)P(n)+2Q~(~)(I)P (n)+~n . (5.7c)

We emphasize that this equation explicitly depends on
the parameter Qz defined in Eq. (5.5). For sub-

FICx. 6. Stationary distribution p(n) of the Fokker-Planck
equation in arbitrary units in the strong-saturation limit
(n ) /n, = 10;P, =1, Qp = —0.5 (curve a), Qp =0 {curve b), and

Qp =0. 5 (curve c).
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0.6

0.4', -

(n =0, 1,2, . . . ) . (A 1)

Denoting by p'"' the diagonal elements of p'"' our model
is defined by the set of rate equations

-0.2—

-0.4— d p'"'= —rp'"'+rp'"' i =
j

(A2)

-0.6
-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

Qp

P, =y, /(y, +y2) =1; thus large spontaneous emission
from the upper level tends to destroy the sub-Poissonian
statistics. Figure 7 shows the Mandel Q parameter of the
laser field as a function of Qt, for some values of P, and
n, .

FIG. 7. The Mandel Q parameter for the laser output as a
function of Qp for (n ) =200; n, ~0, P, =1 (curve a), n, =50,
P, = 1 (curve b}, n, =50, P, =0.7 (curve c).

c(s)= 1

(1+sT/N ) —1
(A4)

from which by comparison with Eq. (Al) the explicit
form of the operators A and J is easily read off. In partic-
ular we find that Eqs. (A2} give rise to the 'next photon'
intensity correlation function c)v(r) given in Eq. (4.1}. Fi-
nally, it is easy to prove that in the present model we
have the following integral equation for the intensity
correlation function c)v(t ),

c~(t }=c~(t)+J drc~(t r)cd(—r) . (A3)
0

The Laplace transform of Eq. (A3) used in Eq. (4.16) is
then found to be

VI. CONCLUSIONS

We have developed a laser theory with sub-Poissonian
pump statistics. The central equation for the treatment
of pump statistics is a master equation explicitly contain-
ing the pump degrees of freedom besides the laser field.
In the present paper we have calculated the stationary
moments and the photon number distribution of the
pump-field-averaged laser field for a class of pump models
which contain both the Poissonian and regular laser
pump as limiting cases. Complete suppression of photo-
current fluctuations is found for regular pumping, negli-
gible spontaneous decay, and ideal photodetection. The
present theory has the advantage that it applies to a large
number of pump-field inputs. A particularly relevant ex-
ample is a squeezed input; corresponding results will be
published elsewhere.

Note added in proof. Recently, a series of preprints by
Scully and co-workers has been brought to our attention
which address somewhat related questions, dealing with
pump-noise quenching in correlated spontaneous emis-
sion lasers.

APPENDIX A

The purpose of this Appendix is to identify the opera-
tors A and J for the pump model defined in Sec. IIIA
[Eq. (4.1) for c)v(r)]. In general, the density operator of
the pump field projected on an n-photon subspace, p'"'(t),
obeys the equation

APPENDIX B

Here we wish to calculate the pump-field-averaged
two-time intensity correlation function, defined as [cf. Eq.
(3.18)]

(t ti ) T rI~(A+L+ Ju )(t —t')I ( AL +Ju+)t
rp+FL e

XpF(0)(3)p&(0)], (Bl)

where IW=aWa is a Liouville operator in &F&t.
Let us introduce a pseudodensity matrix 8'

W(t)=e' + + ""' ' 'IW(t') for t ~ t' (B2)

satisfying Eq. (3.7) for t ~ t' with the "initial condition"
W(t')=IW(t'). In particular, for Eq. (2.8) considered
master equation in the strong-saturation limit with
P=const=P„we get Eq. (3.8) for W„(t) with the initial
condition W„(t ') = ( n + 1 ) W„+ ) ( t '). These equations can
again (analogous to Sec. IVB) be solved by means of a
generating function

G(z, t)= g z"W„(t),
n=0

satisfying the differential equation (4.6) with initial condi-
tion G(z, t') =((}/Bz)G(z, t'). Thus we can write

g(t, t ') =TrF+ p[IW(t )]=Trz
ao
Bz

(B3)

From the differential equation for 6 one derives in the
stationary limit j'~ oo
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+K g(r)=Tr~[Je '(~ —A) Jpp]d7-
(B4)

g(s)= [(n(n —1))1

S+K

with g (0)= ( n ( n —1 ) ) . Taking the Laplace transform of
this equation and inserting the explicit expressions of Ap-
pendix A, one finds

+Trp[J(s —A) '(tc —A) 'Jpp]]

[sc(tr) —Icc(s )] .
(n)

S K
(B5)
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