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We calculate the input-output characteristics of an optical amplifier that consists of an inverted-
population medium placed inside a high-Q Fabry-Perot cavity. Expressions are derived for the out-
put second- and fourth-order spectral and temporal correlation functions, and more generally for
the output characteristic functional, in terms of the corresponding input quantities. The photo-
count first and second factorial moments are obtained for both homodyne and direct detection of
the amplifier input and output. The general results are applied to several cases of practical interest,
including inputs that have coherent or chaotic coherence properties. Particular attention is paid to
the effects of amplification on specific nonclassical varieties of input light. It is shown that a max-
imum of only twofold amplification is permitted if any squeezing present in the input is to survive as
squeezing in the output light. Similarly, for the preservation of photon antibunching in

amplification, we show, by consideration of a kind of free-space number-state input, that only small

gains are allowed. The amplifier model treated here provides a detailed example of the limitations
imposed by quantum mechanics on the minimum noise generated by a multimode linear amplifier.
In particular, we show that minimum noise occurs in a cavity that is asymmetric with respect to
mirror reflectivities, for which we derive the corresponding conditions. In addition, we demonstrate
the ability of the amplifier to improve upon signal-to-noise ratio, otherwise limited by low detector
quantum efficiency.

I. INTRODUCTION

Optical amplifiers are of considerable current interest
in view of their potential importance in all-optical re-
peaters, and for predetection amplification in optical
communication systems. Theoretical treatments of the
inverted-population optical amplifier date back to the
early considerations of the feasibility of laser action.
These treatments mainly used semiclassical methods,
with the amplifier noise modeled as a stationary Gaussian
process. However, more recent interest in the possible
applications of nonclassical light has led to the develop-
ment of fully quantum-mechanical theories that are cap-
able of evaluating the effects of amplification on the desir-
able low-noise properties of nonclassical light.
Quantum-mechanical amplification theory provides very
general limits on the minimum amounts of noise that
must be added by any practical optical amplifier. These
limits have been very clearly presented by Caves, ' who
also reviews earlier work on amplifier theory.

Much of the work on quantum-mechanical amplifier
theory is based on a model developed by Louisell and his
collaborators. ' They used a Heisenberg-picture ap-
proach to the linearized treatment of a single-mode
amplifier or attenuator, in which the spatial propagation
of an optical signal through the amplifying medium is re-
placed by a time-dependent growth in optical intensity.
The model contains no provision for the effects of cou-
pling the input and output fields to the amplifying medi-
um itself. These various limitations prevent any calcula-

tion of the effects of arnplification on the spectral proper-
ties and multitime correlation functions of the amplified
light beam, or of the effects of integration times on the
corresponding detected quantities. However, the simpli-
city of this model, and of equivalent theories produced by
other authors, allows a wide range of interesting proper-
ties to be calculated, including the effects of amplification
on signal-to-noise ratios, nonclassical properties such as
squeezing and antibunching, and other photon statistical
quantities. There has also been some progress in im-
proving the basic model to include input and output
fields, and converting the amplifier to steady-state opera-
tion.

The purpose of the present paper, some of whose re-
sults have been summarized previously, is an improve-
ment in the Louisell model to allow multimode input and
output light beams. The main modification is the inser-
tion of an optical cavity to contain the inverted-
population atoms of the amplifying medium. With a cav-
ity of sufficiently high Q, it is permissible to assume that
only a single internal mode is significantly excited by an
input beam that covers a limited but continuous range of
external modes. The dynamics of the coupling between
internal and external modes is treated by methods
developed recently for cavity systems. ' '" The plane
cavity mirrors are assumed to be oriented perpendicular
to the input light beam, and the optical system is treated
as one-dimensional, with any transverse effects ignored.
The improved model thus remains reasonably simple, and
it is possible to calculate all the amplifier properties of in-
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terest, including spectral and temporal correlations.
We begin in Sec. II by describing the basic model. The

main characteristics of the amplifier are embodied in rela-
tionships between the input and output photon destruc-
tion operators which we derive for arbitrary input fields.
In Sec. III we present results for the second-order expec-
tation values of the external fields. These enable us to
derive spectral relations describing the output field in
terms of the input field, where the role of the amplifier is
apparent both in the signal gain and in the added noise.
We show that the amount of quantum noise necessarily
added by the amplifier satisfies the fundamental noise
theorem' and find the conditions under which this noise
is a minimum. In the latter half of Sec. III we apply our
results to several types of input light, including coherent,
chaotic, and quantum fields. In Sec. IV we derive results
for the fourth-order expectation values of the external
fields and evaluate the output intensity correlation for the
previously mentioned inputs. We construct the second-
order coherence of the output fields. In Sec. V we present
the integrated detection statistics of the system, perform-
ing a homodyne detection experiment and evaluating the
signal-to-noise ratios of the outputs deriving from
coherent, chaotic, and squeezed inputs. We also consider
direct detection of the outputs from coherent, chaotic,
and antibunched input fields. In Sec. VI we show how
characteristic functionals can be derived and used to ob-
tain complete statistical information for the amplifier out-
put, thus generalizing the second- and fourth-order re-
sults given in earlier sections. Finally, in Sec. VII, we
conclude with a discussion of our results.

Cavity
Amptifier

Q a.
,n

Detector

FIG. 1. Schematic arrangement of amplifier and detector
showing notation for input and output field operators.

tN
dt

[c),A',„,]——,'(y, +y2)8+k(t), (2.3)

where 8,„, represents the Hamiltonian for the isolated
system in the cavity, and k(t) characterizes the noise.
This may be ascribed to the fields external to the cavity
coupling to the cavity mode through the mirrors ' and
we therefore write

(2.4)

If the amplifier is composed of n, two-level atoms, and if
& (t) is the lowering operator for the jth atom of the
amplifier, then the system Hamiltonian A', „, has the usual
form in the rotating-wave and electric-dipole approxima-
tions,

n n

P,„,=%coo& &+—,
' g fico &'+ g irik (8+&+& 8 ),
j=1 j=1

(2 &)

II. THE MODEL

A. Solution of the equations of motion

We consider a system composed of an atomic amplifier
placed within a high-Q cavity. The cavity supports a sin-
gle mode of oscillation characterized by its annihilation
operator &(t) and coupled via mirrors to multimode
external fields. The cavity mode obeys the usual commu-
tation relation

i eood i g—k—.& J
—

—,'(y, +yz)&+y I~ c);„
J

+y2 b (2.6}

where & is the atomic inversion operator, k is the
atom-field coupling constant, co is the transition frequen-
cy of the jth atom, and coo is the cavity mode frequency.
Substituting this into Eq. (2.3) we obtain the equation for
the evolution of the cavity mode,

[a,& t]=1, (2.1}
To solve this equation we must first eliminate the atomic
operators using the relevant Heisenberg equation,

while for the external modes we take continuous mode
fields with commutation relations

d& J
J J J JlQ) & . +1k& 8 (2.7)

[a;„(co),& t„(co')]= [a,„,(co ),a ,„,(co')]

=5(co—co'),

[b,„(co), b t„(co')]= [b,„,(co ),b ,„,(co')]
(2.2)

We assume that the atomic level populations are exter-
nally maintained so that we may make a linearizing ap-
proximation, and replace the inversion operator by its ex-
pectation value,

=5(co —co'), & ' ~ ( & J. ) = ( n, ns )In, ,— (2.8)

where &;„(co) and &,„,(co) refer to fields incident on, and
emergent from, the cavity on the right, and b;„(co) and
b,„,(co) refer similarly to fields on the left (Fig. 1). The
cavity damping rates y& and y2 are equal to the mirror
intensity transmission coefficients multiplied by c/(2L),
where I is the cavity length.

The quantum Langevin' equation for the system is

where n, and n are the numbers of atoms in the excited
and ground states, respectively.

The steady-state atomic coherences vanish,

(2.9)

The resulting linear equation may be formally solved to
give
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is already in a steady state. Defining the Fourier trans-
form of d(t) by

+ik (&~)f dre ' &(r),
to

(2.10) &(co)=(2n) ' f dt e' 'a(t) (2.11)

where to is a time in the remote past at which the system
and using Eq. (2.10) we find from Eq. (2.6) the result for
&(~),

a(ai) =
(2m)'~ gk)&) (to)e ' '5(ci) co —)+iy,' d;„(co)+iy2 b;„(co)

J
co coo+ i I (2.12)

where

I =
—,'(y, +y~) —(n, n)y„,—

~k '(~o)p(~o)
(2.13)

atomic population is largely unchanged by its interaction
with the cavity mode. In deriving Eq. (2.12), we have
made use of the Wigner-Weisskopf approximation.

We may now use the boundary conditions at the cavity
mirrors, which take the form

Here, k (co ) is the coupling strength regarded as a func-
tion of atomic frequency co, and p(co ) the number densi-

ty of atoms with transition frequency equal to co . Note
that we have assumed that both k and p are weakly
dependent on co so that the statistical distribution of the

&(co)=yi ' [a;„(co)+a,„,(co)]

=y2 ' [b;„(co)+b,„,(co)], (2.14)

to recast the result (2.12) expressly in terms of the inputs
and outputs to the cavity. Thus, after eliminating the
internal mode, we find

a,„,(co)= —&;„(co)+

(2~y, )' g k &
~ (to)e ' '5(co co )+—iy, &;„(cu)+i (y2yi)' b;„(ai)

J
co coo+ l I

(2.15)

This is consistent with the commutators (2.2) and the
usual atomic commutators

[&,+,&, ]=&'5, , [&,—,&;]=+2&+5;-(2.16)

within the range of validity of the linearizing approxima-
tion (2.8). Equation (2.15) describes the output field as
consisting of both reAected and amplified input contribu-
tions and an atomic part which we will identify with the
amplifier spontaneous emission. Clearly, in the absence
of any input, only this latter term contributes to any mea-
surements made on the output. The effects of the
amplifier and cavity are contained in the various detun-
ings and damping rates. This is an entirely general result
since we have yet to choose the nature of our input fields.

B. Time-dependent operator relations

The input-output relation (2.15) may be used to pro-
vide all the required amplifier and output field properties.
However, it is sometimes useful to work with the
transformed version where the operators are explicitly
time dependent and defined by, for example,

Q,„,(t)=(2') ' f

defoe

' 'a,„,(co) . (2.17)

Strictly the range of co here extends only from zero to
infinity, but an extension of the lower limit down to —~
is approximately valid if the input states have bandwidth
much smaller than coo. Then the Fourier transform of
Eq. (2.15) is

&,„,(t)= a;„(t)+y', ~ g-
~o+ iI" + f dre ' [y,&,„(r)+(y,y2)' b;„(r)] . (2.18)

The time-dependent operators all satisfy commutators of the form

[&,„,(t),&,„,(t')]=5(t —t'), (2.19)

where the linearizing approximation (2.8) is again employed. Equation (2.18) or its Fourier-transformed equivalent, Eq.
(2.15), contains all the information that it is necessary to know in order to investigate the properties of the system.
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III. SECOND-ORDER EXPECTATION VALUES

A. Spectral functions

It is straightforward to show from Eq. (2.15) that the
first-order correlation function of the output field for an
arbitrary input is given by

& &,„,(co)&,„,(co') &

oo ne 3'1'V gfct J fa (co)dco

Maximum gain occurs at resonance, co=no,

~1V2
G (coo)—:Go = r'

(3.7)

(3.g)

2n, y, y „5(co—co') y, y2& b;„(co)b;„(co')&+
(co—coo)2+ 1 2 (co co—o i—I )(co' coo—+i I )

(3.1)

The amplifier is assumed to be operated with a peak gain
greater than unity (Go ) 1) but below the threshold for
self-sustaining laser action (I )0) so that the population
inversion (n, n—) must satisfy

where the input modes described by ct;„(co) are taken to
be unexcited. Consider an input which is stationary in
time, with an input frequency correlation given by

& b t„(co)b,„(co')-& =2rrf;„(co)5(co co'), — (3.2)

where f;„(co) is the input spectral fiux. [The spectral
functions f (co) represent beam fiuxes in terms of photons
per unit time per unit angular frequency bandwidth, and
are therefore dimensionless quantities. ] We find from Eq.
(3.1) an output correlation of the form

&~.'„,( e.„,(~)&=2 f.„,( )fi( — ),
where

,'[r—I" r—2 ] ((n n )3 A( (rl+y2) . (3.9)

For an empty cavity (yz =0, f,h=0), Eq. (3.4) be-
comes

f,„,( c)o= 2, , f;„(co),
Y1V2

(~ ~o)'+ .'(r i-+r2)' '" (3.10)

8. Noise minimization

which is the usual Fabry-Perot input-output spectral rela-
tion in the single-mode approximation. ' ' Note that
Eq. (3.9) cannot be satisfied for an empty cavity.

f,„,(co) =G (co)f;„(co)+f,„(co) . (3.4)

G( )
rlr2

(co —coo) +I
while

(3.5)

Here G (co) is the amplifier gain at frequency co, being a
maximum for a resonant input,

We will shortly apply the result (3.1) to evaluate the
correlation after processing of a number of di6'erent input
states. First, however, we consider the conditions under
which the system may best be operated to minimize the
noise flux necessarily generated by the amplifier.

Suppose again that b;„(co) represents the signal-
carrying mode and that ct,„,(co) is the output mode of in-
terest. Then Eq. (2.15) can be written

n, r ir~ i~f,i,(co)=
(co —coo) +I (3.6)

ct,„,(co) =M (co)b;„(co)+P(co),

where

(3.1 1)

Clearly, in the absence of any input, the output flux is
just the chaotic contribution due to spontaneous emission
within the amplifier. The total chaotic flux is defined as

M(co)=i (y, y2)'i /(co coo+i—I )

and the noise operator is

(3.12)

F(co)=
(2n. y)'i g k & e ' '5(co co) ) (co coo—+—i I —i y, )t;„(c—)co

J

(co coo+i I )— (3.13)

Making the linearizing approximation (2.8) again, it is
easily shown that

[P(co),P (co')]= [1—G (co)]5(co—co'), (3.14)

) [G (co)—1]6(co—co'), (3.15)

where G(co)=iM(co)i in agreement with Eq. (3.5). Then
using the properties of the noise operator and the results
(2.13) and (3.6), it follows that

& & '(c ')&(co) & =2~f,„( )&( — ')
71V2

(co —coo) +I

when the input field &;„(co) is assumed to be unexcited.
This inequality is equivalent to Caves's fundamental
theorem' for multimode linear amplifiers, and it confirms
that our system operates within the standard limits irn-

posed by quantum mechanics.
If we now substitute the explicit forms for the chaotic

fiux, Eq. (3.6), and the gain, Eq. (3.5), into the inequality
(3.15), we find

27

(co —coo) +I
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For resonant inputs co=coo (the most stringent regime of
the inequality), the theorem reduces to

P~ 1, (3.17)

P= 2n

y, q, —r' ' (3.18)

since, from Eq. (3.8), y, yz) I for amplification.
Using the expression (2.13) for I, P has a minimum

value for the choice of y2 given by

(3.19)

Thus minimum added noise is obtained with the input
mirror {the mirror through which the input enters the
cavity) more highly transmitting than the output mirror.
If we were to consider the alternative situation, where 6';„
describes the input and bpnt the relevant output, then we
would again obtain Eq. (3.19) but with the positions of y &

and y2 reversed. The result (3.19) is therefore asym-
metric in the mirror transmissivities but symmetric with
respect to the whole system. This would appear contrary
to intuition derived from familiarity with Fabry-Perot
cavities, where perfect transmissio~ of a resonant input is
obtained with identical mirrors, and is independent of the
chosen direction of throughput. However, a Fabry-Perot
cavity is a passive, time-reversible system. Our system in-
cludes an amplifier which is most definitely not time-
reversible: were it to be run backwards the amplifier
would not reabsorb the existing spontaneously emitted
photons, but would only produce more. ' lt is clearly the
amplifier asymmetry which results in the need for mirror
asymmetry: setting y„(essentially the field-atom cou-
pling) equal to zero in Eq. (3.19), and thereby removing
the amplifier, leads to y, =@2, as one would expect. The
degree of asymmetry needed is directly proportional to
the degree of population inversion in the amplifier,
(n, n). This is —not surprising since the greater the in-

version the greater the spontaneous emission, and from
Eq. (3.6) it is precisely the spontaneous emission which is
responsible for the noise on the output (recalling that &;„
describes a vacuum field). Reducing the output mirror
transmissivity with respect to that of the input mirror ac-
cording to Eq. (3.19) thus essentially reduces the number
of noise photons in the detected output beam.

Choosing, then, an asymmetric cavity, the result for P
1s

FIG. 2. Illustration of the inequality (3.26) for a peak gain
60=8. The upper Lorentzian curve represents the frequency-
dependent noise from the left-hand side of Eq. (3.26), while the
lower curve represents the frequency-dependent gain minus 1

from the right-hand side of Eq. (3.26).

y2
G(coo) = =1+

71

2(n, —n )yA
(3.22)

which increases with increasing inversion and coupling
strength and with decreasing output transmittance. It is
clear from the form of P in Eq. (3.20) that the inequality
(3.17) is indeed satisfied. Minimum noise (P= 1) occurs
for n, =n„n =0, when the mirror decay rates are high-

ly asymmetric,

72 V1+2na V A

and the gain is

(3.23)

G (coo) = 1+ 2na Y (3.24)

(3.25)

In this regime, the total chaotic fiux (3.7) is related to the
peak chaotic Aux and peak gain by

P1e

n, —n
(3.20)

and Eq. (3.16) can be written

—1 . (3.26)

which is seen to be simply the population factor that ap-
pears in the theory of the discrete mode amplifier. The
cavity amplifier decay rate given in Eq. (2.13) reduces to

The inequality (3.26) is illustrated in Fig. 2.

and the gain, from Eq. (3.8), becomes

(3.21)
C. Temporal correlation functions

The Fourier transform of the output spectral function
(3.1) is defined by
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(a t„,(t)8,„,(t') & =(2m )
' f dco I dco'e'"' ' "(8,„,(co)&,„,(co') )

and we define the time-dependent output flux to be

f.„,(t)=(&,„,(t8,„,(t)) .

(3.27)

(3.28)

If we consider input fields with time-stationary statistical properties, so that Eq. (3.3) holds, then the expression for the
output temporal correlation (3.27) reduces to

(a,„,(t)a,„,(t')) = f dcoe' " "f,„,(co) . (3.29)

For the output flux we find

f,„,(t)= I dcof, „,(co)=f,„, ,

which is time independent.
In general, with the output field described by Eq. (2.18), the output second-order correlation function is

(&,„,(t)a,„,(t')) =f,„e ' +r, rz I dr I dr'e ' ' (b;„(r)b;„(r')),

(3.30)

(3.31)

where the chaotic output flux is given by Eq. (3.7) and the modes represented by &;„are assumed to be unexcited. The
total output flux is thus

f...(t)=f,h+yiy2f f ' d«r'e ' "' '' "'" ' ''(b;„(r)b;„(r')&, (3.32)

which is simply the sum of the input flux after
amplification and the spontaneous-emission flux. For a
stationary input, whose correlation depends only on the
time diff'erence ~—~', we may conveniently change the
variables to

and

P;„(co)=(2~f,„)' e "%(co—co, )

EQ) 1+!+

(3.38)

(3.39)

(3.33)

The spectral correlation function thus describes a time-
stationary input as defined by Eq. (3.2), with

s =z+r' —2t,
and perform the integration over s to find

f,„,=f,„+ I do e ' (b;„(a)b;„(0)) .
2I

f;„(co)=f;„o(co co,)—
and the total input flux is simply

(b;„(t)b;„(t)) =f;„.

(3.40)

(3.41)

(3.34)

We now apply these results in evaluating the output
correlation associated with particular inputs.

D. Results for specific inputs

The output spectral function (3.4) in this case is

f,„,(co)=G(co)f;„b(co co, )+f, ( h)co— (3.42)

and it shows an amplified coherent 6-function peak
superimposed on a continuous chaotic background.
Also, using

1. Coherent input

A coherent input state can be defined by

l IP;„(co)j ) =exp f dco[13,„(co)b,„(co)

P;*„(co)b;„(co)]— (3.35)

(b;„(t)b;„(t'))=f,„e

the total output flux can be obtained from (3.34) as

foUi =fch+» =f.h+ G (~, )f;„,r irzf;.
(co, —coo) +I

(3.43)

(3.44)

and it has the properties

b;„(co)lIP;„(co)j ) =P,„(co)l IP;„(co)j ),
b,„(t)l IP,„(co)j =P,„(t)l IP,„(co)j &,

(3.36)

with G(co) as defined in Eq. (3.5). This is precisely the
form one would expect from a true (quantum-mechanical)
amplifier. ' More generally, the output correlation (3.31)
is, using Eq. (3.43),

where P;„(co) is an arbitrary complex function of co and
(d,„,(t)a,„,(t') ) =f,„e

P(t) =(2m )
' I dco e '"'P(co) . (3.37) +G(co, )f,„e (3.45)

We consider here only a quasi-single-mode coherent-state
input, where P;„(co) is a very sharply peaked function,

This is the typical result for a superposition of chaotic
and coherent light. ' The above results also hold gen-
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2. Chaotic input

Consider chaotic input light with a Lorentzian fre-
quency spread of linewidth y„centered on a frequency
to, . The spectral correlation function is given by Eq. (3.2)
with

(y, /~)f;„
f;„(to)=

(~o —to, ) +y,
(3.46)

where f;„ is the total input flux. The output flux (3.4) has

erally for any input whose frequency spread is much
smaller than I, the system bandwidth.

corresponding to the input flux (3.46) is

(b ~„(t)b;„(t')) =f;„e (3.48)

The corresponding output correlation is obtained from
Eq. (3.31). We consider for simplicity only the special
case where the input Lorentzian is centered on the cavity
frequency, co, =coo, when

the usual chaotic contribution from the amplifier spon-
taneous emission together with a product of Lorentzian
distributions representing the amplified chaotic input.
The time-dependent correlation

(b;„(t)b;„(t')) = f de e' " ' 'f,„(~), (3.47)

r(r' —y,')
' (3.49)

The total output flux obtained by setting t = t' is
r

yiyzf. r
fout=fch r(r+ )

=fch+
XC ~C

Gof;„. (3.50)

Thus for I ))y„
fout =fch +Gof in

and for I (&y„
rfout

=fch + Gof in
~C

(3.51}

(3.52)

These features reflect the well-known properties, even of
empty Fabry-Perot cavities [y„=0 in Eq. (2.13)], that
the total flux of the output is governed by the smaller of
the widths y, of the input light and 1" of the cavity itself.

the state (3.53) represents an infinite chain of single-
photon pulses with equal spacing to. Note that the state
I In, to) ), as defined in Eq. (3.53), is unnormalized. The
condition y to &) 1, however, which ensures that the
pulses are well separated and have negligible time over-
lap, can be shown to reduce the normalization constant
to unity when the infinite product of Eq. (3.53) is defined
as the limit of a finite product. These conditions will be
assumed in the following. The integrated creation and
destruction operators defined by Eq. (3.54) and its Hermi-
tian conjugate satisfy the commutation relations

[b;„(t0),A (p„)]=p„(oi),
(3.58}

[b;„(t),& (P„)]=P„(t),
and

3. Number-state input

Consider an input state defined by'

~ '(p„)I0),

where n takes all integer values and

(P„)=f dtoP„(to)b ~„(to)

dt „ t b;„t
The functions p„are normalized according to

f d~l p. (~)I'= f «Ip. (t)l'=1

and with the choice

( y I&) itunto1/2

—~o+~y

or, equivalently,

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

[ A (p„),A (p„)]=5„„
The second-order expectation values for the state

(3.53), obtained with the use of the commutators, are

(3.59)

(b;„(c)o;b„( oi)) = g P„'(to)P„(to') (3.60)

and

(b;„(t)b;„(t'))= g P„*(t)P„(t') .
oo

Thus the time-dependent input flux is

f;„(t)= (b;„(t)b;„(t))

(3.61)

—2y(t —
neo)2ye ' B(t nto) . —(3.62)

This is clearly not time stationary. The mean input flux
is given by a long-time average (denoted here by the sub-

script "av") of Eq. (3.62) as

1 ~0 1
(f;„),„= lim f f;„(t}dt=—. (3.63)o-" ~o o to

The output spectral correlation function can be found
from Eq. (3.31) using Eq. (3.61) as
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yy)y2 —r(t —nto) 'Y(t «o)

(r —y)2„= „
X 8( t n—to )8( t' —nto ) (3.64)

It is again seen that the time dependence of the second term of the output correlation (3.64) is mainly governed by the
smaller of y and I, when these have very different magnitudes. The total output flux is

f,„,(t) = (&,„t(t)&,„t(t) )

y1 1l 2 —1 (t —nt()) —y(t —nto)
e ' —e 8 t —nt()(r —y)'„= „

A long-time average, analogous to Eq. (3.63), gives the mean output fiux

(3.65)

V]72(fout )av =fch I ( I + ~ (fin )av &r r+q~
(3.66)

which may be compared to the chaotic result (3.50), and which takes similar limiting values. The reason for the strong
likeness between the results for chaotic and for number-state inputs is that both were arbitrarily chosen to have
Lorentzian spectral distributions, (3.46) and (3.60). However, sharp differences emerge when the fourth-order correla-
tion functions are studied.

IV. FOURTH-ORDER EXPECTATION VALUES

A. Intensity correlation functions

We consider the normally-ordered correlation of the output intensity, which is related to the input correlations via
Eq. (2.18) in the form

(&.„,(t')a .„,(t)a.„t(t)a.„,(t') )
—f2 (1+ —2I lt —t'l)

(:h

+y)y2f h e l' '
l f dr f dr'e " '+' ' '[e (b;„(r')b;„(r))+e (b;„( r) b( r) ) ]

+ f dr f dr'e ' (b;„( r')b;„( r))

+ f dr f dr'e ' (b;„(r)b;„(r'))
lcoo(7 +8 7 —g" )

—I (2t +2t' —w —s' —w" —8")
+y)y2 d~ d~' d~" d~"'e

X (b;„(r)b;„(r')b;„(r")b;„(r"')) . (4.1)

We are also interested in the output degree of second-order coherence, which, for stationary light beams, is defined by

(2) (&,„t(0)&,„t(t)&,„t(t)a,„t(0))
(2)( )

(&,„t(0)&,„t(0))
(4.2)

with a similar expression g „'(t) for the input field.

B. Results for specific inputs

1. Coherent input

The input state
~ IP;„((t)) ] ) specified by Eqs. (3.36) and (3.38) has a degree of second-order coherence

g(2)(t)

The output beam is also stationary, with the correlation given by Eq. (4.1) as

( Q (0)Q (t)Q (t)g (Q) ) —f ( 1 + e
—2&ltl )+2f G (a) )f [ 1 +e —&ltlcos(a) a) )t] + G (a) )f

(4.3)

(4.4)
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We therefore find for the second-order coherence (4.2) in
the case t =0 and m, =cop the result

(2) 2fch+4fchGof +Gof.(2) (p)—
(f.h+ Gof .)'

2. Chaotic input

Considering a chaotic input field, with the Lorentzian
spectrum (3.46), we find the following correlation func-
tion:

=1+f.'h +2f.h Gof;.
«.h+ Gof;. )' (4.5)

& b,„(t') b;„(t)b,„(t)b,„(t') &
=f,'„(1+e '

) . (4.6)

The field is stationary in time and thus the degree of
second-order coherence is

where we have used Eq. (3.44). This is the well-known re-
sult for the degree of second-order coherence for a
superposition of chaotic light of fiux f,i, and coherent
light of fiux Gof;„. Clearly g,'„',(0) can never be less than
1, and if the input is removed Eq. (4.5) collapses to the
chaotic value of 2, so that, in general, the amplification
process degrades the signal.

g,'„'(t)= 1+e
—2y I~l

(4.7)

which is the usual form for chaotic light. ' We evaluate
the output intensity correlation considering for simplicity
only the case where the input Lorentzian is centered on
the cavity mode frequency (co, =coo), and then Eq. (4.1)
gives

r, I —r
I tl

&d,„,(0)a „,(t)&,„,(t)&, , (0) & =f h(1+e "I'I)+2yiy2f hf e " ' +
1 (I —y, ) I 1+y,

(r i' ' —rItI)2
+ 2 2+2 C

1 2(P2 2)2
1

r'(r+y, )' (4.8)

This result can be recast in terms of the first-order corre-
lation (3.49) as

&&,„,(0)tt o„,(te,„f(t)&,„i(0)&

=
I & a '.„,(0)a.„,(0) & I'+

I & a '.„,(te.„,(0) & I' (4.9)

and the output is purely chaotic. Equation (4.8) describes
the superposition of two chaotic fields, one the input and
one the amplifier noise, and Eq. (4.9) is a familiar result. '

The input and output degrees of second-order coherence
thus both take the value 2 at t=0,

Qo

=(y/to) g e
n=1

(4.13)

Using Eq. (3.63), the time-averaged degree of second-
order coherence of the input becomes

This describes a highly nonstationary field, and it is con-
venient again to take a long-time average, analogous to
Eq. (3.63). For a fixed time difference t' —t, averaging
over t gives

& b,'„(t')b,'„(t)b,„(t)b;„(t')&,„

g(2)(p) g{2) (p)

3. Number-state input

(4.10) —2y I I &I
—nr0 I

g,'„"(t)=yt, y e
n=1

It follows from the assumption ytp &) 1 that

(4.14)

We consider again the stream of photons defined by
Eqs. (3.5)—(3.57). Before processing, the field has a
second-order correlation

& b t„(t')b t„(t)b;„(t)b;„(t')&

g ( 2 )
( 0 ) 0 (4.15)

indicating a fully antibunched field. The function (4.14)
is shown in Fig. 3, and it is zero unless the correlation lag
is close to an integer number of photon spacings.

n, n = —ooI
I p„«) I'lP. «') I', (4.11) 10—

where we have made use of the commutation relation
(3.58), and the prime on the summation indicates that
terms with n'=n are excluded. Using the explicit form
in Eq. (3.57) of the functions P„we find

& b t„(t')b t„(t)b;„(t)b;„(t')&

oo I

(2)
g,„( )(t)

5—

n, n'= —oo

Xe(t' —n'to) . (4.12)
FICs. 3. The time-averaged degree of second-order coherence

(4.14) for the photon-number input state, drawn for @to= 10.
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Having established that the definitions (3.53)—(3.57) do
indeed describe an antibunched field, the interesting ques-
tion now is whether we can retain these quantum statisti-
cal properties after amplification. This is most likely to
be achieved when the input pulse spacing to is sufficiently
large to satisfy the inequality I to))1. This condition
corresponds to the situation where only one photon at a
time passes through the cavity. The amplified output in
this case should consist of separated photon pulses. The
opposite limit I tp «1 corresponds to many photons
simultaneously within the amplifier cavity, so that one
might expect the output to consist of photons with a

rather random temporal relationship. Since we are in-
terested in the conditions under which we can retain an
antibunched output, we assume henceforth that I t, » 1,
together with the previous assumption that yto )&1.

In addition to the quantum effects of the antibunched
input, which tend to reduce the coherence below unity,
there is also competition with the added noise photons,
which tend to randomize the field and move the coher-
ence towards the chaotic value of 2. There will be some
maximum gain beyond which the associated added noise
will dominate the output. To investigate this, we first cal-
culate the output correlation from (4.1), finding

(a,„,(t')d, „,(t)a,„,(t)&,„,(t') )

f 2 (1+e—2r lt—t'l)

ryir~ f g [( Q
rit —

~oi)(
—~it' —«oi —r«' —"o )2,

—rlt —t'le(t
(r —r)'

I
}

I

n', n = —oo

As with the input, we assume the time difference t —t to be fixed, and average over t, finding

(a.„,(t')&,„,(t)&,„,('t)&,„,(t') ),„
Xi V2=f' (1+e '"' ')+ f (f ) 1+r(r+ )

'" '"'" '
y —r

e
—2I it' —ti e

—[r+ri)t —
~~

2rr &r2

I —y

(f )~ in av

I +y

—2r( I

t' —II —«0 I 2r I I

&' tI n&0]

+4r(3r+r ) 4r (3r+I )

2e
—[r+r~llt' —

~I
—«

I0

(31 +y)(3y+I )
(4.17)

g' '(t)=1+e 2rl~l (f ) p (4.18)

More generally, in the presence of the number-state in-
put, the degree of second-order coherence is obtained
from Eq. (4.2) with insertion of the complete expression
(4.17). It is illuminating to consider just the particular
case of t=O, when we find

This is more complicated than the equivalent result for
the input, Eq. (4.13). However, we may immediately
establish a few points. Firstly, if there is no input signal,
then, remembering the definition (4.2) of g,„,(t) and that
the mean output flux is given by Eq. (3.66), we find the
usual chaotic result for the cavity spontaneous-emission
field,

2(GO —1) +8GO(GO —1)/[(I +y)to]

I Go —I +2GO/[( I'+ y )to ) I

2
(I +y)t,

This mean photon number is very small, since yto and
I to have both been assumed to be much larger than uni-

ty. It is not difficult to show from Eq. (4.20) that

(4.21)

g,'~', (0) (1 if Go ( I+(2'~ —1)no . (4.22)

This is identical to a previous result describing a single-
mode field, provided that we identify our mean photon
number no as

2f 'h+ [4r iy2/I (I +r ))f.h(f;. ).,g(2) (p)—
Ifa + [y iyz/I'(I +r ) l(f;. ).,I' (4.19)

Thus only very modest amplifier gains are permitted if
the input antibunching is to be preserved at the output.

V. INTEGRATED DETECTION STATISTICS
This can be rewritten to obtain the output coherence for
the case of minimum noise on the signal. Using Eqs.
(3.21), (3.22), (3.25), and (3.63) gives

Before considering what information about the outputs
can be gained from homodyne and direct detection mea-



THEORY OF THE INVERTED-POPULATION CAVITY AMPLIFIER 5763

surements of them, we first review briefly some of the re-
sults from detection theory that we will need.

A. Homodyne detection

We consider balanced homodyne detection in which
the amplifier output is detected after superposition with a
local oscillator beam at a 50/50 beamsplitter. The mea-
sured quantity is the difference between the photocounts
registered by two detectors placed in the beamsplitter
outputs. The local oscillator is a "single-mode" coher-
ence light source described in accordance with Eq. (3.39)
by a time-dependent function

P (t) f li2e '~l. '+'+L,
(5.1)

where

(5.2)

The local oscillator flux is assumed to be very much
larger than that of the amplifier output (ft ))f,„,) and
detected quantities are evaluated to the dominant non-
vanishing order in ft .

The homodyne detection characteristics are compactly
expressed in terms of expectation values of a quadrature
operator defined to be

=—f dt ( T —t)(X',„,(Xi, t),X',„,(XL,O) ) . (5.8)

If the correlation function in the integrand is a symmetri-
cal function of t, the result reduces to

([»,„,(X )]')= f dt&X.„,(X , t),X.„,(X ,0)),
(5.9)

and whether or not this condition is satisfied, an integra-
tion time T much longer than the coherence time of the
amplifier output reduces the quadrature variance to

( [»,„,(X~ )] ) = f dt (X,„,(Xt, t),X,„,(Xt,O) ) .

(5.10)

This result can be evaluated to give a more explicit re-
lation between the output and input variances. Thus the
output quadrature operator (5.2) can be related to its in-

put counterpart defined in terms of b;„(t) and b;„(t) with
the use of Eq. (2.18). The resulting integrations can be
performed, and when the local oscillator and cavity are of
the same frequency (coL =coo}, and the &;„modes are
unexcited, then

+L V L+T~ (5.3}
(5.1 1)

The homodyne signal may then be written as

SH =2rtfL f dt(X,„,(Xt t)), (5.4)

where the detectors of quantum efficiency g are activated
over the period 0 to T.

The noise in the homodyne detection is obtained from
the analogous second-order calculation for the case
where the detected light is a superposition of the
amplifier output and the local oscillator beam. The terms
linear in fL are

4''TfLf h
rITf~ = — +Go(&H qTfL } . —(5.12)

We now apply these results to specific inputs.

where ([»;„(XL)] ) is the input quadrature variance
analogous to that in Eq. (5.10). The corresponding rela-
tion between input and output homodyne noises, for
co& =coo, can be obtained from Eq. (5.5). In the limit of
long integration times this is

& .„,=n(I —n)Tf +4m'Tf ([»..(X }]'&,

where the quadrature operator variance is defined by

=—f dt f dt'(X, „,(X~, t),X'.„,(X~,t')),

(5.5)

(5.6)

1. Coherent input

As before in Eqs. (3.36) and (3.39), we assume a quasi-
single-mode coherent input and we take the mode fre-
quency to be the local oscillator frequency, ~, =cuL.
Consider first the homodyne detection of the input before
amplification. From Eq. (5.4), with "out" replaced by
"in,"we find the input signal to be

and we have employed the operator notation
SH = 2i)fT"~if,'„"sin(y —q~), (5.13)

(5.7)

For measurements on the input field the expressions for
homodyne noise and signal have "out" replaced by "in."
They can in principle be evaluated for the different types
of input light. We shall be concerned with time-
stationary light where a change of variables analogous to
Eq. (3.33) enables one of the integrations in Eq. (5.6) to be
performed, with the result

the standard result for a coherent input, and the noise,
from Eq. (5.5), is

NH = rtTf L (5.15)

which is that obtained by Collett, Loudon, and Gar-
diner. The input quadrature variance, defined similarly
to that for the output in Eq. (5.6), is

(5.14)
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%e therefore find the signal-to-noise ratio of the incom-
ing field to be

=4ilTf;„sin (y —
yL ) .

We can write then for Eq. (5.18),

(&,„,(t)) =[G(co, )f;„]' e

Using Eq. (5.4), the output signal thus becomes

(5.20)

Using Eqs. (3.36) and (3.39) for the coherent input, we
find

)
1/2

Y 1 ) 2f in —i cu, t + i y

[I i (co—, —coo)]
(5.18)

Now consider homodyne detection of the output field.
In the ct;„modes are unexcited then from Eq. (2.18) the
operator describing the output has the expectation value

(&.„,(t))=(y,7,)'"f dre '" " '(S,„(r)) .

(5.17)

SH „,
=2rtT[ft. G (~, )f; ]»n(q'+q'~ q'L, ) (5.21)

where Eqs. (5.2) and (5.3) have also been used. Compar-
ing this to the input signal, given in Eq. (5.13), we see
that the effects of amplification are the multiplication of
the input by the square root of the gain, and phase shift
in y to y+g~.

The noise on the output is found from the results (5.5)
and (5.2), and we may use the time-stationary form (5.8)
in this case. The quadrature operator has the second-
order expectation value, from Eqs. (2.18), (2.19), and
(5.2),

One effect of the amplifier-cavity system is clearly to in-
troduce a phase shift y~, defined by

&x.„,(y„t),X'.„,(y„o)&

=
—,
' f,„e "~'cos(co, coo)t + —,'5—(t), (5.22)

1

[I i (co,——co )] [I2+ ( )2]l/2
(5.19) which is a symmetrical function of t so that we can use

Eq. (5.9), and find

e " I(co, —coo)sin[(co, coo)T] —I co—s[(co, coo)T]]+I—
& l~..~(xL )]'& = .'+f.h—

(~, —coo) +I (5.23)

We note that the input and output variances, (5.14) and (5.23), respectively, correctly satisfy Eq. (5.11) in the limit
I T»1, for co, =coo. The output noise is now

e rr[(co, —coo)sin[(co, coo) T]—I c—os[(co, coo) T] I +I—
NH =rtTfL+4g Tft f,„out (~, —~,)'+ r' (5.24)

If the local oscillator and cavity are resonant, cu, =~o, the
result reduces to

nals, the ratio of the signal-to-noise ratios of input and
output (that is, before and after amplification), is

(1
—i T)

NH =nTft. +4rt'Tft. f.h (5.25)
(S /N)H

R=-
(S /N)H

60
(5.27)

1+2il [2m f,„(co )]0(1—e r)

which is the input noise plus the additional noise due to
the amplifier. [Removing the amplifier, f,„=0, recovers
the result (5.15) describing the input. ] Taking only the
resonant case, we find the signal-to-noise ratio of the out-
put to be given by Eqs. (5.21) and (5.25) as

g2

N 0, ,

4qTf;„Gosin (y+y„—pL )

1+2il[2mf, h(coo)](1 —e )
(5.26)

where f, (cd )0is defined in Eq. (3.6). In the limit of long
integration times this result agrees with the known
form of the signal-to-noise ratio for homodyne detec-
tion of a superposition of chaotic and coherent light, with
the quantity 2mf, (eh@ )boeing the resonant chaotic fiux in
quanta per unit time per unit frequency bandwidth.

If the phase angle col is adjusted to maximize the sig-

Substituting from Eq. (3.25) the value of f,„(coo) for the
optimized asymmetric cavity, the maximum value of R is

Go
R

1+2'(GO —1)(1—e )
(5.28)

2'(1 —e "
) (1, (5.29)

a result independent of the amplifier gain Go. Thus, for a
perfect detector amplified homodyne detection appears to

With a perfect detector (il= 1), long integration time
(I T &) 1), and a high-gain amplifier (Go &)1), we find

that the maximum enhancement is equal to —,', i.e., signal
enhancement is impossible. This is similar to the
discrete-mode amplifier result, and is not surprising
since a very narrow-band input has been assumed here.

More generally, however, it is seen from Eq. (5.28) that
signal enhancement is possible (R & 1) when
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offer an improvement for T 0.7I . This condition re-
quires that the detection bandwidth be greater than the
amplifier bandwidth. Equivalently, the detector integra-
tion time is roughly less than the amplifier storage time,
and, as discussed in Ref. 8, this is an improvement attain-
able without amplification, simply by counting over a
longer time T. In practice, therefore, this is not a useful
limit.

For inefficient detectors (i) & 1), and with long integra-
tion times, the situation is somewhat different. Figure 4
shows the dependence of signal-to-noise ratio upon detec-
tor efficiency il for the input (that is, homodyne detection
without amplification) and the output separately, accord-
ing to Eqs. (5.16) and (5.26), with phase angles adjusted to
optimize signal-to-noise ratio. It is seen thai a signal-to-
noise ratio improvement is possible when the detector
e%ciency is less than —,', a result which holds regardless of
the amplifier gain Go. In particular, for very low
efficiency detectors (i) «1), the enhancement R off'ered

by amplification can approach a value equal to the gain
Go. It is clear, however, that, whether or not the signal is
amplified, the best signal-to-noise ratio is obtained from
the detector of highest quantum efBciency available.

1.Q—

S
4Tf(~ N

05— out

0.5
7)

I

1.Q

so that the quadrature variance from Eq. (5.9) is

FIG. 4. Dependence of signal-to-noise ratios on detector
efficiency g for homodyne detection of coherent input light be-
fore and after amplification, with 60 =10 and a long integration
time.

2. Chaotic input (5.32)

For a chaotic input both incoming and outgoing sig-
nals vanish,

The input noise can now be obtained from Eq. (5.5),

SH =SH =0 . (5.30) r. T
(1 —e ')

NH =gTf1 +4' Tf1 Ãn (5.33)

(5.31)

We assume in calculating the noise that the central fre-
quency of the chaotic input co„ the cavity mode frequen-
cy coo, and the local oscillator frequency coL are all equal.
Using Eq. (3.48) for the input correlation then gives

&X';„(yL,t),X;„(y1,0) &
'=

,' f;„e ' + —,'5(t)—

which is of identical form with Eq. (5.25) describing the
output noise when the input is coherent. Here the chaot-
ic input takes the place of the amplifier-added noise. The
output noise for a chaotic input can be calculated, using
the correlation function (3.49), to be

NH =rjTfL+4r) TfL f,i, (5.34)

Simplifying these results for the limit of long integration
times ( y, T,r T ))1) produces

(5.35)

(5.37)

Similarly, the light remains squeezed after processing if

Go
NH =rlTfL +4' Tfl +

ottt
XC

which conforms to the general relation (5.12).

(5.36)
(5.38)

Using the relation (5.11) these conditions may be recast
as the requirement that

3. Squeezed input

As a final example of the application of homodyne
detection techniques to assessing the output from our
amplifier system, we consider a squeezed input. The in-
coming beam is said to be squeezed if there are phase an-
glesyL for which '

(5.39)

For the noise ffux f, (coi)toaking the minimum value in
Eq. (3.25) this requires that the resonant gain Go have an
upper bound,
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2

I+4([bX;„(y )] )
(5.40)

B. Direct detection

This is equivalent to the discrete-mode result, and shows
the same maximum gain of 2 (Refs. 4 and 5) for a heavily
squeezed input with negligible quadrature variance.

(m (T) ),„,=g f dt(a, „,(t)a,„,(t) )
0

=g f dt f.„,(t) . (5.41)

For light of nonstationary statistical properties it is con-
venient to randomize the counting period start time with
respect to any periodicity in the light beam. For light
with time-stationary properties, we have, from Eqs.
(3.28)—(3.30),

For a photodetector of quantum efFiciency g that re-
ceives the output from the amplifier during the period 0
to T, the mean photocount is

(m(T)),„,=gTf,„, .

The photocount second-factorial moment is

(5.42)

(m (T)[m (T) 1]),„—, =g f dt f dt'(a, „,(t')a t„((t)a,„,(t)a,„,(t')) .
0 0

(5.43)

The normalized second-factorial moment of the photocount distribution provides a measure of the degree of second-
order coherence of the amplifier output field. We accordingly define this to be

(m (T)[m (T) 1]),„, —
g(2) ( T)— (5.44)

m (T)

The photocount variance is given by Eqs. (5.41) and (5.43) as

([bm(T)] ),„,=(1—g)(m(T)), „,+g f dt f dt'(dt„, (t)a,„,(t),a „t((t')a„,(t')),
0 0

(5.45)

using the shorthand notation defined in Eq. (5.7). The
departure of the detected photocount statistics from Pois-
son form is measured by the Mandel parameter

([bm(T)] ),„„—(m(T)),„,
(m (T) ),„,

(5.46)

Expressions analogous to all of the above can be defined
for the input light, in the absence of the amplifier and
cavity, when the modes b;„(co) interact directly with the
detector: corresponding quantities are denoted by the
subscript "in."

The input signal-to-noise ratio is therefore

S
N D,„

in (5.51)

If we consider now the processed field, direct detection
of the amplifier output yields a mean photocount

( m (T) ) „,=rlTf „,=rlT(f,h+Gof, „) (5.52)

for a resonant input. The output signal for direct detec-
tion is defined to be the additional photocount produced
by the input,

C. Specific inputs
SD =gTGDf, (5.53)

1. Coherent input

If the input field is coherent in the sense defined by
Eqs. (3.35) and (3.36) then its mean photocount, given by
Eq. (5.41), is taken to be the direct detection signal

This is simply the gain times the input signal (5.47).
output second-factorial moment is found from Eq. (5.43)
with the second-order correlation (4.4), and it is

( m ( T)[m ( T) 1]),„, —

SD = (m ( T) );„=rITf;„.
The second-factorial moment (5.43) is

(m (T)[m (T) I]);„=gT f;„—
(5.47)

(5.48)
[f,„F(2I T)+4G f;„F(IT)],

so that we find, from Eq. (5.44), a second-order coherence (5.54)

g (2)
( T)

in
(5.49)

where the function F(x) is defined by

characteristic of Poissonian photocount statistics. The
direct detection noise is defined to be F(x)=(e "—1+x)lx, (5.55)

ND =([b,m(T)] );„=gTf;„. (5.50) having the limiting values



THEORY OF THE INVERTED-POPULATION CAVITY AMPLIFIER 5767

F(x)=—,'x for x «1,
F(x)=1 for x ))1 .

(5.56)

(5.57)

As we would expect, the degree of second-order coher-
ence (5.44) of the output is greater than unity, tending to-

I

wards 2 as the amplifier noise dominates the signal. The
Q parameter (5.46) is thus larger than zero, showing that
the processed field is bunched, with super-Poissonian
statistics associated with the chaotic component in the
amplifier output.

The signal-to-noise ratio is given by

g2 rITGof
N D,„, f,„+G f;„+r)(f,„/I )[f,„F(2I T)+4G f;„F(l T)]

We find the enhancement factor R, the ratio of output to input signal-to-noise ratios, from Eqs. (5.51) and (5.58),

(5.58)

RD=
(S /N)D

(S /N)D

G

f,„+G f,„+g(f,„/I )[f,„F(2I T)+4G f,„F(IT)]
(5.59)

A similar factor has been discussed in detail elsewhere.
We note here only its behavior in the case of an intense
coherent input, where Gof;„))f,h. When the cavity
asymmetry is optimized according to the discussion in
Sec. III, so that the additive noise component f,h takes
the value (I /2)(GO —1), as specified in Eq. (3.25), the ra-
tio RD reduces to

Go

1+27)( GO
—1 )F ( I T)

Signal enhancement (Rn ) 1) will then be possible if

(m(T)[m(T) —1]);„=gf;„T+ F(2y, T)T
C

This gives

g' '(T)=1+ F(2y, T)1

1ll

and the Q parameter (5.46),

QD ( T)= F (2y, T) .
VC

(5.63)

(5.64)

(5.65)

2rlF(I T) &1 . (5.61)

Note the similarity of Eqs. (5.60) and (5.61) to Eqs. (5.28)
and (5.29). Since the functions (1—e "

) and F( I T)
have a similar behavior over the range of positive T, the
remarks made about signal enhancement upon amplified
homodyne detection also hold for amplified direct detec-
tion in the high input intensity limit. In particular,
arnplification may aid direct detection when only a detec-
tor of low quantum e%ciency is available.

rITf;„
N D,„ 1 + ri( f;„/y, )F(2y, T)

(5.66)

We turn now to the output. The mean photocount for
the processed signal is

Given the limiting value (5.56) of F(2y, T), g' '( T) is ap-
proximately equal to 2 for small y, T. The input signal-
to-noise ratio is

( m ( T) ),„,=riTf, „, , (5.67)

SD = ( m ( T) );„=rjTf;„ (5.62)

from Eq. (5.41). The second-factorial moment of the
photocount is obtained from Eqs. (4.6) and (5.43) as

2. Chaotic input

In direct detection, unlike the homodyne result (5.30),
a chaotic input gives rise to a nonzero signal,

with f,„, given in Eq. (3.50). The additional photocount
produced by the input thus gives the output signal

f;or |r2
o« I (I +y, )

(5.68)

which, as with the coherent result (5.53), is essentially the
gain times the input signal. The output second-factorial
moment, from Eqs. (5.43) and (4.8), can be written as

(m (T)[m (T —1)]),„,=(m (T)),'„,+ f,„— f, F(21T).T 3 1127
r '" l-l I-&—y2)

24g y iy2T yiy2y,
(I + )(I 2 2 f h —,, f;. f;.F((~+r, )»

y, I —y, I(I —y )

+
2 f;„F(2y,T) .

r, (r' r,)— (5.69)
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This expression simplifies in the limit of a short integration time, y, T and I T ((1,where the limit (5.56) applies, and
Eq. (5.69) reduces to

(m (T)[m (T)—l]),„,=2(m (T)),„, .

The measured degree of second-order coherence defined in Eq. (5.44) is therefore

gD' =2, yT I T«1

(5.70)

(5.71)

which may be compared with Eq. (4.10). At the opposite limit, for a long integration time, where Eq. (5.57) applies, Eq.
(5.69) reduces to

2

f + V 1 y 2 f + y C f + Y 1 y 2 f1(l +y )
'" I " ly

2

y, T, I T )& 1 . (5.72)

3. Number-state input

If we consider the antibunched field described earlier
by Eqs. (3.53)—(3.57), then Eq. (5.41) gives the mean
detected count to be

(5.73)

(5.78)

We now turn to the output field. Direct detection of
the amplifier output (3.65) yields a mean photocount

where we have used Eq. (3.63) for the input flux.
The second-factorial moment of the input is obtained

using Eq. (4.12) as

[(m ( T)[m ( T) —1]);„],„

[(m(T)),„,],„=gf,„T+ (f;„),„TI I+y
for a resonant input. The output signal is then

X1X2D„='7 P(l + )
fin av

(5.79)

(5.80)

T——1
to

where we have defined

+ 1 ——
tp to

(5.74)
or, for a cavity bandwidth much greater than the input
signal bandwidth (I &)y),

T =Nto+6, 0 (5.75) SD = rITGO( f;„),„ (5.81)

that is, the length of time for which the detector is
switched on is decomposed into an integral number N of
periods of length to and a small quantity h. Observe that
there is zero correlation in the photon stream unless
T ) to.

The measured second-order coherence of the input
field is then found from Eq. (5.44) to be

( T /to )[(Tlr, ) —1]+[I—(&/r, )](b, /ro )(2)
( T)—

(Tlro)'

(5.76)

[cf. Eq. (5.35)]. The output second-factorial moment is,
using Eq. (5.43) with the correlation (4.16),

1.0
(2)

~in

which is clearly always less than unity and is zero if
T=b, (i.e., N=O). This function is drawn in Fig. 5 and
describes a field with sub-Poissonian statistics. The direct
detection noise is

0.5—

=r)(1 —q)(T/to)+g [1—(5/to)](3/to), (5.77)
0

I

6 T]
0

which vanishes for a perfectly efficient detector when the
integration time T is an integral number of periods to.
The corresponding signal-to-noise ratio is

FIG. 5. Solid curve: direct-detection degree of second-order
coherence of the photon-number input light. Dashed curve:
the function 1 —( to /T) to which the degree of coherence tends
for large T/to.
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[(m(T)[m(T) 1]—),„,),„=ri f,hT +f,h(T/r)F(2I t)

2y)yz f.h+ T2+ F((I +y)T) —~F(2rT)r(r+y) t r —y r+y y r

~1V2

r(r+y)

2

T T——1
tp tp

1 ——
tp tp

(5.82)

gD" (T)=g,"„',(0), (I +y)T «1, (5.83)

where the form of the degree of second-order coherence
g,'„',(0) is given in Eq. (4.19). The discussion that follows
the latter equation thus applies to the direct detection
photocount statistics, and, in particular, the maximum
amplifier gain for which these statistics show antibunch-
ing is given by Eq. (4.22).

VI. DENSITY-MATRIX EVOLUTION
AND INPUT-OUTPUT CHARACTERISTIC FUNCTIONS

The treatment of the system thus far has involved the
Heisenberg-picture evolution of input, output, and inter-
nal operators. An alternative and concise description of
the system evolution is provided by knowledge of the
Schrodinger-picture evolution of the appropriate density
matrix. We shall now demonstrate that this knowledge is
available in the form of certain moment-generating func-
tions and functionals, the determination of which is a
prerequisite to the computation of distributions of cavity
photons, detected output photoelectrons, and other field-
related quantities.

The cavity field density operator p(t) is related to the
appropriate Glauber-Sudarshan P distribution P(a, a*;t)
according to

p(t)= f d aP(a, a*;t)~a)(a~, (6.1)

where F(x) is defined in Eqs. (5.55)—(5.57). The direct
detection degree of second-order coherence for the
amplifier output defined in Eq. (5.44) is obtained by divid-
ing this last expression by the square of Eq. (5.79). It is
easily shown that this output coherence is equal to the in-
put coherence (5.76) if f,z is set equal to zero, but the
unavoidable presence of this chaotic amplifier emission
increases the output fluctuations above their input value.

The noise introduced by the detection process is mini-
mized by the choice of a very short integration time T
such that (I +y )T «1, when T can be set equal to b, . It
follows from Eqs. (5.44), (5.79), and (5.82), with use of the
limit (5.56), that in this case

yiv(g, g';t) = (exp[/& (t)]exp[ g*—d(t)]), (6.3)

and thus y)v(g, g"; t) gives a complete dynamical descrip-
tion of the cavity mode. This, in turn, is related to the
Weyl function yw(g, g";t),

gw(g, S";t)= (exp[pa (t) —g*&(t)]),
via the relation

Xw(0 0 r) exp( —
—,
' i&I')Xiv(0, 0*;t),

(6.4)

(6.5)

co& cop+7 I
(6.6)

Substituting Eq. (6.6) into Eq. (6.4), and exploiting the
commutativity of the operators b;„, 8;„, and &, we ob-
tain

Xw(0 0'r)=XwI&b(r)1X'wIC (r)]~(0 0't) (6.7)

where yw[g(r) I is the Weyl functional of the field b;„(r),
defined by

Xw(g(e))=(eep f dec(e&b;„(e&

—f dr g'( )rb( )r (6.8)

and

g, (r) =gy', B(t r)exp[(i—coo I )(t —r—)],
gb(r)=gy2 B(t r)exp[(icoo —I )(r —r)]—,

(6.9)

(6.10)

which is a consequence of the Baker-Campbell-Hausdorff
(BCH) formula.

We may now evaluate y~ using a method similar to
that of Louisell. The Fourier transform of Eq. (2.12), re-
lating the input and internal fields, is

d(t) =y2 f dr e ' b;„(r)
i —(iCtlp+) )(t —T)

+y, dre 8;„(r

g~(g, g*;t)=f d aP(a, a*;t)e~ (6.2)

where la ) is an eigenstate of &(0), with eigenvalue a. In
turn, the Fourier transform of P(a, a', t) is given by
pic( g, g'; t),

and S(g, g*; t) is given by

S(g, g'; )=(eexp
CO~ 6)p l 1

-H.
) (6.11)

which is the normal-order characteristic function, defined
by (where H.c. denotes the Hermitian conjugate). Since the
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atoms are considered as independent, we may write 5 in
the form S(g,g', t) =exp (6.18)

s~&, P; ~= II( p

Use of the identity

exp(x& t —yo )

gk &+e

Q)) cop / I

(6.12)

which represents a Gaussian noise contribution to the
internal field statistics. In Appendix A it is shown that
the resulting equation connecting the characteristic func-
tion of the internal field to the characteristic functionals
of the external fields is

(e &=0

gives

(6.14)

S(g, g', t)= icos, ', „, . (6.1S)
[(~,—~,)'+ r']'"

Equation (6.15) may be approximated for small k, by the

replacement

cos
[yak,

)2+ I 2]1/2

=exp ——,(6.16)
2 (co —coo) +I

so that, in the continuum approximation, the resulting

summation over atomic terms may be replaced by an in-

tegral, giving

dro p(co )k (co))
S(g, g*;r) =exp —

—,
'

i/i f (co, —coo) +I

=cos(xy)' + (x & + —y& ) (6.13)Slil( X)I )

(xy)1l2

and the diagonal nature of each atomic density operator
[Eq. (2.9)],

(6.19)

Equation (6.19) permits either of the input fields d;„,b;„
to be in its vacuum state, upon setting the appropriate
normal-order functional to unity. Note that in the ab-
sence of an input, the internal field characteristic function
is a simple Gaussian, and represents a thermal field of
mean photon number

(6.20)

If, instead, the inputs are coherent states
~ [a;„(w)j ) and

~{p;„(2)j ), specified by the deterministic functions a;„(r)
and p;„(2.), Eq. (6.19) provides

r

XN(k 0'&) =exp —~0~' +Of "(&) 0'f (r)—
(6.21)

where

f (t)= f d ' [y2"p,„(r)+yI"a,„(r)] .

(6.22)

where p(co) is the density of states employed earlier. Per-

forming the integral under the conditions assumed in Sec.
II, and using Eq. (2.13), we obtain

Using similar methods we may eliminate the internal
field to express the characteristic functionals of the out-
put fields in terms of those of the input. Thus, it is shown
in Appendix 8 that

'V ganef g
XN I kj XN Ik jXN Ikb jexp r f d&i f di2( (&2)C(&i &2)g(&I ) (6.23)

where

g. (~)= —g(r)+y, f dr g(r+~)e (6.24)

and

gb(~)=(y, y2)'~' f dt g(r +r)e
0

(6.25)

C(r) =exp( icoo2. I ~r—
~

) . — (6.26)

Equation (6.23) enables us to derive input-output relations for any normal-order moment by functionally

differentiating XN'"' [gj with respect to g(t) and g'(r) the appropriate number of times. For example, let us assume that

the field a;„ is in its vacuum state (XN" [g, j
= 1). Then the first-order output coherence function is given by
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(6.27)

Performing the required diff'erentiation in Eq. (6.23), and using the following identities,

i ( coO+ i r )( t —~)
4 b(+) ( Y1Y2) e(t —r)e

5

and

(6.28)

gives

5gb(ti ) 5(b(t2) 5 y IgbI
dt)dt2' 5$(t) gg'(t ) 6$b(t, )5fb(t, )

(6.29)

(a,„,(t)a,„,(t')) =(y,y2) f f dt, dt2(b;„(t, )b;„(t2))e ' ' e ' ' e(t' t2)+ —' C(t t'—),

which is identical to Eq. (3.31).
Higher-order differentiation provides corresponding

higher-order time-dependent moments. Thus y~ I g) and

yb I/I contain a complete dynamical description of the
system. The output integrated photoelectron distribu-
tions, for which we have computed only the first and
second moments in Sec. V, require a knowledge of all
higher-order output field moments, and can be calculated
directly from y~ I (I. The calculation and study of these
distributions will not be given here.

VII. DISCUSSION AND CONCLUSIONS

We have presented a comprehensive account of the
properties of an optical amplifier that consists of an
inverted-population atomic medium placed inside a
high-Q cavity. The conditions on the system are assumed
to be such that only a single mode is significantly excited
in the interior of the cavity, but the input and output
fields are free-space continuous-mode excitations. In con-
trast to previous work on amplifiers with single-mode in-
put and output fields, the theory presented here allows
the effects of amplification on spectral and temporal
correlation functions to be calculated. The amplifier is
assumed throughout to be operated in its linear regime,
with any response of the atomic level populations to Auc-
tuations in the optical intensity ignored.

Caves' has evaluated the limits imposed by quantum
-theory on the amounts of noise that must be added to the
signal in the linear amplification process, and his results
for single-mode systems have been extensively illustrated
by calculations on specific amplifier models. The
continuous-mode theory described in the present paper
provides an illustration of Caves's more general limits for
the multimode linear amplifier. A noteworthy feature of
the cavity amplifier, discussed in Sec. III, is the require-
ment that the cavity should be asymmetric in order to
achieve the minimum noise limit, with the mirror on its
output side more highly reAecting than that on its input
side. Although the details are different, this requirement
is reminiscent of the need for an unsymmetrical cavity in

(6.30)

I

the parametric generation of lowest-noise squeezed
light. '

Most practical applications of optical amplification use
approximately coherent or chaotic input light, and we
have given results for the effects of amplification on the
optical spectra and on the first- and second-order coher-
ence of these types of light. We have treated both direct
and homodyne detection, and have evaluated the relevant
signal-to-noise ratios before and after amplification. The
possibilities for improving signal-to-noise ratios by
amplification of a coherent signal have been investigated.

Nonclassical light beams may in the future be used to
carry optical signals, and it is interesting to evaluate the
effects of amplification on their low-noise properties.
Thus squeezed light can produce less noise than coherent
light in a homodyne detector for suitable choices of phase
angles, and there has been much speculation on the
promise of such light for use in optical communications.
Unfortunately, the kind of amplifier treated here tends to
destroy the desirable squeezed characteristics of the input
light, and we have shown quite generally in Sec. V that
even with the most favorable values of the parameters,
the output light preserves some squeezing only for gains
up to a maximum of 2. Analogous low-noise properties
can be achieved in direct detection when the signal light
is antibunched. It is more difficult to treat the
amplification of antibunched light with the same degree
of generality as that of squeezed light, and we have re-
stricted attention to the particular case of the "number-
state" input introduced in Sec. III. This state represents
an infinite chain of equally spaced pulses, a "photon
machine-gun, " and it is in many respects the free-space
traveling-wave analog of the closed-cavity single-node
state in which a definite number of photons is excited.
We have shown indeed in Sec. IV that the maximum gain
for which some of the input antibunching is preserved in
the output has the same small value for the amplifier
treated here as has been found in previous calculations
for single-mode systems. The improved theory of the
present paper does not therefore generate any greater op-
timism for the application of inverted-population
amplifiers to the processing of signals on nonclassical
light beams.
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The system considered here, with the amplifying medi-
um confined in a cavity of sufficiently high Q to involve
only a single internal mode, is simple enough to enable all
the interesting output properties to be evaluated analyti-
cally. Thus even the integrated photodetection statistics
can be calculated straightforwardly and a basic under-
standing can be gained of the physical natures of the
noise limitations in amplification and detection. Howev-
er, the presence of the high-Q cavity would be a draw-
back in many practical applications, where the optical
trapping effect of the cavity would produce an unaccept-
able temporal smearing of the signal. Thus, for example,
in high-bit-rate optical communications, it is the practice
to coat amplifying media with antireAection films and
reduce any cavity effects as much as possible. In future
work, therefore, we look to the derivation of a similarly
comprehensive theory for a traveling-wave amplifying
medium with negligible boundary refiectivities.

APPENDIX A

where

(hatt(t) j =(exp f e(tj(t;„(tjdt
r

X exp —f g*(t)a;„(t)dt (A3)

In this appendix we derive the relation between the
characteristic functionals of the input fields 8;„(t),b;„(t),
and the characteristic function of the internal field a (t)

Beginning with Eq. (6.7), relating to the associated
Weyl functions and functionals, the BCH equation is in-
voked to transform to the associated norma1-order
characteristic function or functional

xw(0 0') =e """~'xw(0 0*»

x~ I g(t) ) =exp —
—,
' f dt

1 g(t)1 x~ I g(t) I, (A2)
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Note that the BCH equation requires the validity of the
requisite canonical commutators, which are valid here for
d(t) in the linearizing approximation used throughout
this paper, and which is implicit in the field-averaging
procedure. Thus, from Eq. (6.7), we obtain

(g, g*; t) =exp —
—,
' i/1' —1 exp ,' f ——«[14(r)1'+lg. (r) I'1 xx[4(~)]x%[0.(~) j .

L

(A4)

Using Eqs. (6.9) and (6.10) for g, and gb, we may evaluate
the second factor of Eq. (A4),

exp —
—,
' «b~ '+

where g ~ and g ~ are Weyl functionals for the input
fields d;„(t) and b;„(t), and g, (t) and gb(t) are the func-
tions defined in Eqs. (6.24) and (6.25). SINAI is the func-
tional

1
exp I. 101 —(1' i+ |'2)

21
(A5) ice. (t —to)J

Sjgj=(exp ( jtt I dt t(tjz
co coo+ / I

Equation (6.19) is obtained by substituting Eq. (A5) into
Eq. (A4), and using Eq. (2.13) for I .

(B3)

APPENDIX B
We now transform g(t) into the Fourier domain in Eq.

(B3), i.e.,

In this appendix we outline the derivation of Eqs.
(6.23)—(6.26), relating the output characteristic functional
Xz"'[gI to those of the input fields.

The Weyl function for the output field a,„,(t) is defined
by

g(co) =(2vr) '
J dt g(t)e'"', (B4)

and employ operator methods similar to those in Eqs.
(6.11)—(6.15) to obtain

ytr j0j =(exp f dr((rja, „t(rj—H. e.

Substituting for a „,(t) from Eq. (2.18), and exploiting the
commutativity of the fields a;„(t), cr+, and b;„(t) gives

For small k we make the approximation

2mlg(co )1 k y,S jg) =exp
(ai —coo) +I

(B5)

(B6)

Xw [&I —Xw I4IXw [kb IS[0), (B2)
In the continuum limit, the summation is performed as
for Eq. (3.31) to give
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S[gI =exp —
—,'y, p(co, )k'(co, )—f" «, f" dt, gt, )g'(t, )e (87)

With the use of Eq. (2.13), this becomes

n,
S[gJ =exp —

—,'y, y„ f dt, f dt, g*(t2)C(t, t, )—g(t, ) (88)

where

C(r) =exp( it—oor I—~r~ ) .

The transformation of Weyl functionals to normal-order characteristic functionals is again performed using the BCH
theorem, which applies for g~' and y&' provided that both &;„and b;„are retained in the computation to maintain uni-
tarity. Thus

y~"'[(I =exp —,' f—dt/g(t)/

Applying this to all functionals in Eq. (82) gives

Xx"' [gj=y~" [g. IX~" [gb IS [gje (~),

where

+[g] = ,' f——«[lg.(t)l'+ lgb(t)l' —Ipt) I'] .

The integration in Eq. (812) is carried out after using Eqs. (6.24) and (6.25) for g, and gb, and eventually gives

(810)

(811)

(812)

F [g) = —
—,'y, —1 f dt, f dt, g(t, )g'(t, )C(t, —t, ) . (813)

With the definition of I in Eq. (2.13), we may then show that

S[gje t~) =exp — f «, f «,g'(t, )C(t, —t, g(t, )r 00 oo
(814)

which, in Eq. (811),completes the derivation of Eq. (6.23).
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