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A quantum theory of two-photon correlated-spontaneous-emission lasers (CEL's) is developed,
starting from the exact atom-field interaction Hamiltonian for cascade three-level atoms interacting
with a single-mode radiation field. We consider the situation where the active atoms are prepared
initially in a coherent superposition of three atomic levels and derive a master equation for the
field-density operator by using a quantum theory for coherently pumped lasers. The master equa-
tion is transformed into a Fokker-Planck equation for the antinormal-ordering Q function. The
drift coefficients of the Fokker-Planck equation enable us to study the steady-state operation of the
two-photon CEL's analytically. We have studied both resonant two-photon CEL for which there is
no threshold, and o6'-resonant two-photon CEL for which there exists a threshold. In both cases
the initial atomic coherences provide phase locking, and squeezing in the phase quadrature of the
field is found. The o8-resonant two-photon CEL can build up from a vacuum when its linear gain is
larger than the cavity loss (even without population inversion). Maximum squeezing is found in the
no-population-inversion region with the laser intensities far below saturation in both cases, which
are more than 90% for the resonant two-photon CEL and nearly 50% for the off-resonant one. Ap-
proximate steady-state Q functions are obtained for the resonant two-photon CEL and, in certain
circumstances, for the o8'-resonant one.

I. INTRODUCTION

The studies of the generation and properties of the
squeezed states of light have attacked great interest in the
last few years following successful experimental realiza-
tion in several laboratories. ' It is very appealing to find
new optical devices that can generate bright squeezed
light, since the coherent amplitudes of the squeezed light
produced by the typical parametric down-conversion and
four-wave-mixing processes, etc. are small. Lasers
(operated above threshold) may be such candidates. In
fact, a two-photon laser was proposed to produce
squeezed light during the early stage of studying the
squeezed states. The possibility of squeezing in an ordi-
nary two-photon laser, however, was later carefully ex-
amined and ruled out ' due to phase-insensitive spon-
taneous emission. On the other hand, Scully et al. have
shown, in a linear theory of two-photon correlated-
spontaneous-emission lasers (CEL's), that such new two-
photon lasers can generate bright light with phase
squeezing.

The two-photon CEL's consist of cascade "three-level"
atoms interacting with a single field mode with the atoms
initially prepared in a coherent superposition of the three
levels. With both one- and two-photon resonances the in-
tracavity field of the (resonant) two-photon CEL can be
near perfectly squeezed in the phase quadrature. With
(I) two-photon resonance but large detunings for the
one-photon transitions, and (2) initial atomic coherence
between the top and bottom levels only, the (off-resonant)
two-photon CEL can exhibit net linear gain and phase

squeezing simultaneously, in which a maximum of 50%%uo

squeezing can be approached in the two-photon transi-
tion limit. In contrast to an ordinary two-photon laser
in which atoms are incoherently pumped to the top level,
the spontaneous emission fluctuations in the two-photon
CEL's are phase sensitive owing to the presence of the in-
itial atomic coherences. Compared with the ordinary
two-photon laser, the linear theory of the two-photon
CEL's shows that the quantum fluctuations in the two-
photon CEL's are decreased in one quadrature of the field
but increased by the same percentage in the other quad-
rature. The phase locking in the two-photon CEL's, also
due to the initial atomic coherences, determines whose
noise is reduced in the steady state.

In this paper we develop an all-order nonlinear (quan-
tum) theory of the two-photon CEL's starting from an
exact atom-field interaction Hamiltonian. The nonlinear
theory of an ordinary (single-mode) two-photon laser has
been studied theoretically for many years, ' ' but
with few experimental realizations. ' ' Recently, Brune
and co-workers studied the problem of a two-photon mi-
cromaser theoretically, ' ' with a successful experimen-
tal demonstration. ' Most of these theoretical treatments
assumed large one-photon detunings and ended up, soon-
er or later, with the use of an effective atom-field interac-
tion Hamiltonian for a two-level system coupled by a
two-photon transition. Zhu and Li' treated the problem
of the ordinary two-photon laser by starting from an ex-
act atom-field interaction Hamiltonian. As to the two-
photon CEL, an all-order nonlinear theory beginning
with the effective atom-field interaction Hamiltonian for
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the two-photon transition has been developed recently, '

which is simple and predicts the behavior and noise prop-
erties of the off-resonant two-photon CEL, from below
threshold to near threshold and to far above threshold, in
the two-photon transition limit. Another fourth-order
nonlinear theory starting from the exact interaction
Hamiltonian has also been formulated, which, valid
near the threshold, focuses on the properties of the off-
resonant two-photon CEL in the two-photon transition
limit too.

In this work we study the steady-state operation and
noise properties of both resonant and off-resonant two-
photon CEL s by using the exact interaction Hamiltoni-
an, as in Ref. 5. This enables us to formulate the quan-
tum theory of the two-photon CEL's in a unified ap-
proach and to study the effects of one-photon detunings
on the off-resonant two-photon CEL. Compared to the
linear theory of Ref. 5, our nonlinear theory developed in
this paper is capable of studying the squeezing in the
phase quadrature in terms of the field's Hermitian-
quadrature operators directly. We show that the laser
field will build up from a vacuum without triggering and
become stable if the linear gain of the off-resonant two-
photon CEL is larger than the cavity loss. The largest
squeezings in the phase quadrature are found in the no-
population-inversion region when the laser intensities are
far below saturation. Approximate Q (antinormal-
ordering) functions ' ' are obtained for the off-resonant
two-photon CEL either near threshold or in a two-
photon transition limit, and for the resonant two-photon
CEL.

The organization of the paper is as follows. In Sec. II,
by making use of a recently developed quantum theory of
coherently pumped lasers, we derive the master equa-
tion for the reduced field-density operator. In Sec. III we
convert the master equation into a Fokker-Planck equa-
tion for the Q function. We study the resonant and off-
resonant two-photon CEL's in Secs. IV and V, respective-
ly. We discuss the steady-state operation of the lasers
and give general expressions for the laser intensities,
mode pulling, the quadrature variances, and the steady-
state solutions of the Q functions. In Sec. VI we compare
in detail the results for the off-resonant two-photon CEL
with those in Ref. 19 and discuss the validity of the
effective interaction Hamiltonian. Finally, we summarize
our results in Sec. VII.

II. MASTER EQUATION

We consider cascade three-level atoms interacting with
a single mode of radiation field in a laser cavity (see Fig.
1). The top level a and the bottom level c are of the same
parity, which is opposite to that of the middle level b.
The energy of level A (A =a, b, c) is %co„. The upper
atomic transition a-b and the lower one b-c interact with
the same mode of the cavity field. We consider the situa-
tion where the active three-level atoms are prepared ini-
tially in a coherent superposition of the three atomic lev-
els a, b, and c. We will use the exact atom-field interac-
tion Hamiltonian to study such a coherently pumped
(single-mode) two-photon laser.

d-&

FIG. 1. Energy-level diagram for two-photon CEL's. Atoms
are prepared initially in a coherent superposition of levels a, b,
and e.

The quantum theory of a coherently pumped laser
has been developed recently by properly generalizing the
Scully-Lamb theory of lasers. It can be summarized
into two basic equations of motion. One governs the re-
duced field-density operator p for the (single-mode) laser
field in the interaction picture,

p= i (Q ——v)[a a,p] i Q—B(t t )Tr„,[—V, ,p ]
J

+ —,
' y(2a pa —a a p —pa a ) . (2.1)

(2.2)

as in the Scully-Lamb theory of lasers. In Eqs. (2.1) and
(2.2), I1 is the cavity-mode frequency, v the actual laser
frequency, a (a ) the field annihilation (creation) opera-
tor, y the cavity-loss rate, t the injection time of the jth
atom (assumed to be random), 6(t —t ) the unit step
function: 6(t t ) = 1 for t ~ t, a—nd 6(t —t ) =0 for
t (t, and

A =a, b, t

(2.3)

the decay operator for the jth atom, where I „ is the de-
cay rate of the atomic level A. Also AV- is the interac-
tion Hamiltonian of the jth atom with the laser field in
the interaction picture, which is obtained from that in the
Schrodinger picture A V through the unitary transforma-
tion

V =exp[iva at +iH "(t —t )]V

Xexp[ iva at iH (t —t, )], — —.(2.4)

with &~~"= g~ %cod ~
&~)( &

~
being the free Hamiltoni-

an of the jth atom. Summation over the randomly inject-
ed atoms in Eq. (2.1) can be replaced by an integral over
the injection time t , g 6( t —t )~r, J ' dt, w. here r,
is the atomic injection rate.

For a (single-mode) two-photon laser (see Fig. 1) the in-
teraction Hamiltonian AV in the Schrodinger picture is

The other treats the reduced density operator p for the
jth atom and the field in the interaction picture,
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(under the rotating-wave approximation)

I;=(g, ~a'& & b'~+g2~b'& & c'~ )a +H. c. , (2.5)

where

~1 ~ah + ~a ~b (2.7a)

+g 2~b'&& c'~ e ' "]a+H. c. , (2.6)

where g, and g2 are the atom-field coupling constants for
the a-b and b-c transitions, respectively, and are chosen
to be real. Applying the transformation (2.4) to the two-
photon laser, the interaction Hamiltonian AV in the in-
teraction picture is found to be

V, =[g, la&& &»le' '

42 —
COb~ V —

COb CO~ V (2.7b)

are the one-photon detunings for the upper and lower
transitions, respectively. Substituting Eq. (2.6) into Eq.
(2.1) one finds the equations of motion for the matrix ele-
ments of the reduced field-density operator,

t(h)t —a) bt. )p„= i (—Q v—)(n —m)p„ir, —dt~[g, e ' "' (v'n + lp~&„+&, —&m p Jq„, &)

—i(b, lt —co &t. ) — ~

+g&e ' ' ' (v'n p,„&&
—v'm + lp, „& +&)

i (b,~t —
cob t. )

+g2e ' "' (v'n + lp', „+, I,
—v'm p~„q, )

—i(A~t —
cob t. )

+g2e ' '' (v'n p j,„],—vm+lpI, „, +)]
+y(n +1)'"(m +1)'"p„+, +, ——,'y(n +m)p„ (2.8)

where p ~„„„(A, A ' =a, b, c) are the matrix elements of the density operator p I to be calculated from Eq. (2.2). A sim-
ple way to accomplish this is to introduce 2 ~ such that

P~„„z = A~(A'~)', A, A'=a, b, c .

The equations of motion for A„are found by substituting Eqs. (2.3), (2.6), and (2.9) into Eq. (2.2),

a „=—I,a 1 ig, v'n —+ 1e ' ' b„+, ,
i (A&t —co b

t. )

~ ~ —i (Alt —co ~t. ) ~ i(b2t —
co~ t. )b~+&= —I &bj+& ig, v'n—+le ' ' ' aj ig2v'—n+2e ' '' c„+2,

—I(~&t —~b t-)
c „+2=—I,c„+2 ig2v'n—+2e ' ' b„+, ,

(2.9)

(2.10a)

(2.10b)

(2.10c)

fort~t.
For simplicity, we consider the actual two-photon resonance, co, —co, =2v (i.e., b,

&

= —b, 2 =—b, ), and equal atomic de-
cay rates, I, =I

& =I,=I, in the following. The solutions of Eqs. (2.10), in terms of initial conditions A„'(t, ), are then
found to be

a„'(t)=e '~ [(g„+yz„) '[y, „e' ' (cosy„—ikey„'siny„)+yz„]a J(t ) iy, „Q—„'e' ' si yn„b„' +(t )

+g&„y2„(y&„+yz„) '[e' ' (cosy„—i AQ„'si y„n) —1]c„+(2t ) I

b~+, (t)=e "' [—iy, „Q„'e ' '~ siny„a~(t )+(cosy„+id'„'sin. y„)b„'+, (t )

ig2„Q„—'e ' ' siny„c„'+2(t )],
c„+2(t)=e "' [y,„y2„(g„+gz„) '[e' ' (cosy„—ibQ„'siny„) —1)a~(t ) iy2„$1„—' ' ' si y„bi+, (t).

+(yf„+y2„) '[g„+y2„e' " (cosy„—id'„'siny„)]c„+2(tj ) I,

(2.11a)

(2.11b)

(2.1 lc)

where

y)„=2g, &n +1,
+2„=2g2v n +2,

—(~2 +~2 +g2)1/2
(2.12)

Substitution of Eqs. (2.11) into Eqs. (2.9) leads to

p J~(r, )=p(r, )e p'(r, ), (2.13)

since the jth atom is injected at time t Here p (.t ) is the
initial density operator for the jth atom in the
Schrodinger picture. For the two-photon CEL we are in-
terested in the following general form:

p~„„z (r) expressed in terms of the matrix elements of
the initial density operator
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paa
—ivt. —i2vt.

Pab e Pac eJ

i vt.
p'«, )= Pb. e Pbb

—ivt-
Pbce

i2vt ivt.
Pae ' Pbe Pcc

J =1)2). . . ) (2.14)

where Paa) Pbb) Pcc) Pab P ba ) Pbc P cb) and pac p ca are
the same for all atoms.

In the good-cavity limit y ((I, for which the laser

field does not change appreciably on a time scale of atorn-
ic lifetime, one can obtain the coarse-grained time rate of
change for the field operator p from Eq. (2.8) by using an
approximation p(t ) =p(t) S.uch an approximation is all
right when t ~ t —I '. It is also allowed when
t ( t —I ', since p decays with an overall factor—I (t —t. )

e ' «1. Substituting Eqs. (2.9) and (2.11)—(2.14)
into Eqs. (2.8) and accomplishing the integral over t, , we
find the master equation for the laser field (assuming

R2 =R)

p„=ap„[—
—,'p„[(n+2)(m+1)p„'+( n+1)(m+2)e„'+2(n+1)(m +1) i(„(T„']+p„&, nm g„'i

+ —,'p„z 2[n (n —1)m (m —1)]' (p„' z 2+e„'2 z
—21(„~ 2 „'~ z) I

+ap»[p„+, +, (n +1)(m +1)g„'—p„ I(,„,g„', &+p„—i, —
&

nm k. —2, —2]

+ap„[—,'p„+2 +&[(n + l)(n +2)(m +1)(m +2)]' (p„'+e„'—2i(„o„')
+p„+) +,(n +1)'~ (m +1)'~ g„',
—

—,'p„[(n —1)mp„'2 2 n (m —1)e„'z 2+2nmi(„z 2(T„'z 2]I

+(iSp, b [p„+&v'm + l[(n +1)(2n +3) 'ii „g„'+(n +2)p„']—p„, v'n i)„

+p„, , n(n —1)m [i) „(2n —1) 'k„'2 2 p' —2, —2]j

iSpb—, [p„+, ~+2[(n +1)(m +1)(m +2)]' [il„* (2m +3) 'g„' —e„~]—p„~+, m + li)~„g„', ~

+p„& n [(m —1)e„'
& 2+m (2m —1) 'ii„* g„'2 &] I

+ap„gp„+2(m +1)' (m +2)'~ [(n +1)e„'—(n +2)p„' —2(n +1)1(„(T„']

+p i +i n(m +1)g
+ —,'p„p, ~ n(n —1)[mp„'p ~ 2

—(m —1)e„'p ~ p
—mi(„p ~ 2(7g 'p ~ 2]]+(c.c.)„)

—i (0 v)(n ——m)p„+y v(n +1)(m +1)p„+i +i —
—,'y(n +m)p„ (2.15)

with

=1+5 +(n +m +3) f3/a+(n —m) /32/4a~,

S =aV'a/P (2.18)

(T„=(2n +3)(2m +3)g„

p„=(2n + 3)[1 +i6 +(2 m+ 3)f3/4a],
e„=(2m +3)[1—it')+(2n +3)P/4a],

=n +m +3+(n —m) f3/2a+i6(n —m),
= 1 —i 5+ (n —m)P/2a,

where

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)

(2.16f)

(2.17)

are a linear-gain coefficient, saturation parameter,
driving-force parameter, and normalized one-photon de-
tuning, respectively. Also, (c.c.)„denotes complex-
conjugate terms with n and m interchanged. Alternative-
ly, S can be written as

according to Eqs. (2.17). The master equation for an or-
dinary two-photon laser, in which atoms are incoherently
pumped to the top level a, is a special case of Eq. (2.15)
with p„= 1 and all other p~&. =0.

The photon statistics of the two-photon CEL may be
studied from the equations of motion for the diagonal ele-
ments pnn of the field-density operator, which can be ob-
tained from Eq. (2.15) by setting m =n. Besides the usual
diagonal couplings among pnn) p„+& „+&, and p„+2 n+2
as in an ordinary two-photon laser, there are additional
couplings to o6'-diagonal density-matrix elements p„„+&

pn+1, n and pn, n+2 pn+2, n' The appearance of such
couplings makes a direct investigation [i.e. , using the
master equation (2.15)] for the steady-state operation,
photon statistics, and phase noise, etc. very difficult. An
easy way to accomplish these is to transform the master
equation (2.15) into a Fokker-Planck equation for a c-
number representation of the field operator p. We do this
in Sec. III.



QUANTUM THEORY OF TWO-PHOTON CORRELATED-. . . 5739

III. FOKKER-PLANCK EQUATION
FOR THE Q FUNCTION

For squeezed states of light the normal-ordering
Glauber-Sudarshan P function ' can no longer be inter-
preted as a quasiprobability distribution, since it is no
longer positive definite. The positive P function, which
is a four-dimensional normal-ordering function, is suit-
able for representing squeezed states of light. However,
it is not convenient to convert nonlinear master equations
for laser fields into Fokker-Planck equations for the posi-
tive P functions. On the other hand, the Q func-
tion, ' ' which is a two-dimensional antinormal-
ordering function, is a quasiprobability distribution even
when squeezing occurs, and it is easy to transform a non-
linear master equation into a Fokker-Planck equation for
the Q function.

To study squeezing in the two-photon CEL we will use
the Q function to represent the field-density operator p in
this paper, as in Ref. 19. Since the derivation of the
Fokker-Planck equation for the Q function in this paper
is very similar to that in Ref. 19, we will only outline the
derivation here. First, we write the Q function in terms
of the field-density matrix elements p„=( n

I p I m ),

a * = a a2 a2
Q (6', 6*,t) = — d@+ D@@»+ D@@aran*

+c.c. Q ( 6, 6'*, t ), (3.2)

Then by taking the time derivative on both sides of Eq.
(3.1) and substituting the master equation (2.15) into Eq.
(3.1), we obtain an equation of motion for the Q function
which contains derivatives with respect to 8 and 8* in
both num erators and denominators of its various
terms. ' ' The Fokker-Planck equation for the Q
function is obtained by expanding the equation in terms
of the derivatives and keeping terms up to second order
in the derivatives. Note that the terms containing third-
and higher-order derivatives do not affect the first and
second moments of the field, which are the quantities we
are going to calculate in this work. Assuming that the
average photon number of the two-photon CEL is much
larger than 1, we can safely neglect 1 compared to I@ in
the Q's equation of motion. After some lengthy calcula-
tions the Fokker-Planck equation for the Q function is
finally found to be

(3.1) with the drift coefficient

(p„—p„)(1+I@ P/2a)+(i5p„b/8*+c. c. ) 2p» —p„—p„—(P„C/8*+c.c. )+)5
2 (1+

I
C I'p/2a)'+5' 1+5 +2I@ p/a

(p, b /@ +p, b
/A' " )( 1 i 5 +—2I 8

I p/a )
+C.C.

2 1+5'+2
I
e I'pla

g @ i (p,& /6 —p, b /@ )( 1 —
& 5+

I
&

I
'p/2a )

2 (1+
I
@I'p/2a)'+5' +c.c. + [i ( v —0 )

—
—,
'
y ]@, (3.3)

and the diffusion coefficients

2p„(1+II I
p/2a)+(i5p„b'/8+c. c. )

4 (1+ I@ I
P/2a) +5

I
@I2p (p„—p„)[(1+I@ p/2a) —5 ]+2(i5p„@/8*+c.c. )(1+I@ p/2a)
2e [(1+I C I'P/2a)'+5']'

2pbb +(p„+2pbb +p„)I v f P/a+ [(i5+
I @ P/a )p„C/8*+ c.c. ]+

1+5'+ 2I & I'p/a

;g p„,bpla+(5 i 5+ I@ plap)—b, /6+
4 1+5'+2I @I'p/a

pb. @p/2a+ [5'+ t 5+ (i5 —1)
I
@I'p/2a —

I
@I'p'/4a']pb, /@

(1—i5+
I e I'p/2a)'

+c.c. + 2p (3.4a)
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(p +p„)(1+I&I P/2a)+i 5(p„p—„)I@ + [( I+i5)p„(6*) —c.c. ]
4. (I+

I
@I'p/2a)'+6'

(p« —p«)p/2a i6(1 —t 6+
I
6

I p/2a )[p„(8* )
—c.c. ] I @ p/a

(1+i5+ I@I P/2a) [(1+
I
& I'p/2a )'+ 5']'

(1 i—6+ I@I P/a)(p. , @ '+-p„I @I ') -2pb—bp/a+(I+t6+
I @I pla)[p, .I@I '+p,.(D*) ']

+
1+6 +21@1 P/a

2ip5 P«+P„2pbi—, +(p«@*/@+c.c. )

A (1+5'+ 2 I@'p/a )'

iS@p P o, (1 2i6—+36'+2I @I'P/a) p,b(—1 2i5—6+—2I g
I p/a)+

4A (1+5'+2l 6'I'p/a )'

@ P.b(1 —2i6 —6'+21@1'P/a)+2pb, ()+i5+2I@ p/a) p b p/p —p,+(1+6'+2I @l'P/a)' (1+i6+
I II p/2a)2

3+i5
1+5'+2I~I P/a

1

1 —t 6+
I
~i'P/2a

(3.4b)

Note that the cavity-loss rate enters into the diffusion
coefficient D ~ when the antinormal-ordering Q func-

tion is used. When p„=1 and all other initial atomic
variables vanish, the above Fokker-Planck equation
reduces to the Q's Fokker-Planck equation for an ordi-
nary (single-mode) two-photon laser.

The phase of the laser field in the two-photon CEL is
locked (say, to $0), in contrast to the situation in an ordi-
nary two-photon laser. To calculate the moments for the
amplitude and phase quadratures of the laser field, we in-
troduce Hermitian amplitude- and phase-quadrature
operators a1 and a2 through the relation

isoa =(ai+iai)e (3.5)

The quadrature operators a1 and a2 satisfy the commuta-
tion relation [a, , az]= ,'i Corresp—on. ding to Eq. (3.5) we

also introduce (real) c-number quadrature variables
and D2 via

6'=(6, +i 62)e (3.6)

a2 a2+
2 11+ 2 D22

aw',

a2
+2 D 2 Ql@, , 6'„t),

1 2

(3.7)

where the new drift and diffusion coefficients are related
to the old ones by

—i tt)0
d, =Re(d&e ),

—i/0
d2 = 1m(dqe ),

(3.8a)

(3.8b)

Rewriting the Fokker-Planck equation (3.2) in terms of
6, and B2, we arrive at

a a a
Q ( 6'„62, t) = — d, — d2

I

Di~
=

—,[D&&* (
—1)~Re(Dt'&e )], j =1
—i 2$ODi2= —,'Im(D&ze ) .

(3.9a)

(3.9b)

&6, &=&d, ), j=1,2 (3.1 1)

and those for antinormally ordered quadrature variances
&(66 ) ) and covariance &5@i662),

&(66'i) ) =2&di6@i)+2&D j), j =1,2 (3.12a)
d
dt

&68,6@i)=&d, 56'i)+&d256, )+2&D,2) . (3.12b)
dt

In the steady state, we have d/dt=O. Because of Eqs.
(3.11) the steady-state locking point(s) (A, o, b'zo) of the
laser field, which represents the maximum point(s) in the
steady-state quasiprobability Q function, satisfies the fol-
lowing deterministic equations:

dJ ( 6,o, 6'20 ) =0, j = 1,2 . (3.13)

To ensure Po being the laser phase, one should have
6 2O

=0. Denoting 2,„=—Bd, ( h, o, 62o) /BD„(j,k = 1,2),
the condition for a stable locking in the 6' direction
(j= 1,2) is

Since the Q function is an antinormal-ordering func-
tion, we find, by using Eqs. (3.5) and (3.6), the expectation
values of the quadrature operators, & a ) =

& 6, ) (j= 1,2),
and quadrature variances,

&(&, )'& = &:.(&,)': &
—

—,
'= &(6@,)'& —

—,', '=1,2

(3.10)

where b,a =a, —&a, ), 6A', =6 —&A' ), and: denotes
antinormal ordering of a and a . Making use of the
Fokker-Planck equation (3.7) we find the equations of
motion for the first moments &

6' ) of the field,
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A,, &0,

provided

A, 2
=0 or A2, =0

(3.14a)

(3.14b)

or both. A stable locking point corresponds to a peak
(maximum point) in the Q function. Expanding d and
D „ in Eqs. (3.12) around a stable locking point (6', 0, 6'z~)

up to first order in 6B& and 662, one finds that in the
steady state (d/dt=O)

A,, ((58, ) )+ A,„(56",56'~)+D,, =O, kAj (3.15a)

+2D i2 =0, (3.15b)

DDk ——D k(@)0,4'20) (j,k=1,2) are the diffusion
coefficients in the steady state. Solving Eqs. (3.15) one
can obtain ((5@.)2) and (56,562), implying that we

only need to know the steady-state diffusion coefficients
D k for calculating variances.

In Secs. IV and V we study, separately, two cases for
I

IV. RESONANT TWO-PHOTON CEL

When the three atomic levels a, b, and c are equally
spaced, co,~ =~„„and A=co,~ =co~„we have both one-
and two-photon resonances. From symmetry considera-
tions there is no mode pulling, v= 0, similar to the case
of one-photon lasers. Consequently, we have simply
A=co,b

—v=0. We consider the case where the two ini-
tial atomic coherences p, & and p&, involving the rniddle
level b are nonzero and have the same phase, 0 &=0&,
(= ,'0„)—,and let

40—~.b (4.1)

Substituting Eq. (3.3) into Eqs. (3.8) one finds the drift
coefficients in the amplitude and phase quadratures of the
field,

the two-photon CEL: (1) 5=0, P,b&0, Pb, &0, O,b =Obc
(9 k =argp k, j,k =a, b, c) and (2) 5%0, P„AO,
PI,&

=
pa&

=
p&c

=0. A preliminary discussion for two such
cases based on a linear theory of the two-photon CEL has
been given in Ref. 5.

d~ =
2 &~ I [a(p..—p„)+2~@~ '(IP, b I+ IPb, I

)(1+&213/2a)][I+(&~+ &2)P/2a] ' —y I,
d2= ,'@z[[«p..—p„)—~(—IP.bI+Ipb, l @)&P /a][ I+(&&+@2)P/2a] ' yI—

(4.2a)

(4.2b)

e 20=0

We now define

(4.3b)

XD = D,og/a, (4.4)

which is a normalized mean photon number and
represents the degree of saturation. Using Eqs. (2.18) and
(4.4), Eq. (4.3a) can be rearranged to the usual form of a
cubic algebraic equation,

The initial atomic variables p„and p&& do not enter into
the drift coefficients due to the resonant atom-field in-
teraction, 5=0. The population difference p„—p„plays
the usual role of laser gain. The initial atomic coherences

p,& and p&, involving the middle level b act as a "driving
force" to the laser amplitude 8, so that 6',0&0. Due to
the existence of such a driving force there is no threshold
in the resonant two-photon CFL and population inver-
sion is not necessary, in contrast to ordinary lasers.
Solving Eqs. (3.13) with d given in Eqs. (4.2), we find

that in the steady state

a(p, p„)+2~ ( IP.b I
+

I pb, I ) /@» =y 6,0&0 (4.3a)
1+6,0p/2a

satisfying Eqs. (3.14b). Making use of Eqs. (4.3), (2.18),
and (4.4), we find from Eqs. (4.2) that both self-derivatives
Bdj /BC~ (j= 1,2) are negative at the locking point
6,0 & 0 620=0

r &0+2a( pI.b I+ Ipb, 1
)/V'&,

0

&22 = —a(IP.b I+ IPb, I
)/V'&0 « . (4.7b)

Consequently, the locking point 8,0&0 [from Eq. (4.3a)
or (4.5)], 6&0=0 is stable.

The steady-state diffusion coefficients can be obtained
by substituting Eqs. (3.4) into Eqs. (3.9) and using Eqs.
(4.3b), (2.18), and (4.4). For example,

a Pcc Pbb

4 4 1+No/2 1+2No
—Ip., I

show in the following.
It is easy to see from Eqs. (4.2) that both cross deriva-

tives Bd, /082 and Bd2/B8& vanish at 620, since d, is an
even function of 6'2 and di is proportional to 62. Name-
ly,

(4.6)

%0~ +2[1+(a/y)(p„—p„)]&0
—4(a/y)( Ip b I+ Ipb, I

)=0, (4.5)

which can have either one positive root or one positive
and two negative roots. However, only the positive solu-
tion can be realized, and is also stable as we are going to

a%0+
16

a+N0+
8

8pbb paa+ pcc+1+2N0 1+No /2

Ip., I IP„I(I+~.)+I+X, /2
(4.8a)
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D)2=0 . (4.8b) (4.7) that the quadrature variances are

Using Eqs. (4.6), (4.7), and (4.8b) in Eq. (3.15b) we have
the vanishing covariance

Do
(4.10)

&~e,Se, ) =0. (4.9)

Similarly it follows from Eqs. (3.10), (3.15a), (4.6), and

Substituting Eqs. (4.7b) and (4.8a) into Eq. (4.10) and us-
ing Eq. (4.5), we obtain the variance in the phase quadra-
ture

p„+2pbl, +p„—2ip„i+y/a+ —,
' ip„iNo (I+No/2)

&(~a, )') =
4[p„—p„+(1+No/2)y/ct]

(4. 1 1)

2 p +2pbb+p ~ 2~p ~ l+)'/
4(p„—p..+y/tr )

(4.12)

When No &(1, Eq. (4.11) reduces to the result obtained
from the linear theory

2~a,O

X exp
2D

(4.16)

which can be much smaller than —,
'

~

As an example, we consider the case in which the ini-
tial atomic populations are

p„=—,
' [1—[2(2A, +1)y/a]' —(A. —1)y/aj,

Pbb AP /CX )

p„=—,
'

I 1+[2(2k+ 1)y/a]'i —(1,+ 1)y/aj,

(4.13a)

&(b,a, )') =-,'[2(2A, +1)y/a]'" « —,', (4.14)

with coherences

P,k~=(s», pkk)'", J, k =a, b, c . (4.13b)

When (2y/a)' &(1, Eqs. (4.12) gives a linear-theory re-
sult (requiring No « 1 thus A. « 1),

which is a two-dimensional Gaussian distribution cen-
tered at the locking point (6',o, 0). The quadrature vari-
ances and covariance may also be calculated by direct in-
tegrations over the Q function. The results are the same
as Eqs. (4.9)—(4.11), as expected. In fact, D /~ A

~
is the"

width (at e ' peak height) square of the quasiprobabili-
ty distribution Q ( 6 „@2) in the 6', quadrature and
represents antinormally ordered quadrature variance
& (&@,)') (g =1,2).

V. OFF-RESONANT TW'0-PHOTON CEL

In this section we examine the case 5&0, p„&0 for the
two-photon CEL. For simplicity, we restrict our discus-
sion to the situation where the intermediate level b is not
populated initially, i.e., pbb

=p, b =pb, =0.

which represents more than 90% squeezing in the a2
quadrature. In general, one should use expression (4.11)
with Xo determined by substituting the initial conditions
(4.13) into Eq. (4.5). The variance &(ba2) ) is plotted in

Fig. 2 as a function of the parameter A. for difT'erent values
of y/a. The degree of squeezing decreases with increas-
ing A..

An approximate steady-state solution for Q(8„@z)
can be found after linearizing the Fokker-Planck equa-
tion (3.7). Expanding the drift coefficients d, and
diff'usion coefficients D I, around the locking point (6 &o, 0)
up to first and zeroth order in 56, and 56'z( = A'2), respec-
tively, and making use of Eqs. (4.6) and (4.8b), one has
the linearized Fokker-Planck equation

& CV

V

0.5

—Q(6, , @~,t)= —g A, 56 D, —

XQ(8„@2,t) . (4.15)

Using Eq. (4.7) the steady-state solution of Eq. (4.15) is
found to be

FICx. 2. Quadrature variance ((b,a2) ) as a function of A. for
the initial atomic conditions given in Eqs. (4.13). The solid
curves i and ii and the dashed one iii correspond to y/a =0.001,
0.01, and 0.1, respectively. The vacuum noise level is
((~u, )2) =O.2S.
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A. Steady-state operation

For such an off-resonant two-photon CEL the drift and
diffusion coefficients in Eqs. (3.3) and (3.4) become much
simpler, since all terms proportional to the parameter S
vanish. According to the steady-state laser phase, here
we choose Po in Eq. (3.5) to be

d, =
—,'(6 —y)@,—ApD~,

d2 ——,' (6 —y ) @2+A ~ g, ,

(S.2a)

(5.2b)

Substituting Eq. (3.3) into Eqs. (3.8) we obtain the drift
coe%cients for the amplitude and phase quadratures,

$0= —,'8„—,'n. sg—n5 . (5.1) with

G(6„6'z)=aI(p„—p„)[1+(6,+Bz)P/2a]+2IP„5I(6, —e2)(C, +8&) ') I[I+(8,+Cz)P/2a] +5 I

A~(8, , @2)=v —II—
—,'a[(p„+p„)5+4lp„5ID, 62(6, + 8~) '][1+5 +2(6'f+ e~)P/a]

(5.3a)

(5.3b)

620=0 . (5.4)

The substitution of Eqs. (5.2) and (5.4) into Eqs. (3.13)
leads to (1)

6(B,O 0)=y

A~(6, O, O)=0,

and/or (2)

(s.sa)

(5.5b)

In contrast to the resonant two-photon CEL discussed in
Sec. IV, the initial atomic coherence p„enters into the
drift coefficients in the off-resonant two-photon CEL.
Since p„(or $0+m. ) is the steady-state laser phase, we
have

l

(p„&p„) or not. With population inversion p„&p„,
there is (i) zero, (ii) two, and (iii) one positive solution of
No [see Eq. (4.4)] to Eq. (s.sa) for (i) G,„(6,,0) &y, (ii}
G (0,0) & y &6,„(6„0),and (iii) 6 (0,0) & y, respective-
ly. In order to start laser operation one needs triggering
in situation (ii) since the linear gain 6(0,0) & y, whereas
triggering is no longer needed in situation (iii) since
6 (0,0))y. Without population inversion p„&p„, there
is one (zero) positive solution of No to Eq. (5.5a) if
G(0,0)=G,„(6„0)&y ( &y). For G(0,0))y, the
laser field can build up from a vacuum via spontaneous
emission (i.e., without triggering}. Overall, it follows
from Eqs. (5.5b} and (5.7) that the solutions for No are

Np =(p p )a/y —2+ I [(p..—p„)a/y]'
io=0 . (5.6)

Here G ( 6 „0) is a saturated gain of the off-resonant two-
photon CEL.

Equation (5.5a) determines the laser amplitude. If 8,o
is a stable (unstable) solution of Eq. (5.5a), then —6'&o is
also a stable (unstable) one, since 6(6'„0) is an even
function of 8&,

(p,.—p„)(1+8',f3/2a)+2l p„5lG(6', , 0)=a
(1+6,P/2a) +5

(5.7)

This reflects the fact that the off-resonant two-photon
CEL can be locked to either 8,o) 0 branch or the oppo-
site C,o&0 branch. Besides the usual (saturated) two-
photon laser gain (proportional to p„—p„), there exists
an extra two-photon-CEL gain proportional to alp„5I,
which is due to both the initial atomic coherence p„and
the two-photon transition (indicated by 5%0). For a
small normalized mean photon number, Xo &&1, we re-
cover the linear gain

G (0,0)=[a(p„—p„)+2IP„5I ](1+5 ) (5.8)

found in Ref. 5; G(0,0)=y is the threshold of the off-
resonant two-photon CEL.

We plot, in Fig. 3, the gain G(8&,0) as a function of
8,(P/a)' for p„)p„, p„=p„, and p„&p„, respec-
tively. When 5 ))1, the gain G behaves differently, de-
pending on whether there is a population inversion

+8lp„5la/y —45 ]
'

(5.9)

provided that the value of [ J is non-negative. Note that
the smaller No (taking minus sign), and even the larger
No (plus sign) may be negative. The negative No should
be dropped.

After knowing No, Eq. (s.sb) gives the actual laser fre-
quency [by Eqs. (5.3b) and (5.4)],

where

I 0+@co,b
r+y

a(p„+p„)
2(1+5 +2ND)

(5.10a)

(5.10b)

resembles the role of the cavity-loss rate y in determining
the actual laser frequency in an ordinary two-level one-
photon laser. Notice that y depends on the laser intensi-
ty (No), which in turn depends on P„and y, etc. Equa-
tion (5.10a) shows that, even in the case of the actual
two-photon resonance co„=2v, there still exists mode
pulling in the off-resonant two-photon CEL (as well as in
an ordinary two-photon maser' ) The direc. tion of the
mode pulling follows that of the one-photon detuning for
the upper transition a b [When 0=co-,~ .Eq. (5.10a) leads
to &=A=~,b =nb„which is just the resonant case dis-
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FIG. 3. Gain G(A', , 0) of the off'-resonant two-photon CEL as a function of a normalized laser amplitude 6,&P/a for diff'erent
p„= 1 —p„with lP„l =(p,~„)' . The curves i, ii, and iii correspond to p„=0.8, 0.5, and 0.2, respectively. (a), (b), and (c) represent

l 5 l

= 1, 5, and 10, respectively.

2Q cu +(rob ru b )y/I

20 —co„has the same sign as ~&, —~,&.

(5.11)

cussed in Sec. IV.] It is of practical importance to know
how to set the cavity-mode frequency according to the
atomic transition frequencies in order to achieve the ac-
tual two-photon resonance in a two-photon laser. The
rule follows from Eq. (5.10a) as

we find from Eqs. (5.2) that

6', o t)G(6,o, 0)
]k (5.12a)

BAN(bio 0)
A~i, =8,o

k
(5.12b)

(k=1,2) by using Eqs. (5.4) and (5.5). Since G [see Eq.
(5.3a)] is an even function of 8z, we have

B. Stability analysis A]~=0, (5.13)

In the following we examine the stability of the locking
point (6,o, 8zo) found above. When B,o&0 (i.e., No )0),

which means that (3.14b) is satisfied. Other A,k's are
found, by using Eqs. (5.3) and (4.4), to be

t)G ( 6', (o,t0)
A]] =IO

86',
aNo (p„—p„)[(I+No/2)' —&']+4lp.,&l(I+No/2)

2 [(1+No/2) +5 ]

2aNo(p-+ p- »
AqI =

(1+5 +2No)

2a IP.,&l

1+5 +2%0

a%0

(I+No/2) +o

0,

~ 1+
2 tx (5.14a)

(5.14b)

(5.14c)
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In arriving at the third equality of Eq. (5.14a), Eq. (5.8)
has been used. Inequality (5.14c) shows that the locking
in the 6z quadrature (i.e., the laser-phase locking) is al-
ways stable. In order for the locking in the Cz quadra-
ture not to be too weak, neither ip„~ nor i5~ can be too
small. Namely, we should avoid ip„~ &&1 or ~5 &&1 in
the following treatments. Equation (5.14) demonstrates
that the locking in the 8, quadrature (i.e., the laser-
amplitude locking) is stable (1) if

Paa —Pcc

or (2) ifp„)p„but

No & (p„—p„)a/y —2 .

(5.15)

(5.16)

BG ( 6', 0, 0) (0, (5.17)

which means a decreasing gain with increasing laser in-
tensity around the locking point (C&0,0). Physically this
can be understood easily. For situation (ii), i.e., p„)p„
and G (0,0) & y & G,„(@,,0), the larger No is stable
whereas the smaller No is unstable as is evident in Fig. 3.
This conclusion agrees with Eq. (5.16). For the situation
G (0,0) )y, in which there exists only one No (see Fig. 3),
the locking is always stable (for both p„)p„and
p„&p„), again in agreement with (5.15) and (5.16).

Of course, when inequality (5.15) holds, inequality (5.16)
also holds. Alternatively, we may discuss the stability of
the laser-amplitude locking by referring to Fig. 3. Ac-
cording to Eq. (3.14a) and the first equality in Eq. (5.14a),
a stable amplitude locking requires

When 6,0=0 [see Eq. (5.6)], we find from Eqs. (5.2)
and (5.3) that

A „=—,'[G(0,0)—y],
322= —,'[G(0,0)—y] —2u~p„5i(1+5 )

and, if Eq. (5.9) holds, that

AI2= A2i =0 .

(5.18a)

(5.18b)

(5.19)

Consequently, the locking at the origin (0,0) is stable only
if the linear gain G(0,0) &y, as expected. For situation
(ii) discussed previously, 8,0=6'20=0 is another stable
locking point besides the one with 6,0)&1. With a prop-
er triggering and under certain conditions, it may be pos-
sible that the two stable locking points (6,0=0 and
6,0 » 1) are equally probable so that one can find two
peaks in the photon-number distribution p„„with one
peaked at n =0. The peak of p„„appearing at n =0 is just
a thermal field, arising from the below-threshold opera-
tion of the off-resonant two-photon CEL. In the follow-
ing discussion for the field quadrature variances with
stable laser operation we assume no triggering so that the
coincidence does not happen.

C. Quadrature variances

Because of the laser locking the diffusion coefficients in
the steady state take their values at the stable locking
point. Substituting Eqs. (3.4) into Eqs. (3.9) and making
use of Eqs. (5.4) and (4.4), we obtain the steady-state
diffusion coefficients as

p„(1+3No/2)+ p„(3+No/2) —2lP„5ID'„— +
4 8 (I+Nol2) +5

Paa+Pcc

1+5 +2ND

4~p„5 (I+No/2)+2(p« —p«)5
+No

[(1+No/2) +5 ]
(5.20a)

(p„—p..)(1+No/2) —2 p„5l 4lp„5i+(p,.+p„)(1+No/2)
4 8 (1+N() l2) +5 1+5 +2ND

~ 4ip„5i+(p„+p„)(1+2ND)+
8 8 1+5 +2ND

(5.20b)

a (p p )5 2~p ~sgn5 (p p
8 ( I+No/2) +5 1+5 +2ND

2(p„+p«)N05
(1+5 +2ND)

[2ip„5 i +(p„—p„)(1+No /2) ]N05

[(1+N /2) +5 ]
(5.20c)
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D 0

((~, )') =
4

(5.21)

The second equality in Eq. (5.20b) is found after using Eq.
(5.9). Because of Eq. (5.13), the variance in the amplitude
quadrature is simply given by Eqs. (3.10) and (3.15a) as

D. Near threshold N, «1
Near the threshold, characterized by G (0,0) & y or

No « 1 (i.e., far below saturation), we can expand various
quantities in terms of 1V0 up to first order in N0. From
Eqs. (5.7) and (5.14a) we find

On the other hand, since Az& does not vanish, ((5&z)z)
is coupled to (56,5@z), which in turn relates to
((5m&) ). Solving Eqs. (3.15) with Eq. (5.13) we find [by
Eqs. (3.10)]

Dzz Az& 2D,z+ Az) I
A i) I

&(~a, )'& = —
—,'+

I
A i g I

+
I
A zz I

G (6 f, ()t 0)=G (0,0)+ A „, (5.23a)

A „= ,'aN——IXI [4lp„5I+(p„—p„)(5 —1)],
(5.23b)

where XI =(1+5 ) '. Equation (5.23b) gives the stabil-
ity condition

(5.22)
4lp„5I+(p„—p„)(5 —1) &0 (5.24)

which shows that the Auctuations in the phase quadra-
ture a2 are coupled to those in the amplitude quadrature
a, in general. The explicit expressions for the quadrature
variances ((ha ) ) (j= 1,2) are now readily obtained by
substituting Eqs. (5.14) and (5.20) into Eqs. (5.21) and
(5.22), which are quite lengthy. Relatively simple expres-
sions can be found in various special cases. We discuss
two such cases in Secs. V D and V E, respectively, and
plot ((b,az ) ) for the general case in Sec. V F.

near the threshold. Equations (5.23) and (5.5a) give the
normalized mean photon number

N,=, ' ' ' ~, . (5.2s)
aiX I [2IP„5I+(p„—p„)(5 —I )/2]

Using Eqs. (5.14), (5.20), and (5.25) we find the quadra-
ture variances from Eqs. (5.21) and (5.22),

p„+ ip„5I+ „'Noix l [p„—(55 —1)+p„(s—5 )
—12ip„5I]((~., )')=-,'+ "

2NOIZf [4IP„5I+(p„—p„)(5 —1)]

&(~az)'& =(8ip.,5I)-'I p..+ Ip.,5i+-,'N, l&fz[p..(55z+3)+p„(35z+I)+4lp.,51]I

No I& I'(p..+p„) IP., I [p..(35'—1)+p„(5'+»+215I(p'..+p.~„—2fp., I')
+

4
1p., I'I51 4lp„5I+(5' —l )(p„—p„)

(5.26a)

(5.26b)

which show that the variance in the amplitude quadra-
ture a, is always much larger than —,', and that in the

phase quadrature a2 can be less than the vacuum noise
level —,

' for large enough I5I. Thus we find phase squeez-

ing. With increasing No, ((b,ai) ) decreases, whereas
((b,az) ) increases, which means that the larger degree
of squeezing is found with smaller N0. Alternatively,
Eqs. (5.23)—(5.26) can be derived by treating the off-
resonant two-photon CEL in a perturbation manner up
to g . We examine more closely two limiting situations
(1)

I
5

I
)& 1 and (2) No =0 in the following.

(1) In the two-photon transitions limit I5I ))1, the de-

gree of coupling to (58i56'z) for ((5A'z) ) is small.
I

Consequently, it follows from Eqs. (5.22) and (5.26b) that

D22

22

p„+—,'No(5p„+ 3p„)—1+
g fp.,5I

(5.27)

An approximate steady-state solution for Q(gz, bz) can
be found in this limit. Similar to Sec. IV we first linearize
the Fokker-Planck equation (3.7) around the two possible
locking points (+e,0,0) and then find the steady-state
solution for the linearized Fokker-Planck equation,

' 1/2
~11~22

Q(&i, @z)= 0 g exp4~ D11D22 m =1
[~ —( —I)-

I
~ I]'—

2D' 2D11 22

(5.28)

which consists of two identical Gaussian peaks located at
the two possible locking points. Similar to Sec. IV one
can calculate the quadrature variances directly from the
steady-state solution of Q(b„bz). The results are the

I

same as those given in Eqs. (5.26a) and (5.27), since the
field is locked to either (6 io, 0) or ( —8,0,0) depending on
initial field Auctuations. If we further assume
l(p„—p„)5I )& IP„ I, then Eq. (5.26a) reduces to
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p„+IP„5I+ ,'N—D(5p„p—„)
&(~a, )'&=-,'+ "

2ND(p„—p„)
(5.29)

Equations (5.27) and (5.29) are identical to the quadrature
variances obtained by us in Ref. 20 from a fourth-order
(in g) field master equation under the (almost same) con-
ditions I5I »1 and I(p„—p„)5I &) Ip„l. For a given
laser intensity (i.e., ND) requirement, a minimum value
for & (Aa2) & can be reached by properly choosing initial
atomic variables. Assuming a full atomic coherence
Ip„l =(p,~„)' =[p„(1—p„)]', we find from Eq.
(5.27)

E. 5'»N, »I
We consider the special case

5'»No»1, (5.33)

which agrees with the phase variance found in Ref. S de-
rived from a linear master equation (to g ). Squeezing in
the az quadrature occurs when p„& IP„5I. The degree
of squeezing is —,(1—p„lp„5I ), which approaches its
maximum value S0% in the two-photon transition limit
I@I » l.

+3N,
&(~a, ) &.,„-,+ 85

when

(5.30)

i.e., 6 »(2g@,0) ))I in Sec. V E, where 2g6, 0 is the
Rabi frequency for the one-photon transitions. Under
conditions (5.33), we find from Eq. (5.7) the steady-state
gain

3No

4(1+2N )

=1—

Meanwhile, Eq. (5.29) gives

&(~ai)'& =IP.,SI[2No(p„—p..)] '

(5.31)
ND(p„—p„)+2lp„ I

G(@i0 0)=
1+No

where

N,'=N, /2151

(5.34)

(5.35)

& (aa, )'
&
= -,'+

8lp.,&l
' (5.32)

=&3ISI y4&N, » I .

[The cavity-loss rate y should be chosen according to
Eqs. (5.25) and (5.31).] The stability condition (5.24) is
satisfied due to lfil »1 and p„«p„.

(2) In the zero intensity limit N0=0, we find from Eq.
(5.26b)

is a new normalized mean photon number. Equations
(5.34), (5.12a), and (5.5a) leads to the stability condition
[cf. Eq. (5.17)],

'p., I+y(N0' —1)
A &O.11 1+No

(5.36)

Using Eqs. (5.5a) and (5.34) we obtain the variance in the
amplitude quadrature a, from Eqs. (5.21), (5.20a), and
(5.36)

2( I+ND') lp., I+ND[(3ND' —l )p,.+(5+N,')p„]
&(«, )'&=

8ND[4ND Ip., I+(1 No )(p„p„)]
(5.37)

which is much larger than —,
' when ND « 1. Due to (5.33)

the three steady-state diffusion coefBcients D k in Eqs.
(5.20) are of the same order and, according to Eqs. (5.14),

I ~zi I
&&

I ~» I, I ~&21. Thus it follows from Eqs. (5.22),
(5.20b), and (5.14c) that

0

&(Aa, ) &=

1+N'(3+4N' )' (5+4N' )'
&(~., )'&,„=

8(l+ND )

is found at

+2No
Paa Pcc 4(1+N p

)

=1—

(5.39)

(5.40)

y+4ND(p„+ p„)al5I
16

I p„ I
iz

I
fil

1+N0 I p„ I
'[p„+( —,

' +2ND )(p„+p„)]

8(1+N0 )

(5.38)

For given N0, the variance & ( b,a 2 ) & in Eq. (5.38) is a
function of p„[let p„= 1 —p„and I p„ I

= (p,~„)'
again]. Its minimum value

This is in the p„&p„region and the stability condition is
always satisfied. [The cavity-loss rate y needs to be
chosen according to Eqs. (5.5a), (5.34), and (5.40).] It is
straightforward to show from Eq. (S.39) that squeezing is
possible only when N0 &0.275. We plot Eq. (5.39) in Fig.
4. Quite accurately (and somewhat surprisingly),
& (b,az) &;„increases linearly with N0

In this case we can also find the steady-state solution
for the linearized Fokker-Planck equation, which is of
the exactly same form as that in Eq. (S.28). Of course the
explicit expressions for A

~
and D, (j= 1,2) are diff'erent, .

since they belong to two different special cases. Once
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FIG.. 4. Minimum variance ( ( gn }')2 min [ q. (5.39}] vs
normalized mean photon number N' ( 1 d 1'er p so i ine), as given in E .
(5.35). The dashed line indicates the v

stat Th
ica es t e variance in the vacuum

s ate. The dash-dotted line is t"is t»e minimum variance
a~) ~m;„ found in Eq. (5.22a') (of Ref. 19) from

again such a solution for Q(6, , 6'z) leads to the same
quadrature variances as given E . (5.37)in qs. . ) and (5.38).

F. Graphic illustrations

In the last part of Sec. V, we plot the hase- ua
((& )') ba, y using Eq. (5.22). We use

p«+pic = 1 and Ip« I =(p«p ) In Fig. 5, the a2's
variance is drawn as a function of the nor
num er o wit p„ taking values given in Eq. (5.40).

~ & ~a2 «~ increases with increasin N' for a
given ~5~ value bu

as1ng o or a

given N . A
ue, ut decreases with increasing ~5~

g o. A companson of Fig. 5 (e.g. , ~6~ =10) with
Fig. 4 shows that the expression (5.39) is valid even
beyond the region 5 ))N ))1. I Fo ~ n 1g. 6, the variance

0

FIG. 6. Variance in the a uae a& quadrature as a function of both
one-p oton detunin 6 andg ~ ~ an the normalized photon number N
with initial atomic cond'tn i ion p„=1-

d( ) =05 (b) =02p„=0.2. The vacuum noise level is 0.25,

/x ~

U

v~
D

o
0 0.2 0.4 0.6 0.8

((ba z is plotted as a function of both - ho one-p oton de-
uning

~ ~
and the normalized photon b X

p„—. an 0.2. Common features are that the variance
increases with increasing N din

' ' '

o an or decreasing ~5~ and
squeezing occurs for large ranges of ~5~ and X . A

and N when
ance. n ig. 7 we plot (b,a2) ) as a function of both ~5~

p« takes the expression (5.31) which h
once a ain tg t..e common features illustrated in Fig 6~ ~

VI. COMPARISON WITH THE EFFECTIVE
HAMILTONIAN MODEL

FIG. 5. Phase- uad-q drature variance as a function of the nor-
malized photon number N' wh h

'
eso w en t e initial atomic variables

take the values given in Eq. (5.40). Th~ . . e solid curves a and b and
the dashed one c correspond to ~5~ = 1 5o =, , and 10, respectively.

CEL s starting from the ex
In preceding sections we have st d' d hu ie t e two- hoton-p

H
e exact atom-field interaction

ami tonian V iven bg y Eq. (2.5); especially, the off-
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and that obtained from the effective Hamiltonian V' is
Eq. (2.17') of Ref. 19. (We use the primed equation num-
bers to indicate equations in Ref. 19.) The loss parts of
the two master equations are the same. The gain parts of
Eq. (2.17') consist of terms containing p„, p„+z +2,
pn —2, m —p~ pn, m+2~ and pn+2, m only, which represents
two-photon processes. On the other hand, the gain part
of the Eq. (2.15) (with p»=p, „=p„=0)has additional
terms containing pn —],m —1& pn+1, m+]& pn —1,m+1~ and
p„+, +„which represent one-photon processes. We
rewrite a, P, and S in Eq. (2.19') as

2rgga'=
r2 r'' r (6.3)

F1G. 7. Same as Fig. 6 except p„=3Nol4(1+2&o) [see Eq
(5.31)].

resonant two-photon CEL has been examined in detail in
Sec. V. On the other hand, the (off-resonant) two-photon
CEL has also been analyzed in Ref. 19 starting from an
effective atom-field interaction Hamiltonian for a two-
photon transition. The effective interaction Hamiltonian
is generally regarded to be valid in the off-resonant case
with large one-photon detunings.

In this section we compare the predictions for the off-
resonant two-photon CEL obtained in this paper with
those obtained in Ref. 19, and discuss the validity domain
of the efFective interaction Hamiltonian. The comparison
is made in the case of the actual two-photon resonance
cu, =co, —co, =2v and the equal coupling constants
g] =gz =g. Also g has been taken to be real.

This comparison will be very interesting for people
working on the two-photon processes, in which the
effective interaction Hamiltonian is used generally. Re-
cently, Ref. 31 has made such a comparison for the
photon-number equations in a (cascade) two-mode two-
photon laser. In addition, by using the exact Hamiltoni-
an, Zhu and Li' found two peaks in the photon-number
distribution of an ordinary (single-mode) two-photon
laser.

The effective atom-field interaction Hamiltonian fiV'.

used in Ref. 19 is

A careful examination of (2.15), however, shows that one
cannot say when the one-photon-process terms can be
neglected compared with the two-photon-process terms.
Thus it is not convenient to discuss the validity of the
effective Hamiltonian V' directly from the master equa-
tions (2.15) and (2.17'). After all, the two master equa-
tions were not used directly to calculate the first and
second moments of the laser field.

To see the accuracy of the effective Hamiltonian in pre-
dicting the first and second moments of the field, it is
better to use the Fokker-Planck equations (3.7) and (5.4')
for the Q function, which are uniquely represented by
their drift and diffusion coefficients.

A. First moments

The phase Po, mean photon number v fo, and the mode
pulling v —fL of the laser field are exclusively determined
by the drift coefficients of the Fokker-Planck equations
(3.7) and (5.4'), which are Eqs. (5.2) and (5.3) from the ex-
act Hamiltonian V [i.e., for Eq. (3.7)] and Eqs. (5.14')
and (5.15') from the effective Hamiltonian V'. [i.e., for Eq.
(5.4')].

1. Laser phase

This work predicts that the laser phase will be locked
to either Po (i.e., 8&o&0) or Po+n (i.e., 6&o(0) in the
steady state, where Po is given by Eq. (5.1); Ref. 19
showed that the steady-state laser phase is Po or (5p+77
[see Eq. (4.22')], where

VJ'=g'~aj) (cj~a'+g'(a )'~c') (a'~ (6.1)

O=arg(g'p„) .
(6.4)

in the Schrodinger picture, which should be compared
with VJ in Eq. (2.5). (We change the notations used in
Ref. 19 to distinguish them from the notations used in
this paper. ) Here g' is the effective atom-field coupling
constant for the two-photon transition between levels a
and c, and has been identified in Ref. 19 to be

(6.2)

in the limit ~5~ &&1 from a comparison with the exact,
but linear theory of Ref. 5. The field master equation for
the off-resonant two-photon CEL obtained from the exact
Hamiltonian VJ is Eq. (2.15) (with p» =p, b =pt„=0),

Using Eq. (6.2) (or assuming that g' has the same sign as
b, ), it is easy to see that

4'o=4o . (6.5)

Thus the exact and effective Hamiltonians give the same
steady-state laser phase.

2. Drift coe+cients

Comparing the drift coefficients d& and d2 in the am-
plitude and phase quadratures given by Eqs. (5.2) with
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those given by Eqs. (5.14'), one sees that —,'(G —y) and
A

&
correspond to 2, and 32, respectively. With the

help of Eqs. (2.17), (6.2), and (6.3) we find that —,'(G —y)
reduces to 3, when

I

6'I = 8, + Dz satisfies

&'» I@l'P/a»1, (6.6)

with the following correspondence:

al&l '=»',
/3/(2a 1 61)=&/3'/a' .

(6.7a)

(6.7b)

3. Laser intensity

Since 6 2o
=0 the two drift coefficients d, 's in the am-

plitude quadrature do agree with each other in the steady
state when inequalities (5.33) are satisfied. Notice that,
due to Eq. (6.7b), the normalized mean photon number
No defined by Eq. (5.35) is exactly the same as the nor-
malized mean photon number No defined in Eq. (4.27').
Consequently, the laser gain G(NO, PO) and the mean
photon number no obtained from the effective Hamiltoni-
an V' are accurate under the conditions (5.33), as is evi-
dent from Eqs. (5.34), (6.7a), and (4.23'). Moreover, the
amplitude locking strength 2» =(Bd i /BA'& )0 derived
from the exact Hamiltonian reduces to that from the
effective one under the conditions (5.33), as can be seen
from Eqs. (5.36) and (5.19a'). In addition,
Aiz =(Bd, /B6'z)0 vanishes for both Hamiltonians [see
Eqs. (5.13) and (5.17')], which is independent of the con-
dition (5.33).

4. Mode pulling and phase locking

One thing that the effective Hamiltonian V' failed to
predict is the mode pulling v —0 at the exact two-photon
resonance co„=2v, as pointed out in Ref. 19. While the
effective Hamiltonian method gives no mode pulling
0=—,'co„=v, the exact Hamiltonian method shows that
there exists in fact a mode pulling
v —II= —,'co„—Q=(co,b

—
cob, )y/2I [see Eq. (5.11)]. The

reason for this is that 2& does not reduce to A, . This
also leads to A z, &0 [see Eqs. (5.12b) and (5.14b)], in con-
trast to A2, =0 from the effective Hamiltonian method
[see Eq. (5.17')]. The "phase locking strengths'
Azz=(Bdz/~3hz)0 from the two Hamiltonians, however,
coincide with each other when

6' »X„1 (6.8)

i.e., 6, &)(2g@&0),I z. Also under the conditions (6.8)
the importance of 2 2, %0 becomes small, since

I
2 z, /Azz I

&(1 in such a case.

On the other hand, under no circumstance [including the
limit of (6.6)] will 3

&
reduce to

~, =v n —4I—s'p. , I W, r, (e', + r, ', )

in Ref. 19. Thus the two drift coefficients di's (dz's) in
the amplitude (phase) quadrature do not agree with each
other in general.

B. Second moments

The quadrature vanances of the field are determined
by the steady-state diffusion coefficients D & and the lock-
ing strengths A „,as indicated by Eqs. (5.21), (5.22) and
(5.21'). We compare the phase- and amplitude-
quadrature variances separately in the following.

Phase-quadrature variance

We first note that the effective Hamiltonian gives
((b,az ) ) which is never affected by D» and D, z [see Eq.
(5.21')]. This does not agree with Eq. (5.22) in general.
Under the conditions (6.8), however,

I Az& /Azz I
«1 and

thus the last term in Eqs. (5.22) can be neglected com-
pared with the first two terms, as is true in Secs. V D and
V E. Namely, ((b,az ) ) obtained in Ref. 19 may be accu-
rate under the conditions (6.8). (i) Comparing Eq. (5.21')
with Eq. (5.38) in Sec. V E, we find that there is a
difference between the noise levels calculated from the
two Hamiltonians,

((~a, )'),„.„—((~., )')„„„„,=
X' X'

8lp., I

4
(6.9)

where p„+p„=1 has been used. This difference is solely
due to the difference in two steady-state phase diffusion
coefficients Dzz's, and is proportional to No. Equation
(6.9) means that the effective Hamiltonian V' underesti-
mates the phase noise level at least in the region of (5.33).
This can also be seen from Fig. 4, which plots the
minimum variances ((baz) ),„, Eqs. (5.39) and (5.22a')
obtained from the two Hamiltonians. (Two p„values are
different. ) On the other hand, Fig. 4 also shows that the
basic features about ((b,az) );„obtained from the two
Hamiltonians are the same. (ii) To compare Eq. (5.21')
with Eq. (5.27) in Sec. V D, we first need to expand Eq.
(5.21') in the limit No &(1, yielding

—,
' No ( 3p„+p„)((~., )')„„„,„,=-,'+ '

8lp. , I

(6.10)

Then the comparison between Eqs. (5.27) and (6.10) gives
the difference

No+p„l5I
((Aa, }')„„„,—((Aa, )'), „„„=

8IP., I

(6.1 1)

in the limit I6I )&1))NO, where p„+p„=1 has been
used. Once again this difference arises from the
difference in the steady-state diffusion coefficients D22's.

To finish Sec. VIA, we conclude that the accuracy of
the effective Hamiltonian V' in predicting the steady-
state operation of the off-resonant two-photon CEL de-
pends on which quantities we are concerned with, rang-
ing from the always correct laser phase to never correct
mode pulling. Overall, in order for the effective Hamil-
tonian V' to be valid in calculating the first moments of
the laser field, the necessary conditions are (6.8) and the
sufficient conditions are (5.33), with the exception of the
mode pulling.
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Equation (6.11) indicates that the efFective Hamiltonian
underestimates the fluctuations in the a2 quadrature in
the limit ~5~ )&1&)No too. Nevertheless, the difFerence
given by Eq. (6.11) is much smaller than —,'.

which is also much larger than —,
' if No «1. Comparing

Eq. (6.12) with Eq. (5.21), one sees that both ((b,a, ) )
are independent of Dz2. Under the conditions (5.33) we
find from Eqs. (6.12) and (5.37) that the difference be-
tween the two a, 's variances is

Np(1 3Np )Ip„1+2(p„p„)
4[4Np~P„~+(1 —Np )(p„—p„)]

(6.13)

which can be positive, negative, or zero. As in the previ-
ous case for ((«2) ), this difference is due to the
difference in the two steady-state amplitude diffusion
coefficients D»'s. When No «1 and p„—p„ is not too
small, the value of Eq. (6.13) is approximately —,', which is
a relatively small correction to ((«, ) ),s.„„„,.

To conclude Sec. UI B, we observe that the quadrature
variances calculated from the effective Hamiltonian V'

are accurate only at the far-below-threshold region
No «1, and the effective Hamiltonian always underesti-
mates the phase-quadrature variance. In predicting the
field fluctuations in a two-photon laser, there is no
guarantee for the effective Hamiltonian to be valid in gen-
eral, even under the conditions (5.33) which ensure the
first moments of the field.

VII. CONCLUSION

We have developed a quantum theory of the two-
photon CEL's by using the exact atom-field interaction
Hamiltonian. This theory is to all order in the atom-field
coupling constant g (=g, =g2) and treats the resonant
and off-resonant two-photon CEL's in a unified approach.
By assuming an actual two-photon resonance 2v=co„
but allowing one-photon detuning 5 (=b, /1 ), we derive
the master equation for the reduced field-density operator
and then transform it into a Fokker-Planck equation for

2. Amplitude-quadrature variance

The variance in the amplitude quadrature, ((b,a, ) ),
has been omitted in Ref. 19. For the purpose of the com-
parison we give it here,

((«, )'), „„„,
Dii(Bio 62o)

Indi(@ip @ip)&~@2I

2(1+3Np ) Ip„ I
+N p (1+N p')(3p„+p„)

SNp [4No ~ p„~ + ( I —Np )(p„—p„)]

(6.12)

the antinormal-ordering Q function. The master equa-
tion and the Fokker-Planck equation are valid for arbi-
trary initial atomic conditions, with or without initial
atomic coherences, and for an arbitrary cavity-loss rate.
The Fokker-Planck equation takes relatively simple form
and makes an analytic study of the two-photon CEL's
possible.

For the resonant two-photon CEL in which 5=0 but
P, i, %0 and pb, XO, there is no threshold since the atomic
coherences p, b and pb, act as a driving force. When p, b

and pb, have the same phase 0,& =Ob„ the phase of the
laser field will be locked to go=8, i,

—2' an—d phase
squeezing can occur. More than 90%%uo squeezing can be
obtained for a proper choice of the initial atomic vari-
ables, which is in the no-population-inversion region with
the laser intensity far below saturation. By linearizing
the Fokker-Planck equation a steady-state Q function is
found.

For the off-resonant two-photon CEL in which 5%0
and P„+0but pbb

=p, b
=pb, =0, there exists a threshold

G(0,0)=y (i.e., the linear gain equals the cavity loss).
Below threshold G (0,0) & y but G,„(6„0)) y a stable
laser field can be obtained by triggering the field. Above
threshold G(0, 0) & y the laser field will build up from a
vacuum and become stable. There are two phase-locking
points (kA', o, 0) and the laser field will be locked to one
of them depending on the initial field fiuctuations (or
triggering). Larger phase squeezing occurs in the larger
~5~, far-below-saturation intensity (Np && 1), and no-
population-inversion region. A maximum of 50%%uo

squeezing can be approached near the threshold when
~5~ &)1. The properties of the off-resonant two-photon
CEL are investigated more closely near the threshold and
in the region 5 ))Np))1 [i.e., b, )&(2g@,o) &)I ], re-
spectively, and approximate steady-state Q functions are
obtained, which consists of two identical Gaussian peaks
centered at the two locking points (+@,o, 0). In the case
5 ))No ))1, we find the minimum variance in the phase
quadrature as a function of the initial atomic variables
for a given Np =Nol2~5~, which increases monotonically
with increasing No. In general, the phase squeezing is
possible only when No is less than a certain value for a
given ~5~.

These results for the of-resonant two-photon CEL
have been compared in detail with those obtained in Ref.
19. For the laser operation (except for the mode pulling),
the effective Hamiltonian V' is found to be valid under
the conditions 6 ))No))1. For the quadrature vari-
ances, one needs an additional condition No « 1 (i.e. , far
below saturation) to ensure the validity of the effective
Hamiltonian.
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