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Effectiv-medium theory of nonlinear ellipsoidal composites
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%'e develop an effective-medium theory for nonlinear, ellipsoidal particles embedded in a host
medium. Specifically, we treat spheroidal-shaped particles and give results for oriented and random
configurations of the particles. We discuss metallic particles embedded in a linear dielectric medi-

um and examine the enhancement of their nonlinear response at the surface-plasmon resonances.

I. INTRODUCTION

There are many physical phenomena in composite
media that can be described by an effective-medium
theory. Examples include the dielectric behavior of
heterogeneous systems, ' the electronic conductivity of
polycrystalline on inhomogeneous metals, and parti-
cle diffusion in disordered media. Recently, interest has
turned to the nonlinear response of these media, with in-
teresting experirnenta1 results indicating a large enhance-
ment (10 —10 ) of the effective nonlinearity. ' This
enhancement is consistent with the effective-medium
theory calculations presented by those authors using the
surface-plasmon resonance of the metal particles. The
effective nonlinearity has been examined in an electrical
transport problem and the same surface-plasmon reso-
nance was found to dominate the results.

Agarwal and Dutta Gupta have recently examined the
foundations of the efFective-medium theory for nonlinear
optical effects using a T-matrix approach. Stroud and
Hui have developed a variational approach to the non-
linear conductivity problem, but there is, of course, a
strong analogy between their work and the nonlinear op-
tical problem. The results of these papers are valid only
for spherical particle shapes.

When ellipsoidal particles are used, one essential prop-
erty is retained from the spherical particle case; namely,
the electric field inside the ellipsoid is constant. There
are, however, important changes in the formulation that
need to be made when the particle shapes are ellipsoidal.
This has already been noted in the linear regime where
the effective-medium dielectric constant has been calcu-
lated. The induced polarization direction in the ellip-
soid is not generally parallel to the applied field; as a
consequence, the scattered radiation is anisotropic as the
direction of the driving field is changed. Furthermore,
the magnitude of the induced polarization also varies
with the direction of the driving field.

Metal particles are a special example of this phe-
nomenon. There are surface-plasrnon resonances deter-
mined by the dielectric properties of the metal particle
and the medium in which it is embedded.

In this paper we provide results for spheroidal-shaped
particles and perform the calculations in inhomogeneous
media where the particles have a special distribution of
their orientation. For instance, if the particles are orient-
ed parallel to one another, then the effective dielectric
tensor will be anisotropic. This can be probed by polar-
ization efFects in the reAected and transmitted light, and
in the conjugate wave in a four-wave-mixing experiment.

In Sec. II, we develop the formalism in which our re-
sults are derived. The results for nonlinear spheroidal-
shaped particles in a linear or nonlinear medium are
presented in Sec. III. We also calculate the nonlinear
susceptibility appropriate for a four-wave-mixing experi-
ment. In Sec. IV we take the special case of spherical
particles in order to compare our results directly with
those from recent publications. Section V is devoted to
our conclusions.

II. FORMALISM

The inhomogeneous medium is characterized by a
dielectric tensor e(x) which is a function of frequency
and the electromagnetic field as well as being a random
function of position. In the present problem, the material
is composed of nonspherical grains which have a volume
fraction f in the medium and a particular orientational
distribution. The grains have a dielectric function

e =6 +bE (E ),
where e is the linear dielectric tensor and be (E ) is a
field-dependent contribution to the dielectric constant.
The value of the field in the medium E depends on the
dielectric constant of the surrounding material and the
orientation of the grain.

Similarly, the host material is considered to be a ma-
terial with a dielectric function

et =et +bet (Et, )

The terms in Eq. (2) are similarly interpreted and Et, is
the value of the electric field in the host material.
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The distribution of these dielectric materials has a fac-
tor that refers to their translational position and a factor
that refers to the orientation of the ellipsoidal grain; let
this factor be the angles 8=(g„gz, 03), which give the
orientation of the grain with respect to the space-fixed
coordinates. The dielectric function has the following
distribution of values for volume fraction f and volume
fraction ( 1 f), r—espectively: G, (x,x')= g(x, x'} .~ = a a

(12)

appropriate boundary conditions. The electric field is

E=E0+f d x'G(x, x') 5e(x') E(x'),

where we have integrated by parts and the dyadic Green
function is defined as

E(x) (8) (3)

This distribution does not incorporate correlations be-
tween the grains that would exist at high-volume frac-
tions. The orientation of these grains is accounted for by
averaging over a distribution of angles 0. Various cases
will be discussed in Sec. III.

We restrict our discussion of the effective-medium
theory to the quasistatic case, when d/A, «1; d is a
characteristic size of the grain and A, is the wavelength of
light in that grain. In this limit, the electromagnetic field
equations can be approximated by the static equations

V e(x) E=O,

VXE=O.
(4)

From the latter equation, we use the scalar potential to
solve for the electric field inside the medium and Eqs. (4)
are reduced to

V.e.V)=0 . (5)

We introduce the dielectric tensor ~e which depends on
the electric field in the average medium. Since we impose
the boundary conditions of a uniform applied field, con-
sistent with the quasistatic limit, ~e does not have a spa-
tial variation. The dielectric function matrix is now

e(x) =~e+5e(x),

and Eq. (5) becomes

V ~e V)+V 5e(x}.V)=0 . (7)

The Green function for the background medium satisfies
the equation

V ~e Vg = —5(x—xo) .

The solution of Eq. (8) for an infinite medium is

Ep is the field at the boundary of the volume.
Equation (11) is reexpressed by defining a susceptibility

tensor y(x'):

E=ED+ f d x'G(x, x') y(x') Eo;
U

then we find the following:

y(x)=5e(x). I+ f d x'G(x, x') y(x')
U

(13)

(14)

where I is the identity matrix.
In the effective-medium theory, the random medium is

replaced by a homogeneous, averaged medium, except for
a small volume U„which has a distribution of dielectric
functions according to Eq. (3). The volume v, has an el-
lipsoidal shape; outside the ellipsoid, the medium has the
background dielectric tensor ~e. According to this ap-
proximation, the integral in Eq. (14) has the form

d x'G(x, x') (y(x'))d x'6 x, x' yx' =
U e

+ f d x'G(x, x').y(x') .
e

(15)

where the depolarization tensor I can be calculated after
integrating by parts

rq=fs( )dS' e, g(x, x') .
xj

(17)

e; is the unit vector along the ith axis. y(x) is equivalent
to the T matrix; the average displacement field is

For ellipsoids, the field inside is uniform and y(x ) will be
independent of position. The field inside the medium is
not equal to the applied field Eo, nor is it parallel to the
applied field. The expression to evaluate (y(x)) is de-
duced using Eqs. (14}and (15). The result is

(q(x)) =([I—5e(x).r]-' 5e(x) [I—r (L(x))])

g (x, xo) =

&xp

1

4ir+det(~e )

(x —xo} (y —yo) (z —zo)x + +
Gyp &zp

(D) =e &E&+(5e.E); (18)

(y).E,= &y&(I+ & G.y&) (19)

by the definition of y, the last term is (y) Eo. This can
be written using Eq. (18) as

(9)

where E'
p i =x, y, and z are the principal values of the

dielectric tensor ~e. The formal solution of Eq. (7) is

P(x)=go(x) —f d'x'g(x, x')V' 5e(x') V'P(x') . (10)

Here $0(x) is the solution of Laplace's equation with the

(D&=[~e+&y& (I+&G ~)) '] &E) .

The effective dielectric tensor for the medium is

(20)

e=e +(y).(I+(G.y)) (21)

The relation between the average electric field and the
average displacement field is
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A self-consistency condition is imposed on Eq. (21),
namely,

(22)

and

(26)

This is interpreted as the requirement that averaging over
the embedded volume element will result in an effective
homogeneous medium with dielectric function e =

~e

where no scattering occurs. The task of finding e is now
reduced to calculating Eq. (22). This is done for several
cases in Sec. III and spherical particles in Sec. IV.

III. RESULTS

The factors I „and I „are given by Eqs. (A7) and (A8)
with e=e, .

All the dielectric constants may be field dependent.
For instance, if we choose Kerr media in Eqs. (1) and (2),
b,e =y' 'IE

I be& =yz 'IEz
I

and b.ez =yP'IEz
I

the
effective medium is not merely a Kerr medium. In the
limit where f is small, Ez ——Eo and

In this section we treat two situations that exemplify
the novel features of applying effective-medium theory to
nonlinear media. The main difficulty in the application of
the theory is that the functional form of e is unknown,
but it can be determined in special cases when the parti-
cles are oriented. In these cases, the polarization of the
field with respect to the particle axes is important and
can result in qualitative as well as quantitative differences
in the results.

A. Oriented spheroids

We choose spheroidal-shaped particles for conveni-
ence. In Appendix A, the Green function and depolari-
zation tensor are calculated for spheroidal-shaped parti-
cles.

When the particles have their axes parallel to one
another, the effective medium will be anisotropic. Of
course, for small concentrations this anisotropy is small
and proportional to the volume fraction. Nevertheless,
even a small anisotropy can have a measurable effect on
the polarization of the electromagnetic field.

Orienting the particles has another important conse-
quence for our development of the effective-medium
theory. The dielectric functions in Eqs. (1) and (2) would
all experience the same local-field amplitudes. The local
field inside the metal particles is

(e„so.+e,so, )

1+r.„(e +y"'IE I' —
&

—yp'IE I')

e,EO,
2I+r„(e,+y IE I

—eg —
Xg IEgl )

Equation (27) can have multiple solutions for IE I
with

IEz I
held constant. This leads to a bistable behavior that

is controlled by the surface-plasmon resonances in the
denominators of Eq. (27). This has been analyzed in de-
tail for spheres in a previous publication. ' The sharpest
resonances occur when the applied field is lined up along
one of the principal axes of the ellipsoid.

B. Randomly oriented spheroids

The averaging of Eq. (Bl) over random orientations re-
sults in an effective-medium dielectric function that is iso-
tropic, but an essential complication arises in the non-
linear media because the local fields in Eq. (23) change for
different orientations of the ellipsoid. This effect must be
included in the averages.

We cannot obtain a simple closed-form expression for e
as we did in Eq. (26); however, we can expand the
effective-medium dielectric function in powers of applied
field

~m =r .Eo (23)

where y is a diagonal matrix when the principal axes of
the spheroid are used and

&=~L+x'"IEol'+o(IE, I') . (28)

y =[I+I (e —e)]

In an anisotropic medium I has the scaling discussed in
Appendix A. Similar results hold when the particle em-
bedded in the effective medium is the dielectric host, the
evaluation of Ez requires the replacement of e with e&.

The self-consistency condition derived in Appendix 8
can be evaluated for small concentrations by expanding
in the concentration

The linear coefficient FL and the effective nonlinear
Kerr coefficient y ' ' are solved by using the self-
consistency condition in Eq. (Bl) in Appendix B. The
coordinates for I are expressed in axes that are fixed to
the spheroid. The average over all orientations is carried
out by projecting the tensor onto space-Axed axes along
the direction of the applied field eoEo/IEoI. The linear
contribution to the dielectric function has the expression

—Ep, +fb' E

E —Eg +fbi
The corrections are

(e —e„)
1+(e —e )I „"„

(25)

For the nonlinear contribution the expression

(29)
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—(3) ~ mLfe +
(1 —r,.e, +r,„e,)'

(1 f—)&),L +,'[r„. r„]
(1 —I „„Fl.+r,„e(,L )

2am &L=x'." ( —,', Iy- I'+ —,', iy.-.I')
' +( —' Iy,-, I'+ —' y,.I')

[(1—r„„)r,+r„~,]' " " " "
[(1—r„)r,+r„~,]'

+X'),"(I f—)Ly r",e i (30)

The matrix y is given in Eq. (24) using e I and eL only
and y" is formed by again replacing e L with ehL.

In the small concentration limit, for g& '=0 and spheri-
cal particles, we recover the results of previous research-
ers. ' '' The case where y' '=0 and yh '%0 has no
significant enhancement of the effective nonlinearity at
small concentrations.

IV. SPHERICAL PARTICLES

r=r, +y(3)lz, l2+j (')lz, I4+ . .

From Eqs. (32) and (33) we find

x"=f(y )'x"
(5)— g (3)

XL &XL

and, in general,

(2n+))
( )n

—i (3)
XL

(38)

(39)

The connection of our results to previous work can be
made by examining spherical particles in the low-
concentration limit f «1. In this case, the expressions
in Eqs. (25) and (26) become identical: e„=F, and
Ae, =Ae, . The depolarization tensor components are

Ih Ih 1
xx zz 3 h

(31)

To make the connection with Agarwal and Dutta Gupta
we assume that the metal particles form a Kerr medium

m FmL ++m uL
(3)

is here

m~(3)

3Eh
(40)

y' '=fy' 'Iy
I (y )

i"'=—(a+a')ly I'xL"+Iy I'xL'

and

From Eq. (37) we express ul as a power series in IEoI;
we substitute the power series into Eq. (34) and identify
the first three coefficients in Eq. (38) as

where we define the symbol with the amplitude of the lo-
cal field in the metal uL =IE

I
. The dielectric function

in Eq. (26) is

'= Iy I [(2a +2a" +3aa*)yl '

2( + e )~(5)+~(7)] (41)

3~) (&m =y (~ ~~) .
2~h + (33)

E=FL+yL uL+yL u + ' (34)

We would like to express e as a power series in the ap-
plied field. Using Eq. (23),

Eo=
r

we define the linear enhancement factor

3&h
~L

2&h +EmL

then the applied field is related to the local field by

E (3)
L

)
VL+m

m 3 L

(35)

(36)

(37)

Equation (34) is expressed as a series in
I Eo I

The last equality defines the enhancement factor for
spherical grains y

the dielectric function can be expanded as a power
series in the parameter uL

The first two coefFicients are identical to those given by
Agarwal and Dutta Gupta. The last one was not pro-
vided in their paper. Moreover, by continuing this pro-
cedure additional coefFicients are derived in a straightfor-
ward fashion.

V. CONCLUSIONS

The effective-medium theory for ellipsoidal particles
embedded in a host dielectric allows for a nonlinear
response of the ellipsoidal shapes and incorporates new
features that are not available when spherical particles
are used.

First, the magnitude of the local field in the particles is
affected by the shape of the particles through the depolar-
ization tensor. The use of metallic ellipsoidal particles
can exhibit this property in a particularly dramatic
fashion. Ellipsoidal particles have several surface-
plasmon resonances determined by the ratio of major and
minor axes. Near one of these surface-plasmon reso-
nances, the enhancement can be several orders of magni-
tude, the maximum enhancement depending inversely on
the imaginary part of the metal's complex dielectric con-
stant. By designing the particle shape, the surface-
plasmon resonance can be chosen to be at a frequency
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where this imaginary contribution is minimized.
Second, there is an effective birefringence in the medi-

um when the ellipsoidal particles are oriented. Unpolar-
ized light propagating through this medium will be polar-
ized by the different absorption characteristics of the or-
thogonal polarizations.

The effective-medium theory, yielding significantly
enhanced optical nonlinearities, is especially important
for four-wave-mixing experiments, which are proportion-
al to y' ' squared. As Eq. (30} reveals, the surface-
plasmon resonances are raised to the fourth power. For
this reason, the frequency response of the conjugate
signed in these experiments is a much more sensitive
probe of the particle shape than say the determination of
the linear absorption. The surface-plasmon resonances
will be accentuated in the conjugate signal to the eighth
power. "

At high concentrations, there are several new problems
which need to be addressed. The particles will be close
enough that dipole-dipole interactions need to be includ-
ed. The fields outside the ellipsoidal particles are concen-
trated at the tips and can lead to enhancement of the host
medium nonlinearity. Furthermore, the positions of the
particles will be correlated at high concentrations and
this effect has not been accounted for in the present for-
mulation.
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T T+

and

P = tan '(x /y) . (A2)

The Cartesian coordinates are

x =—[(g —1}(1—g )]'~ cosP,
2

y = —[(g —1)(1—g )]'~ sing,
2

(A3)

1
g(x, x

4~~I x —x'I

(2n+1) g 5 i
2mae „0 o (n+m)!

'2

Xcos[m (P —P')]P„(g')

XP„(g)P„(g()P„(g)),
where

az= —gv].
2

The solutions of Laplace's equation for the coordinates g
are the associate Legendre polynomials P„(g) with

~g~ (1. The solutions for P are the trigonometric func-
tions cosmic and sinmP. The range of values for g is

g~
~ 1; the solutions of the separated differential equation

are P„(g) and Q„(g), where Q„(g) are the associated
Legendre functions of the second kind. In these coordi-
nates the Green function is

APPENDIX A: SPHEROIDAL
DEPOLARIZATION TENSOR g ( =min(g', g), g) =max(g', g) . (A4)

The depolarization tensor in Eq. (16) is defined by the
volume integral

I; = f d x'e;.G e (Al)
'e

The divergence theorem can be used to express this quan-
tity as the surface integral given in Eq. (17). We will use
the latter result to calculate the components of I . First,
we calculate them for a prolate spheroid in an isotropic
medium and then we generalize the results to anisotropic
media. The results for oblate spheroids are reported for
completeness without derivation.

I „= f dS' e„g(x,x') . (A5)

The surface of the ellipsoid is defined by a value g' and g„
the surface element is dS'=h„h&dry'dP'e&, where h„and
h& are the coordinates' scale factors. The integral in Eq.
(A5) is

r,„= —' f ' dg' f d$'g, (g, —1)' (1—g )'"

5 is called Neumann's factor: 50=1; otherwise, 6 =2.
For the & =x, j =x component of the depolarization

tensor, we have

1. Isotropic media
Xcosg'g(x, x') (A6)

For an isotropic medium, the Green function is given
by Eq. (9) with e„=e =e, =e. This Green function
needs to be expressed in prolate-spheroidal coordinates.
We choose the foci of the ellipses at (0,0+a/2); the dis-
tance of the foci from the point (x,y, z) is

r+ =[x +y +(z+a/2) ]'~

With these definitions the prolate-spheroidal coordinates
are'

2E'

(i+1——ln
2 g, —1

L

(A7a)

By symmetry I = I „„and Eq. (8) lead to the identity

The integration over P' gives only the m =1 term from
the sum in Eq. (A4). Similarly, the integral over g' van-
ishes, except for the term n =1. The integral is a linear
function of x and I is a constant with the value
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1 (g, —1) 1 g&+1
I „=——21 „= —g, ln

e " e 2 g, —1

(A7b)

where the tilde denotes the scaled result.

APPENDIX B: EXPRESSIONS
FOR THE SELF-CONSISTENCY CONDITION

A cos(r)
2e(1 —r ) (1—r )'

(ASa)

and

g, is related to the ratio of minor axis to major axis r by
g=(1 —r )

For the oblate spheroids a similar calculation gives'
In an anisotropic effective medium with dielectric func-

tions e„and e„ the results of Eq. (22) are evaluated from
Eq. (16). We assume the host and microparticle media to
be isotropic with volume fractions (1 f) a—nd f, respec-
tively.

The self-consistency condition matrix form is

1

e(1 —r )
1—,A cos(r)

(1 r—)' (ASb)
(f[I+I (e —e)] '(e e—)

where r is the ratio of minor to major axes.

2. Anisotropic media

det(e)
& 7 (A9)

For anisotropic media, we need only scale the coordi-
nates to obtain the result. Let e =e, and scale the coor-

dinates x =x/+e„, y =y/+@~, and z=z/Qe, . The
Green function in Eq. (9) is identical of Eq. (A4) with
e=e„Qe, . the solution of the problem in the scaled
coordinates proceeds exactly as we have outlined above
with the results given in Eqs. (A7)—(A9). However, the
ratio of major to minor axes is r = rate, /e, for oblate el-

lipsoids and r =rQe, /e„ for oblate ellipsoids. To obtain
the unscaled depolarization tensor components from the
scaled ones, use the identity

f(E —e, )

1+(e —F, )I „ (B2)

These equations must be simultaneously solved since I,„
and I „,see Appendix A, contain nonlinear combinations
of e and e, .

where the outside average is over the orientations of the
spheroid with respect to the applied field. The dielectric
functions e and e& depend on the orientation of the par-
ticle through their dependence on the internal local field.

When the particles are oriented parallel to one another,
the orientational average in Eq. (B1) gives the equations

f (Em ~x) (1 f)(e'h

1+(e —e„)1,„1+(e—F„)I„„
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