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A complex effective Hamiltonian (CEH) approach is formulated in the semiclassical (quantum-
molecule —classical-field) representation for the study of ir multiphoton-dissociation processes. This
formulation enables one to evaluate the dissociation dynamics in terms of tb~ discrete states only.
The effects of the bound —continuum-state interactions are manifested in the CEH matrix by the ad-
dition of level shifts and imaginary decay widths to the unperturbed bound-state energies and
bound-bound dipole-coupling elements. The periodicity of the CEH matrix in time is preserved, al-

lowing the use of Floquet theory to exactly evaluate the time development of the system. This CEH
formulation requires that transitions between continuum states can be safely ignored, that the
bound-continuum dipole couplings vary slowly with the continuum state energy c, and that time t is
sufficiently long. High field intensities also tend to make these requirements more stringent. It is
found that the CEH matrix in the semiclassical representation can be asymmetric with respect to
the level shifts and decay widths. For the ir multiphoton dissociation of a nonrotating model dia-
tomic molecule in the ground electronic state, a rather truncated form of the CEH is tested against
a discretized continuum plus optical potential method. Despite the high field intensity and relative-

ly short laser pulse used in these tests, the results indicate that this CEH method works well provid-
ed the bound-continuum dipole-coupling elements vary slowly with c. As can be expected, the va-

lidity of the CEH is limited when the bound-continuum dipole couplings vary strongly with c,
which is the case with our model diatomic molecule. The nature of the bound-continuum interac-
tions can apparently have considerable effect on the dissociation dynamics.

I. INTRODUCTION

Multiphoton-excitation (MPE) and dissociation-
ionization (MPD-MPI) processes in atoms and molecules
continue to generate considerable interest. ' In any
theoretical analysis of these phenomena, one is quickly
confronted by the problem of how best to account for the
field-induced transitions between the unperturbed atomic
or molecular states of the discrete (bound) spectrum and
those of the continuous (dissociative) spectrum. The in-
teraction of discrete states with one or more continua has
been a topic of general interest' ' for some time, and is
discussed in numerous texts (see, e.g. , Refs. 19—21).
Methods that use complex, non-Hermitian effective Ham-
iltonians (CEH) to study such interactions include the
Green's or resolvent-operator formulations and various
perturbative treatments. ' In the CEH method, due
to the field-induced interactions between the unperturbed
bound states and the continuum, some of the bound-state
energies and bound-bound coupling terms of the interac-
tion Hamiltonian will be shifted and acquire imaginary
"widths. " Those bound states whose energies acquire
imaginary widths are commonly known as the "metasta-
ble" states of the system. Since the CEH is non-
Hermitian, an irreversible loss of probability within the
discrete spectrum occurs over time, simulating decay into
the continuum.

Although the CEH approach involves some approxi-
mations, it does permit one to evaluate the dissociation
dynamics in terms of only the bound-state probability
amplitudes. Alternative approaches include the various

L discretized continuum schemes such as dilatation
transformations, ' ' R matrix, ' and the discretized
continuum plus optical potential method. Although
these methods are, in principle, accurate, they can be ren-
dered impractical by the huge number of discrete pseu-
docontinuum states that may be required. The various
finite-difference methods ' are also possible alterna-
tives, and can be used to evaluate fragment momentum
distribution, etc. However, these calculations become
prohibitive for longer times and for molecules much
larger than diatomics. Hence, a better understanding of
the CEH approach may be useful.

In this work, we will use the CEH approach to study
the collisionless infrared (ir) MPD of a model, nonrotat-
ing, diatomic molecule in the ground electronic state.
The CEH approach used here will be formulated in the
semiclassical (quantum-molecule —classical-field) repre-
sentation. This system will enable us to directly compare
our CEH results with the BOXSW (discretized continu-
um plus optical potential) method of Leforestier and
Wyatt. The model diatomic molecule is based on a
modified Stine-Noid hydrogen fiuoride (HF) molecu-
lar potential V(r) and dipole function p(r), which are de-
scribed in Table I. The relative energies of the N =6
bound states y„(r) (n =0, 1, . . . , 5) for this molecule are
shown in Table II. This model should be of some general
interest, since the dipole functions ' and infrared
MPE-MPD dynamics of the HF molecule have been
studied extensively in the past. ' ' ' ' Over a time
interval of ten field periods, at a field frequency and inten-
sity of 2880 cm ' and 10' W/cm, respectively, Lefores-
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TABLE I. Description of the diatomic molecule and the Saxon-Wood potential.

p(r) = Ar [exp( gr—)]
B. Dipole

A. Molecular

=( —$ /2~)d /dp + y'( p. )

V(r) =D
I exp[ —a(r —r, ) ]—1 ] D—

Hamiltonian

m =1731.7 a.u.
D =6.16624X10 ' aeu
0.=2.25173 a.u.
r, =1.75 a.u.
4=1 aeu, atu

function

A =0.4541 a.u.
)=0.02665 a.u.

C. Saxon-Wood

W(r)= —iVOI )+exp[(r —r)iy])
potential

V0=0.02 aeu
y=0. 35 a.u.
r*=7.0 a.u.

tier and Wyatt obtained excellent agreement when they
compared BOXSW dissociation probabilities for this sys-
tern with those from a finite-difference calculation. We
will derive our CEH quantum equations of motion in Sec.
II. In doing so, particular attention will be given to the
validity of the approximations made, and their effects on
the MPD dynamics. Our Anal CEH matrix will be
periodic in time, and curiously enough, asyrnrnetric with
respect to the shifts and widths resulting from the
bound-continuum interactions. We will discuss the ori-
gin of this seemingly anomalous result later in some de-
tail. In Sec. III, we will perform some numerical calcula-
tions comparing the CEH and BOXSW methods.

Aside from enabling us to compare the CEH and
BOXSW methods, the semiclassica1 representation was
also chosen for the following reasons. In this representa-
tion the field can be treated as a time-dependent driving
term in the total Hamiltonian H (r, t), which allows one
to expand the time-dependent wave function %(r, t) in
terms of the molecular eigenstates only, rather than a
combined molecule-field basis such as in the ful1 quantum
representation. Also, by representing the field as a mono-
chromatic, linearly polarized laser of constant electric
field amplitude E and frequency co, such that H(r, t) is
periodic [i.e., H(r, t)=H(r, t +r) where r=2n/cg], we
can use Floquet theory (see, e.g. , Refs. 5, 34—36, 43 —47,
and 56 —66) to calculate exact long-time solutions for
0'(r, t) without resorting to the rotating-wave approxima-
tion. ' The Floquet theory exploits the periodicity of
H(r, t), so that one can use the time propagator U(t),
evaluated over the first full (or half) period of the field,
to obtain 4'(r, t) at long time.

TABLE II. Continuum threshold energy and relatiue ener-
gies of the bound molecular states.

p]d= 11 528 cm
c.,= 11 213 cm
c.4=10256 cm
c.3=8655 cm
c.2=6413 cm
c& =3528 cm
EO=O cm

As we will be comparing the CEH and BOXSW
methods for our model diatomic molecule, a brief
description of the BOXSW method is in order. In
this method, an infinite potential barrier is erected at a
sufficiently large internuclear distance r ', where V (r) is
effectively zero, so that the bound molecular states, and a
suSciently dense set of discretized pseudocontinuum
states, can be expanded in terms of a convenient L basis
such as sine functions. This pseudocontinuum is not tru-
ly dissipative, since any probability in these states will
eventually be reflected by the infinite barrier at r', pro-
ducing incorrect and artificial feedback with the bound
states. To prevent this artificial feedback, a complex
Saxon-Wood optical potential W(r), ' ' described
in Table I, is introduced near r* to smoothly damp the
pseudocontinuum probabilities at the barrier. The
BOXSW parameters Vo, y, and the barrier location r*
are chosen so that when the complete unperturbed molec-
ular Hamiltonian H (r) plus the optical potential W(r)
are diagonalized in the L basis, the unperturbed bound
molecular eigenstates and eigenvalues will be only negli-
gibly affected by W(r), but the eigenvalues of the pseu-
docontinuurn states will acquire a negative, imaginary
"width" to ensure smooth damping of their probabilities
at the barrier. Once a converged calculation for the
BOXSW is achieved, it has been found that the tran-
sition and dissociation probabilities are not overly sensi-
tive to reasonable variations in the optical potential pa-
rameters, provided r* is large enough to ensure that
W(r) will not significantly affect the bound molecular
states In some. sense, within the interval (r =0, r =r*) at
energy c, a pseudocontinuum state mimics a true continu-
um state y(e, r), for which y(e, r")=0. Although the
energies of the metastable molecular states in CEH
methods also have a negative imaginary width, the physi-
cal origin of these widths is different. In the BOXSW,
the bound-state energies have only negligibly small
widths due to the complex potential W ( r ), which can be
ignored. Dissocation occurs via transitions from the
bound states into the pseudocontinuum states, whose
probabilities are then smoothly damped via W(r). In the
CEH formulation, the energies of some bound states ac-
quire non-negligible imaginary widths as a result of field-
induced interactions with the dissociative continuum.
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II. THE "EFFECTIVE"QUANTUM EQUATIONS
OF MOTION

The following derivation is similar in spirit to the ap-
proach of Cohen-Tannoudji, Diu, and Laloe, ' who treat
the decay of a single discrete state into the continuum by
means of a time-independent perturbation. The system
considered here consists of a non rotating, quantum
Morse oscillator, whose bound states are coupled to each
other and the dissociative continuum via a classical,
monochromatic, linearly polarized laser. The total Ham-
iltonian H(r, t) is

and

H ln & =E„ln &, where E„(0
H ls&=ElE&, where e)0
(min&=6 „,
(E'lE & =5(s' —s),
(Eln &=0,

(2a)

(2b)

(2c)

(2d)

(2e)

g ln&&nl+ f «IE&(el=1 .
n=0 0

In the interaction picture, the time-dependent wave func-
tion is expressed as

n =5
'I' ( r, t ) = g b„(t )e "

l
n &

n=0

with

+ debate ' c
0

(3)

n=5

g lb„(t)l'+ f dE lb(E, t)l'=1,
n=0 0

where c„=%co„and c=kco, . The probability of occupy-
ing the bound state

l
n & at time t is lb„(t) l, and the prob-

ability of occupying a continuum state le & at time t in the
energy interval (s, s+ d E ) is given by lb (s, t) l d E. Substi-
tuting Eq. (3) into the time-dependent Schrodinger equa-

I Cd

tion, and projecting onto the stationary states e "
l
n &,

etc. , yields the following infinite set of coupled, first-order
differential equations:

m =5
ifib„(t) = —g b (t) V„cos(cot)e

m=0

dE b(s, t ) V„,cos(cot )e
0

H(r, t)=H (r) Ep(—r)cosset .

We will denote the bound states y„(r) as ln &, and the
continuum states y(E, r) as ls&, The molecular states
satisfy the following relations:

m=5
I Cd

ifib(E, t)= —g b (t)V, cos(cot)e
m=0

dE'b(E', t)V„cos(cot)e ", (6)
0

where V, =E ( alp(r)lm & and co, =co,—co, etc.
Our first approximation consists of neglecting terms in

Eqs. (6) that contain the elements V„which couple the
continuum states ls'& and lE&. Since p(r) decreases rap-
idly for r )r„we will assume that the dissociating mole-
cule separates too quickly, relative to the photon absorp-
tion rate, for transitions between continuum states to be
of much importance. The validity of this approximation
will depend of course on the field strength and the dis-
tance over which p(r) can effectively couple any given
pair of continuum states. The BOXSW (Ref. 34) was
used to test this approximation at co=2880 cm ' by
"turning off" the coupling elements between the pseu-
docontinuum states. The resulting dissociation probabili-
ties from the uppermost (n =5) bound state were then
compared, for intensities I of 10' and 10' W/cm, with
the exact probabilities in which the full values of all cou-
pling elements were retained. Floquet theory was used to
evaluate the time development of the system. The time
propagator matrix U(t) (see Refs. 34—36, 43—46, and 61)
was obtained over the first field period ~ by means of a
Bulirsch-Stoer numerical integrator using 64 time steps.
The dissociation probabilities at I= 10' W/cm were ap-
preciably affected (-20—30%) by the couplings between
pseudocontinuum states, whereas those at I= 10'
W/cm were not. It would thus seem reasonable to infer
that continuum-continuum transitions in this case can be
safely neglected, except perhaps at the very highest laser
intensities (at a field intensity of 10' W/cm a real dia-
tomic molecule would probably undergo dielectric break-
down or a change in dipole, etc. ).

For reasonable field strengths, we will approximate
Eqs. (6) as

m=5
ifib(E, t)=——g b (t)V, cos(cot)e

m=0

The formal solution for Eqs. (7), in which b (c, t =0)=0, .
is written as

m =5
b(E, t ) =——(1/ik) g f dt'b (t') V,

m-—0

I Cd t
X cos( cot

' )e

Substituting Eqs. (8) into Eqs. (5) allows the infinite set of
coupled differential equations to be reduced to the follow-
ing finite (i.e., Ã)-dimensional set of integro-differential
equations:

m =5
t Cdifib„(t)= —g b (t) V„cos(cot)e—

m=0

+(1/i%) g f dE f dt'b (t')V„,V, e ' e ™cos(cot')e "cos(co ) .
0 0 0
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At this point orie might wonder under what cir-
cumstances, if any, can Eqs. (9) be simplified by replacing
the probability amplitudes b (t') with b (t). In other
words, when does the system have a sufticiently short
memory such that the only values of t' we need to worry
about are those for which b (t')-b (t)'? By integrating
Eqs. (9) over E first, we can try to determine when the
contributions of the resulting integrand in t' will diminish
rapidly, except for those values of t' where b (t')-b (t).

The integral over E in Eqs. (9) will be approximated
with a sum of integrals, by assuming that the quantities
V, , etc. , are e6'ectively constant over a series of energy
intervals [si,si+b, si], where hei can be adjusted in or-
der to maintain some arbitrary degree of accuracy. The
size of each interval obviously depends on the behavior of
the bound-continuum couplings in the vicinity of c. . By
considering only a single term in the summation over
bound states

~
m ) (remembering that s = fico„

Ei+ &

=Ei + b, E&. , and si o=0), we have the relation

f ds V„,V, e' ''

2.5

2.0—

U

o4
I

C)

1.0—
L
0)

0.5—
0
E

0.0—

—0.5
0

1

4
I

8 12

(t—t ) (10' a.t.u)

I

16 20

oo c.+Ac, .

V V
J ~d ic(t' —t)/A

nc. . c.m (10)
FIG.1. The memory kernel g, (t' —t) vs (t —t') for bc., =1000

cm '
( ———) and 10000cm '

( ).

Evaluating the integral on the right-hand side (RHS) of
Eq. (10) yields

dc, V„,V, e
0

—= g V„, V, [ —iA'/(t' —t)]
j=0

i(e.+he. )(t' —t)IA ic.(t' —t)fAX(e i i —e ' )

After rewriting the exponentials on the RHS of Eq. (11)
we have

f ds V„,V, e' ''
0

-=g V„, V, [2A'/(t' —t)]
j=0

I

X {sin[6, E, ( t' —t) /2A']1e (12)

where e.=(2Ei+EEi )/2ft. We will identify the quantity
Isin[EE. (t' t)/2fi]—1/(t' —t) on the RHS of Eq. (12) as
the memory kernel gi (t' t) Ex—amp. le. s of the memory
kernel are shown in Fig. 1 for two values of Ac . Substi-
tuting Eq. (12) into Eqs. (9) and collecting terms yields

m=5
ifib„(t)—= —g b (t)V„cos(cot)e

m=0
m =5 oo

+(2/i) g g V„, V, e "cos(cot)f dt'b (t')g (t' t)e ' —e cos(cot') .
m =0 j=0 J J 0

(13)

If the bound-continuum couplings vary slowly with c,
we can select larger intervals Ac. and still retain some
given degree of accuracy. As the quantity (Aci/2fi) be-
comes very large relative to (t' —t) we can apply the
well-known result

lim (sinLx)/ x=@5(x)
L~ oo

to the memory kernel g (t' —t), such that

(14)

(15)lim g, (t' —t) =rt5(t' t) . —
Qg. ~ oo

J

Therefore, as the bound-continuum couplings vary more
slowly with c., the system's "memory" of previous events
in the integral over t' shortens, such that only those times
t' immediately prior to t are important. However, full

convergence of g (t' —t) to vr5(t' —t) is not physically
reasonable, nor is it necessary. If the contributions to the
integral over t' in Eqs. (9) and (13) are negligible, except
for those values of t' which satisfy the condition
b (t')-b (t), then b (t') can be approximately re-
placed with b (t) and factored out of the integral over t'
Since the global maximum in g ( t ' —t), is at t ' = t, and the
first point where g (t' —t) is zero occurs at
1(t' —t)1=2vrfi/bE. , the interval [t'=2rcft/bs, t'=t]
contains the region in which g (t' —t) is most strongly
peaked, and g (t' —t) diminishes rapidly for
~(t' —t)1))2irA'/b, s, . Therefore, in order that gi(t' t)—
behave as a 5 function relative to b (t'), it is necessary
that the condition b (t') —b (t) holds over an interval
[t', t'=t] much larger than the quantity 2vrfi/bsi. This
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"5-function" behavior of the memory kernel relative to
b (t') rests on the combination of two factors, the energy
dependence of the bound-continuum couplings and the
rate of change in the amplitudes b (t'), which in turn de-
pends on the field strength. As the intensity I increases,
the probability amplitudes oscillate more rapidly in time,

and the bound-continuum couplings must vary more
slowly with c in order that the memory kernel behave as
a 6 function relative to the probability amplitudes.

By approximately replacing b (t') with b (t) in Eqs.
(9) we have

m =5 m =5
t'&b„(t)—= —g b~(t)V„icos(an't)e " +(I/2iA') g f dc V„, V, b (t)cos(cot)e " f dt'e ' e

m=0 m=0 0

m=5
+(I/2ih') g f dc V„,V, b (t)cos(a~t)e " f dt'e ' e

m=0 0

r(co +a)))t
Multiplying the integrands in t' by the appropriate factors e and their respective complex conjugates, and
defining r' = ( t —t '

), Eqs. (16) become

m=5 =5
ikb„(t)=——g b (t)V„cos(cot)e " +(I/2iR) g f dc V„,V, b (t)cos(cot)e " e' 'f dr'e

m=0 m=0 0

m =5
+(1/2ih') g f dc V„,V, b (t)cos(cot)e " e ' 'f dr'e

m=0

Evaluating the integrals over ~' yields

f +Adr'e =Pi[6 (c, +irido) —iD (c, +fico)],
0

where

(17)

(18)

D (c., +Au) =
I 1 —cos[(c—c +fico)t /iii] I l(c —c, +fico),

6 (c, +fico)= Isin[(c —c +%co)t/h]]/(c c+—fico) .

Substituting Eqs. (18) into Eqs. (17) yields

m =5
t CO

ifib„(t)=——g b (t)V„cos(cot)e "
—,
' g —b (t)cos(cot)e " e' 'f dc V„,V, D (c, +A'co)

m=0 m=0 0

(19a)

(19b)

—(i /2) g b (t)cos(cot)e " e' 'f dc V„,V, 6 (c, +fico)
m=0 0

m =5
b (t)cos(cot )e " e '"'P f dc V„,V, D (c, —Ace)

m =0 0

m =5—(i/2) g b (t)cos(cot)e " e ' 'f dc V„,V, G (c, —A'co),
m=0 0

(20)

where P indicates taking the principle value of the in-
tegral, when necessary.

It should be noted that the factors 6 (c, +inca) are of
the form [sina(x-xo)]/(x —xo), reminiscent of Eqs. (14)
and (15), where x =c., a =tlfi, and xo=c. +fico. At very
long time t, Eq. (19b) converges to 5 functions

lim G (c, +fico) =ir5(c —c +A'co) .
f —+ oo

(21)

Just what "very long time" means in this context can be
estimated by examining the behavior of the functions
6 (c., fico) in conjunction with the relation

f d(x —xo)I[sina(x —xo)]/(x —xo)] =m' . (22)

At any given time t, the functions 6 (c, +fico) will have

global maxima at c =c —iiico and c c=+fico (i.e.,
x =xo), respectively, where the "height" of this max-
imum is t/A' (i.e., a). The "base width" for the positive
portion of this "spike" and the period of oscillation for
the "wings" on either side of this "spike" is 2m'/t. As
the height t/A' becomes large and the base width 2M/t
narrows, these "spikes" in G (c, A'co) can be approxi-
mated by isosceles triangles having area ~. This is illus-
trated in Fig. 2 where 6 (c,, +iilco) is shown for times
t=0.5X10 atu (atomic time units) and 2.0X10 atu.
Therefore, as t increases these positive "spikes" in the
functions G (c, +A'co) are responsible for nearly the en-
tire net value of the integral in Eq. (22).

As defined previously we have c &0 for all ~m );
therefore the maximum in G ( c, + fico ) occurs at
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f—ico, which lies outside the limits of integration
over s in Eqs. (20). If t is long enough so that the base of
the "spike" in 6 (s, +irido) no longer extends into the re-
gion c & 0, and if the bound-continuum couplings vary
slowly with e relative to the oscillating wings of
6 (s, +%to), then the integrals in Eqs. (20) containing
6 (E, +fico) will become negligible. Since the base width
of this "spike" is 2M/t, the "spike" in G (c., +fito) will
no longer extend into the positive c. axis when

fi~+—M/t (0. Similarly, for bound states ~m ),
where c.= c. +%co+M/t & 0, the integrals in
6 (e, —A'co) will also become negligible at long t F.or
bound states ~m ), where e +A'co&0 (i.e., those bound
states ~m ) which can make energy-conserving transitions
into the continuum by absorbing a single photon of fre-
quency co), the integrals in 6 (E, fico) w—ill have non-

negligible values. For these states it can be argued that
6 (e, fico) b—ehaves as a 5 function relative to V„, and

V, when these couplings are approximately constant
over an energy interval of width Ac, centered at
e=e +irido, where b, E) &2iririlt. After evaluating V„,
and V, at c.=c. +%co and factoring them out of the in-

tegral over c., the lower limit of integration can be safely
extended to —~ as in Eq. (22). Under the appropriate
conditions we have the fo11owing results:

25

20—

15—

U

10—

5E
C3

(10 ' a.e.u)

FIG. 2. 6 (6) vs 5, where A=a, —c +%co, for t =0.5X10'
atu ( ———) and 2.0X10' atu ( ).

0 when c.=c +Aco+vrA/t &0 and t)&2M/Ac. ,

m V„,V, (E=E +fico) 0) for t)&2iriri/bs .ds V„,V, G (E, fico)- '—
0

f dE V„,V, 6 (e, +iiico)-0 when s=E Acu+irk/—t (0 and t )&2vrh/be, (23a)

(23b)

Defining m. V„,V, (e=s +fico&0) as I „(c.=E +fico&0) and using Eqs. (23), Eqs. (20) at sufficiently long time t are
written as

m=5
iA'b„(t)= —g b (t—)cos(cot)e " V„+ ,'P f d—e V„,V, [e' 'D (E, +fico)+e ' 'D (E, fico)]-

m=0

+(ie '"'/2)I „(E=E~+fico&0)

—i@,„t/R
Transforming to the Schrodinger picture where b„'(t) =e " b„(t), Eqs. (24) in matrix form are written as

i Ab '(t) =H'(r, t)b'(t),

where the elements of the CEH matrix H'(r, t) are

(25)

[H'(r, t)]„„=s„—cos(cot) V„„+—,'P f de
~ V„, ~

[e' 'D„(E, +fico)+e ' 'D„(e, —iiico)]
0

+(ie ' '/2)I „„(e=s„+fico&0) (26a)

[H'(r t)]„&„= cos(cot) V„—+ —,'P f dr. V„,V, [e'"'D (E +&~)+e ' 'D (& &~)]
0

+(ie '"'/2)I „(s= E +A'co & 0) (26b)

[H'(r, t)] „~ = cos(cut) V „+,'—p f de V—,V,„[e' 'D„(e, +irido)+e ' 'D„(e, —A'co)]
0

+(ie ' '/2)I „(s=E„+fico)0) (26c)
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The terms in Eqs. (26) can be easily identified as fol-
lows. On the diagonal, the term V„„ is just the first-order
perturbative correction to c„. The integral over c. con-
taining the factors D„(e, fico) in (26a) is the leue1 shift,
induced in c.„ to second order by the interactions between
the bound state ~n ) and the continuum states ~s). The
complex term containing I „„(e=e„+A'co& 0) is the decay
uridth of the "metastable" discrete state ~n ). The meta-
stable states in this formulation are those bound states
which are energetically within one photon of the dissocia-
tive continuum. The off-diagonal level shifts and widths
in Eqs. (26b) and (26c) are due to interactions between
bound states

~
n ) and

~
m ) by means of their mutual cou-

pling with the continuum. ' These off-diagonal shifts
and widths are well known, ' and may lead to vari-
ous interference effects. ' ' In Sec. III, we will briefly
examine how these off-diagonal widths affect the time-
dependent dissocation profiles.

Although the CEH matrix H'(r, t) has the proper
periodicity in order to apply the Floquet theory, it is also
obvious from Eqs. (24) and (26) that H'(r, t) will, unless
c„=c. for all n and m, be asymmetric with respect to the
level shifts and uridths For the . off-diagonal level shifts,
this asymmetry is due to the differences between
D„(e,+fico) and D (e, +fico). Note that the off-diagonal
decay widths I „(e= a„+fico & 0) and 1 „(e= a
+A'co& 0) are nonzero at long time only for those states
~n ) and ~m ) where s„+irido&0 and e +iiico&0. If we
have e +fico&0 but s„+Ace(0, then I „(e=s„+A'co
&0) will be zero, whereas I „(s=e +A'co&0) will not,
which leads to an obvious asymmetry in H'(r, t) Even .in
the case where

~
n ) and ~m ) are both energetically within

one photon of the continuum, there remains the possibili-
ty that V„, and V, will vary strongly enough at the en-
ergies c=c+fico and c =c +Ace, such that
I „(e=c.„+fico&0)AI"„(s=e +%co&0). This condi-
tion may also signal a breakdown in other approxima-
tions, such as replacing b (i') by b (t) in Eqs. (9). The
asymmetry in H'(r, t) should not prove detrimental in
performing stable numerical calculations, provided the
off-diagonal level shifts and widths are not too large rela-
tive to their bound-bound counterparts V„. The asym-
metry in H'(r, t) may be aggravated somewhat at higher
laser intensities I, since the level shifts and widths (as well
as I) are all proportional to the square of the electric field
amplitude E, whereas the bound-bound couplings V„
(a.k.a. "Rabi frequencies") vary linearly with E . This
should not be much of a problem, except perhaps at laser
intensities where other approximations may have already
failed.

The asymmetry in H'(r, t) stems from using the semi-
classical representation. In this representation, the field
appears only as a time-dependent driving term in the to-
tal Hamiltonian, and the total system energy will not be
conserved, since changes in the energy of the field are not
included with those of the molecule. In the full
quantum-molecule —quantum-field formulation where
'Il(r, t) can be expanded in a combined molecule-field
basis, one can operate within a framework whereby the
total energy of the combined molecule-field system is con-

served. One can then include directly in the CEH matrix
only those terms that correspond to resonant bound-
bound and bound-continuum transitions for which the to-
tal system energy c«,» &0 would be constant. Therefore,
all relevant bound and dissociative molecule-field states
would be degenerate, or nearly so, and embedded ener-
getically within the dissociative continuum, preventing
any asymmetry in the resulting CEH matrix.

IH. COMPARISONS BETWEEN THK BOXS%'
AND CEH METHODS

Using our model diatomic molecule and the Floquet
theory, we will now perform some calculations compar-
ing the CEH and BOXSW methods (see Refs. 34—36, and
Secs. I and II of this work). In Sec. II, it was found that
the validity of the CEH method requires that transitions
between continuum states can be safely ignored, that
bound-continuum couplings V, vary slowly with c, and
that time t be sufficiently long [see Eqs. (23)]. It was also
argued that these conditions become more stringent as
the Geld intensity increases. Since the original BOXSW
work for this system used a field intensity of 10'
W/cm, we will use this intensity as well. Such a huge
intensity should help provide a "worst-case" test of the
CEH method with respect to this particular factor. In
comparing the CEH and BOXSW methods, attention
here will be focused on how the energy dependence of the
couplings V, affects the dissociation dynamics of the
system. This will be done by comparing the BOXSW
method, in which the bound-pseudocontinuum couplings
for this system do vary strongly with energy, against the
CEH method using constant decay widths. To test the
self-consistency of the CEH formulation with constant
decay widths, the original BOXSW will be modified so
that the bound-pseudocontinuum couplings for the
n =3,4, 5 bound states are kept constant. The effects of
the off-diagonal widths in the CEH will also be briefly ex-
amined.

To determine the energy dependence of the bound-
continuum couplings for this system, the behavior of the
BOXSW bound-pseudocontinuum dipole-coupling ele-
ments p]„will be examined. As discussed in Sec. I, the
BOXSW pseudocontinuurn states mimic, within the in-
terval [r =0, r =r*], a subset of the true energy normal-
ized continuum states y(e, r) for which y(e, r )=0 (see
Ref. 5, pp. 82 —85, and Ref. 36). It must be remembered,
however, that these BOXSW pseudocontinuum states are
unit normalized within the interval [r =0, r =r*], as op-
posed to the energy normalizations [see Eq. (2d)] used for
true continuum states. Since we are only interested in the
qualitative behavior of the couplings V, , the BOXSW
bound-pseudoncontinuurn couplings will suSce. Tabu-
lated in Table III are the energies (real and iinaginary) of
the lowest 14 BOXSW pseudocontinuum states ~1), and
the relative absolute values ~p, „~/~p6„~ of the bound-
pseudocontinuum dipole-coupling elements p, „ for the
n =3,4, 5 bound states.

Given the trends in Table III, the assumption that the
couplings V, vary slowly with c, does not appear to be
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TABI.E III. The pseudocontinuum energies and relative bound-pseudocontinuum couplings.

c, (cm ')
I p„l /I p6313c 10'

I p, 41 ply, 41 X 10'
I p as I &Ip6s I

X 10

6
7
8
9

10
11
12
13
14
15
16
17
18
19

42 —i 22
273 —i 85
509—i 160
731—i474
893—i233

1317—i229
1766—i 224
2258 —i221
2796 —1218
3380—i216
4005 —i214
4677 —i212
5388—i210
6143—i208

100
88
64
12
34
15
28
42
50
52
51
47
42
37

100
98
87
16
68
42
24
11

3
6
9

10
9
9

100
106
104
20
91
63
42
25
12
4
2
4
5

5

valid for this system. Consequently, one might not ex-
pect the CEH method to work well in this case. To test
this notion, we will assume that the couplings V, are
constant with c.. The results of these CEH calculations
will then be compared with those of the BOXSW method.
The self-consistency of the CEH using constant decay
widths will also be examined using a modified version of
the BOXSW. In this modified BOXSW the bound-
pseudocontinuum couplings for the n =3,4, 5 bound
states will be held constant. For simplicity, a somewhat
truncated form of the CEH matrix will be used by
neglecting the level shifts. Some off-diagonal decay
widths I „(e=e +iiico&0) will also be neglected, since
the BOXSW bound-pseudocontinuum couplings indicate
that the couplings V„, decrease rapidly for this sytern
when n &3.

Considering the variations in the BOXSW bound-
pseudocontinuum couplings, choosing constant values for
p f 3 p i 4 and p» in the modified BOXSW is an arbitrary
process. The same applies in choosing constant values
for the CEH decay widths. The constant values of p'j3,
p, 4, and p» for the modified BOXSW will be interpolated
from the original BOXSW couplings at the energy
c, =c„+%co, where co =2880 cm '. If for no other reason,
this field frequency was chosen since the BOXSW method
was originally tested against exact finite-difference calcu-
lations at m=2880 cm '. The interpolated values of
p&4 and p» were close enough to be assigned the same
constant value (in atomic units) of —0.013—i0.002.
Since c=c.„+A'm for the n =3 bound state exceeds the
continuum threshold by only 7 cm ' at co=2880 crn
interpolating a constant value for p» was not so straight-
forward. A constant value (in atomic units) of
—0.0013—i0.0002 was well within a reasonable range of
values for p» at this energy. This value for p&3 is also
conveniently

~p
that of p, ~ and p». Changing the sign of

these couplings from negative to positive has only a negli-
gible effect on the dissociation dynamics. As can be seen
in Table III, the variations in the couplings p, „are also
rejected somewhat by variations in the imaginary parts
of the pseudocontinuum energies, particularly at lower
energy. It might be argued that if the BOXSW pseu-
docontinuum wave functions are such that the couplings

p, „are constant, then the BOXSW imaginary widths
should also be fairly constant. In any case, we will in-
clude results for the modified BOXSW using both the
original imaginary widths and using widths constrained
to values between 208 and 233 cm

Due to differences in the normalization conditions, the
modified BOXSW couplings p, „cannot be used directly
to evaluate the diagonal and off-diagonal decay widths
for the CEH. These BOXSW couplings can be used,
however, to estimate the relative magnitudes of these de-
cay widths. Since pi4 and p» are equal, with pi3 being —,',
their value, this implies I 55(E=e5+s3ico&0)=—I 44(E=e4
+%co) 0), and that I 33(E=e3+fico) 0) is about —,

' that
of I 55( e =e5+ siico )0) and r44( E =E4+ fico & 0). These rel-
ative magnitudes follow from the fact that the diagonal
widths are proportional to the square of the bound-
continuurn couplings. Similarly, one would expect
the off-diagonal widths I 45( E =E5+ fico & 0) and
I 54(E=e4+siico)0) to have about the same values as
their diagonal n =4 and 5 counterparts. The off-dia-
gonal widths r35(e E5+siico & O), r53(e E3+fico) 0),
r34(e=co4+fico&0), and 143(e=e3+fico)0) are subse-
quently expected to be about —,', the value of
145(e=e5+A'co&0) and I 54(E=E4+A'co&0). Using this
reasoning, the CEH decay widths for cu) 2873 cm ' will
be assigned the constant values of I 33(E E3+fico&0)
=1.5 cm ', I 44(e=e4+siico) 0)=I 55(e=E5+iiico &0)
=150 cm ', I (e=e +fico &O) =r„(E=e,+siico & O)
= 150 cm ', and 1 35(E 85+fico & O) = r53(e E3

+fico&0) = I 34(E = c4+siico) 0 = I 43(e = E3+siico&0)
=15 crn '. At field frequencies less than 2873 cm ' we
have s3+iiico (0; therefore the widths r33(e=e3+A'co & 0),
I 53( c, =s3+ fico & 0), and I 43( E =e3+ %co )0) are zero by
definition, and the CEH matrix becomes asymmetric.
The diagonal decay widths are estimated by monitoring
the time-dependent decay of the system at co=2880 cm
using the modified BQXSW with constant couplings p&„.
In these calculations the initial bound state

I
n )

(n = 3,4, 5) was permitted to decay freely by "turning off"
all couplings except the bound-pseudocontinuum cou-
plings p&„. These results were then compared with the
decay profile predicted by the CEH formulation in Eqs.
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TABLE IV. Dissociation probability versus time from the initial n =3 bound state for cases A —E.
Time

lw

27
3v

4w

5w

6g
7r
8&

9w

10~
20&
30&
40~
50~
60~
70m

Case A

0.0766
0.1095
0.2090
0.3347
0.3223
0.4407
0.4568
0.5162
0.5418
0.5674
0.7364
0.7347
0.7696
0.7891
0.7980
0.8090

Case B

0.0082
0.0351
0.0465
0.0558
0.0735
0.0863
0.0987
0.1133
0.1253
0.1343
0.2537
0.3460
0.4152
0.4729
0.5227
0.5644

Case C

0.0081
0.0354
0.0449
0.0526
0.0677
0.0779
0.0866
0.0986
0.1061
0.1115
0.1834
0.2392
0.2873
0.3325
0.3738
0.4102

Case D

0.0099
0.0328
0.0440
0.0508
0.0666
0.0743
0.0819
0.0920
0.1000
0.1040
0.1581
0.1956
0.2278
0.2586
0.2874
0.3137

Case E

0.0315
0.0606
0.0852
0.1194
0.1386
0.1673
0.1835
0.2048
0.2156
0.2449
0.3743
0.4631
0.5343
0.5967
0.6479
0.6855

v —2mlco, which is 487.82 atu at co =2880 cm

(24) for a single discrete state ~n ). These crude estimates
of the constant BOXSW couplings p, „and the CEH de-
cay widths are meant only to provide a reasonably con-
sistent basis for qualitative rather that strict quantitative
comparisons. En any case, the dissociation dynamics
were found to be relatively insensitive, overall, to
moderate variations in these widths and couplings. As in
Ref. 34, all BOXS%' calculations in this work will be per-
formed using the lowest 14 pseudocontinuum states.

In the first set of calculations, the time-dependent
profiles of the dissociation probabilities P„(t) from the
initial bound state

~
n ) (n = 3, 4, 5) were evaluated at

co=2880 cm ' for the following cases (the values of the
couplings and decay widths used in these calculations are
given in the text.

Case A. The original BOXSW.
Case B. The modified BOXSW with constant bound-

pseudocontinuum dipole couplings p», p&4, and p», and

the original imaginary pseudocontinuum widths.
Case C. The modified BOXSW with constant bound-

pseudocontinuum dipole couplings p», pj4, and p», and
imaginary pseudocontinuum widths constrained to values
between 208 and 233 cm

Case D. The CEH with constant diagonal and off-
diagonal decay widths, and no level shifts.

Case E. The CEH with only the constant diagonal de-
cay widths, and no level shifts.

Using Floquet theory, the dissociation probabilities P„(t)
(n =3,4,5) versus time for cases A Eare shown—in Tables
IV—VE, where co=2880 cm ' and I=10' W/cm .

A cursory examination of these tables indicates that
the modified BOXSW (cases B and C) and the CEH (case
D) results are in much better agreement with each other
than with those of the original BOXSW (case A). Except
for the n =3 calculations, the dissociation probabilities
for the two modified BOXSW methods are in good agree-

TABLE V. Dissociation probability versus time from the initial n =4 bound state for cases A —E.

Time

1w

27
3w

4w

5&

6w

7v
8&

9w

10~
20~
30'
40&
50~
60~
70&

Case A

0.2655
0.3953
0.5121
0.5612
0.6840
0.6854
0.7812
0.7916
0.8282
0.8645
0.9585
0.9676
0.9719
0.9741
0.9748
0.9758

Case B

0.0704
0.1378
0.2012
0.2453
0.2761
0.3172
0.3554
0.3831
0.4152
0.4523
0.6713
0.7968
0.8680
0.9095
0.9349
0.9507

Case C

0.0716
0.1394
0.2018
0.2455
0.2765
0.3170
0.3550
0.3819
0.4143
0.4503
0.6646
0.7869
0.8563
0.8965
0.9209
0.9361

Case D

0.0831
0.1498
0.2243
0.2890
0.3399
0.3976
0.4452
0.4849
0.5244
0.5646
0.7865
0.8756
0.9122
0.9282
0.9362
0.9408

Case E

0.1213
0.2257
0.3211
0.3980
0.4731
0.5290
0.5878
0.6289
0.6753
0.7052
0.8899
0.9417
0.9590
0.9675
0.9730
0.9766

'~=2'/m, which is 478.82 atu at co=2880 cm
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TABLE VI. Dissociation probability versus time from the initial n = 5 bound state for cases A —E.

Time'

1~
2v
37
4w

5&

6~
7x
8w

9r
10~
20~
30&
40~
50&
60~
70&

Case A

0.2221
0.3535
0.3819
0.4280
0.5003
0.5958
0.6175
0.6747
0.7297
0.7334
0.9020
0.9558
0.9785
0.9877
0.9909
0.9928

Case B

0.1660
0.2963
0.4479
0.5490
0.6450
0.7159
0.7714
0.8103
0.8418
0.8644
0.9626
0.9782
0.9826
0.9850
0.9871
0.9889

Case C

0.1675
0.2967
0.4478
0.5499
0.6462
0.7170
0.7717
0.8101
0.8416
0.8645
0.9588
0.9723
0.9756
0.9776
0.9794
0.9810

Case D

0.1919
0.3479
0.4792
0.5748
0.6523
0.7212
0.7710
0.8095
0.8437
0.8684
0.9594
0.9700
0.9722
0.9736
0.9749
0.9761

Case E

0.1495
0.2701
0.3678
0.4514
0.5277
0.5975
0.6572
0.7046
0.7418
0.7734
0.9403
0.9749
0.9845
0.9888
0.9913
0.9931

'~=2~/co, which is 478.82 atu at co=2880 cm

ment. The differences between cases B and C in the n =3
results are probably due to the different imaginary widths
of the lower pseudocontinuum states. These lower pseu-
docontinuum states are energetically accessible to the
n =3 state by the absorption of a single photon when
2873 cm '&~&3800 cm '. For ~&3800 cm ', or so,
the absorption of a single photon can excite the system
from the n = 3 state to the higher-energy pseudocontinu-
um states in which the imaginary widths are the same for
cases B and C. The results for cases D and E indicate
that the off-diagonal widths are indeed causing interfer-
ence effects of some sort in the dissocation dynamics.
This first series of calculations suggests that the energy
dependence of the bound-continuum couplings does
indeed have a considerable effect on the dissocation dy-
namics, which also implies that the usefulness of the
CEH method for this system may be limited. Even for
this huge field intensity and short time t, the CEH formu-
lation does appear to be fairly consistent with the
BOXSW systems having constant bound-pseudo-
continuum couplings. Aside from the savings in cornput-
er memory, the CEH calculations also required about an
order of magnitude less computation time than those us-

ing the BOXSW.
Experimentally, one might wish to determine the mul-

tiphoton dissociation yield (i.e., probability) at a given
laser frequency co, in which nearly all of the molecules are
initially in the ground vibrational state. As in Ref. 34, we
calculated the dissociation probability P„(t) (where
t = 10 atu and I =10' W/cm ) for cases B—E as a func-
tion of field frequency co. In these calculations the system
is initially in the ground state n =0 at time t =0. The
relatively short laser pulse t =10 atu was originally used
in Ref. 34 in order to facilitate any subsequent classical
trajectory calculations. Given that Eqs. (24) and (26)
were obtained at "long time t" [see Fig. 2 with Eqs. (23)],
the combination of a relatively short laser pulse and high
field intensity should provide a rigrous test of the CEH
method with respect to these parameters. Although the
results for case A were evaluated over the frequency

1.0
2880

P0(f) 0.5—

0.0
I

1600
I

2400

Li
I

3200

I (Cm-1)

FIG. 3. The dissociation probability P0 ( t ) vs co

(800 ~ 4000 cm ') for the original BOXSW (case A), where

I=10' W/cm and t=10' atu (reproduced from Ref. 34).

range 800—4000 cm ', cases B—E will be evaluated

only from 2400 to 4000 cm, since little dissociation ac-
tivity occurs at the lower frequencies. A few calculations

using the CEH were performed at some of the lower fre-

quencies in order to detect any significant deviations from
the original BOXSW results; however, none was found.
The results for cases B—E will be plotted on the same fre-

quency scale as in Ref. 34 so that direct comparisons with

case A can be easily made. The laser frequencies for
these calculations were selected at 2-cm ' intervals such

that 801 frequencies were used to evaluate Po (t) over the

frequency interval 2400 —4000 cm
Using the Floquet theory, ' " ' ' the time propa-

gator matrix U'(t) can be evaluated with particular ease
if t =p~, where p is some positive integer. To take ad-
vantage of this property the time t used in these calcula-
tions for cases B—E will be set as t =p ~, where
0~(pr —10 atu)~r. Therefore, at any given co, time t
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1.0
B

1.0
D

Po(t) o.s— Po (r} 0.s—

0.0
I

1600
I

2400

0) (Cm-1)

3200
0.0

I

1600
I

2400

CO (Cm-1)

3200

FIG. 4. The dissociation probability P p ( t ) vs

(2400 ~ ~ ~ 4000 cm ') for the modified BOXSW {case 8),
where I=10' W/cm and t —10 atu.

FIG. 6. The dissociation probability P p ( t ) vs co

(2400~~~4000 cm ') for the CEH (case D), where I=10'
W/cm and t —10 atu.

will be within one field period of 10 atu. These relatively
small variations in time t at the various field frequencies
result in only negligible diff'erences in Po (r). Cases B—E
will of course be consistent with each other in terms of
the value of t used at a given co. The plots of Po (t) versus
~ for cases A —E are shown in Figs. 3—7, respectively, in
which Fig. 3 was reproduced from Ref. 34. The results
for cases B—E are, by far, in much closer agreement with
each other than with the original BOXSW results of case
A. In fact, cases B—E show very good agreement overall,
especially considering the numerous assumptions and ap-
proximations that were used in these calculations. For
example, due to the different normalization conditions it
must be remembered that using constant values for the

BOXSW bound-pseudocontinuum couplings p&„does not
necessarily mean that the CEH bound-continuum cou-
plings V„, are also strictly constant. The CEH method
also neglects the continuum-continuum couplings, and, as
discussed in Sec. II, transitions between continuum states
may have some inhuence on the dynamics at I=10'
W/cm . The differences between the original BOXSW
(case A) and the modified BOXSW (cases 8 and C) do in-
dicate that the energy dependence of the bound-
continuum couplings can have a considerable impact on
the dissociation dynamics. Even so, the major features of
the original BOXSW Po (t) versus co spectrum can be
reproduced to a certain extent by even a rather truncated
version of the CEH method.

1.0
C

1.0

Po(f) p.s—
Po(f) o.s—

CV 5

0.0—
3200

m (cm-&)

J)) g & Li(

2400
0.0

I

1600
I

2400

0) (Cm- l)

3200 4000

FIG. 5. The dissociation probability Pp (t) vs co

(2400 co 4000 cm ') for the modified BOXSW (case C),
where I=10' W/cm and t —10 atu.

FIG. 7. The dissociation probability P 0 ( t) vs
(2400~co 4000 cm ') for the CEH (case E), where I=10'
W/cm and t —10' atu.
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IV. SUMMARY

In this work we have formulated a complex effective
Hamiltonian (CEH) approach for the study of multipho-
ton dissociation processes in the semiclassical (quantum-
molecule —classical-field) representation. The CEH con-
ditions of validity require that transitions between contin-
uum states be ignored, that the bound-continuum dipole
couplings be slowly varying functions of the continuum-
state energy c., and that time t be sufficiently long. These
requirements are expected to become more stringent as
the field intensity increases. The CEH method was ap-
plied to a model diatomic molecule that had been exten-
sively studied previously using the BOXSW (discretized
continuum plus optical potential) method. Despite the
huge field intensity and relatively short laser pulse, even a
rather truncated CEH approach yielded very good agree-
ment with a modified BOXSW method provided the
bound (pseud-o)continuum couplings were held effectively
constant. As might be expected, the CEH method had
only limited success when compared with the original
BOXSW method in which the bound-pseudocontinuum

couplings did very strongly with c.. At this field intensity
transitions between continuum states may also have some
effect on the dynamics, which can be accounted for by
the BOXSW method but not in the CEH approach.
These results indicate that the nature of the bound-
continuum dipole couplings can have a considerable
effect on the dissociation dynamics, which must be kept
in mind when applying any sort of CEH scheme to the
study of multiphoton processes.
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