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According to a general nonperturbative theory that describes atomic behavior in intense, high-
frequency radiation fields, the atom becomes stable against decay by multiphoton ionization in the
limit of high frequencies if the parameter ao=(I/2)' 'co (a.u. ) (with I the intensity and co the fre-
quency of the field) is kept constant, although otherwise unrestricted. We show that, under this
condition, in the subsequent limit of strong fields (ao large), the Schrodinger equation describing the
structure of the hydrogen atom in a laser field of circular polarization is separable in toroidal coor-
dinates. Explicit asymptotic expressions are given for its energy eigenvalues and its eigensolutions.
They correspond to a rapid decrease of the ionization potential and a drastic increase of the
size of the atom with ao. For the binding energy of the ground state we find: ~EO ~

=(1/2m. o.o)(lnao+2. 654284) (a.u. ). A dramatic distortion of the shape of the atom is found, which
in the strong field becomes a torus-shaped object. Furthermore, we introduce a classification of its
states by strong-field quantum numbers. We show how the levels at low ao, characterized by the
weak-field quantum numbers introduced earlier, and the levels at high ao, characterized by the
strong-field quantum numbers, are correlated. We find that the energy spectrum in strong fields
displays a multiplet structure. A comparison is made between our analytical results and those of a
numerical calculation carried out earlier.

I. INTRODUCTION

In the domain of multiphoton ionization of atoms the
phenomenon of excess-photon (above-threshold) ioniza-
tion (EPI) has been known for several years now. ' Many
experiments performed in the low-frequency regime
[Nd-YACs (where YAG is yttrium aluminum garnet);
fundamental wavelength 1.06 pm], have involved the
study of the energy spectrum of the ionized electrons
(Agostini et al. and Kruit et al. ). One of the most
striking effects found was the disappearance of the low-
energy part of the spectrum with increasing intensity.
(The first systematic investigation of EPI was carried out
by Kruit et al. , who demonstrated the disappearance of
the lowest-energy peak in the electron spectrum of Xe at
an intensity of 10' Wcm with pulses of 50-ps dura-
tion. Later the disappearance of the first 30 peaks in the
EPI spectrum of He at an intensity of 10' W cm was
reported by Lompre et al. ) A theoretical explanation of
this feature was given by Muller and Tip. According to
these authors, the low-energy peaks are absent for low
frequencies and moderately high intensities, because the
decay by the associated channels is energetically forbid-
den due to the increase of the ionization potential of the
atom in the strong laser field. The "ponderomotive
effect"—caused by the spatial inhomogeneity of the in-
tensity in the laser focus and which increases the kinetic
energy of the electrons ejected from the atom as they
move out —is invoked by them to explain the fact that
the remaining part of the spectrum is, however, not dis-
placed. As it turns out, in this radiation regime the pon-
deromotive shift almost entirely compensates the energy
shift due to the increased ionization potential.

A new, yet basically unexplored, radiation regime is
opened up to experiment by the advent of extremely
powerful lasers. At this moment pulse intensities in ex-
cess of the atomic unit of intensity (Io =3.51 X 10'
Wcm ) can already be created in the laboratory (see,
e.g. , Rhodes ). In the near future, prospects are even
more impressive. Ambitious plans to construct a new
generation of laser systems are now being pursued by
several laboratories throughout the world.

For relatively low intensities lowest-order perturbation
theory has been proven to be successful in the calculation
of multiphoton transition probabilities and ac-Stark shifts
(see, e.g. , the book by Chin and Lambropoulos ). For
higher intensities many higher orders in the perturbation
series have to be included; eventually when the strength
of the external field becomes comparable with the electro-
static forces in the atom, the series starts to diverge (see,
e.g. , Pan, Taylor, and Clark ). In fact, the above-
mentioned experiments demonstrate that salient nonper-
turbative effects show up already at intensities well below
the atomic unit. With the possibility of experimental
tests in sight, the theoretical description of atomic behav-
ior in radiation fields well beyond the atomic unit of in-
tensity is a subject of primary fundamental interest, par-
ticularly if some underlying physical picture can be given.

Some time ago, a nonperturbative theory was
developed by Gavrila and Kaminski, ' "especially dev-
ised to describe atomic behavior under these extreme ra-
diation circumstances. The approach followed by these
authors contrasts with the one followed by Kulander, '

who solves the time-dependent Schrodinger equation by
direct numerical integration. The Gavrila-Kaminski
theory was applied to the calculation of the energy levels
of a hydrogen atom in the case of a linearly polarized

5659 1989 The American Physical Society



5660 M. PONT

laser field. ' At fixed high frequency a dramatic decrease
of the ionization potential with intensity was found. This
implies that in the regime that we consider, the suppres-
sion of peaks mentioned above is absent. We predict,
however, a substantial shift of the spectrum of the ejected
electrons with respect to the weak-field case towards
higher energies, since now the energy shift due to the al-
tered ionization potential and the ponderomotive shift (if
present' ) act additively. The rapid decrease of the ion-
ization potential indicates that the bound states of the
atom are strongly distorted by the laser field, as opposed
to radiation regimes of moderately high intensities (which
have been the subject of the majority of the studies, e.g. ,
in the experiments by Kruit et al. and Freeman et al. '

)

in which only the modification of the weakly bound and
continuum states plays a role. To our knowledge, no
theory except the one presented by Gavrila and Kamin-
ski takes into account the deformation of the initial state
in the multiphoton ionization process. As will become
apparent in the following, this effect is already important
in the radiation fields produced by existing lasers, but will
be even more so for the superintense lasers now being
developed.

In other experiments in the low-frequency radiation re-
gime the influence of the state of polarization of the laser
field has been investigated (see Bucksbaum et al. '

) and
some interesting differences and similarities with the
linear case studied previously have been reported. This
stimulated us to study the intensity and polarization
effects on the position of the energy peaks in the spec-
trum of EPI electrons, in our case. ' From a numerical
calculation of the levels of atomic hydrogen in a circular-
ly polarized laser field, a decrease of the ionization poten-
tial similar to that found earlier for the case of linear po-
larization was obtained. We also noted the existence of
certain families of states whose levels appeared to have a
common asymptote in the limit of high intensities at fixed
high frequency. Furthermore, in order to explore the
magnitude of the deformation of the atom, averages of
the radial distance were calculated. These showed a dras-
tic increase in the size of the atom with increasing inten-
sity. More recently we have initiated a large-scale nu-
merical calculation of the atomic deformation of the
lower-lying bound states for the case of a linearly polar-
ized laser field over an extended range of values of inten-
sity and frequency. This has already yielded a number of
interesting features (see Pont et aI. ' ).

In the present work we make a detailed analysis of the
ac-Stark shifts and the distortion of atomic hydrogen in a
combined limit of high frequency and high intensity for
the circular polarization case. Among other things we
will explain in detail the features just mentioned related
to this polarization case.

We have organized our work as follows. In Sec. II we
summarize the formalism of the multiphoton ionization
theory developed by Gavrila and Kaminski. We intro-
duce the Schrodinger equation with a "dressed" poten-
tial, which describes the structure of the hydrogen atom
in the case of a photon energy high with respect to the
ionization potential in the field, for the case of circular
polarization. The intensity and frequency enter this

equation only through the single parameter ao. In Sec.
III we discuss some features of this potential and intro-
duce a general classification of its states. In Sec. IV we
express the Schrodinger equation in the toroidal coordi-
nate system. We solve it for the case that ao~ ~ in Sec.
V. In Secs. VI and VII we discuss the physical implica-
tions of these results with regard to the deformation of
the atom and the energy spectrum at high ao. We com-
ment on the validity and interpretation of the results of
Sec. V in Sec. VIII. In Sec. IX we introduce the strong-
field classification of states and establish the correlation
with the states at low no, characterized by the weak-field
quantum numbers introduced earlier. Finally, in Sec. X
we make a comparison of our analytical results with
those of a numerical calculation carried out earlier. We
draw our conclusions in Sec. XI.

II. FORMALISM

2~
V =—

r+aoe cos +Q.oe sin
(2)

It depends on the intensity I and frequency co of the field
through the single parameter ao= (I /2)' ~ (a.u. ).
(We define the atomic unit of intensity Io by the time-
averaged intensity corresponding to a linearly polarized
plane wave with an electric field amplitude of 1 a.u. It
amounts to ID=3.51X10' Wcm .) Here we have
denoted by e„and e the unit vectors in the x and y
directions, having chosen the plane of polarization as the
xy plane. The physical significance of the parameter ao is
the classical amplitude of the oscillation of a free electron
driven by the field. In Ref. 11 an iteration scheme was
developed involving increasing powers of co

' to solve the
exact Schrodinger equation and of which Eq. (1)
represents the lowest-order approximation. To next or-
der in the iteration the —in general complex—

In this section we recapitulate the results of the theory
for atomic behavior in intense, high-frequency laser
fields' '" that are of direct relevance for what follows.
Its regime of validity is well understood and a number of
exact numerical calculations on one-dimensional model
systems have been undertaken to test it (Bardsley and
Comella see also Bhatt, Piraux, and Burnett' ).

Under certain assumptions about the laser field (dipole
approximation, monochromaticity), it was shown in Ref.
11 that at sufficiently high frequencies the atom becomes
stable against decay by multiphoton ionization. Its struc-
ture in the laser field is then governed by a Schrodinger
equation in which the electron-nucleus attraction is re-
placed by a modified Coulomb potential, the "dressed po-
tential" Vo. Thus we have for atomic hydrogen

[—,'p + Vo(ao, r)]+=EV .

(Atomic units will be used throughout. Our results are
valid for arbitrary nuclear charge by changing to
Coulomb units in which lengths are expressed in the
Bohr radius divided by Z and energies are expressed in
hartrees times Z .) For the case of a circularly polarized
laser field the dressed potential is given by
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"quasienergy" E attains an imaginary part, correspond-
ing to the decay by multiphoton ionization. Expressions
were derived for the (angle-dependent) n-photon ioniza-
tion decay rates in which the solutions of Eq. (1) enter as
initial and final states. The region of validity of the
theory was found to be restricted by the requirement that
the frequency of the laser field should be large with
respect to the ionization potential of the ground state of
the atom in the field co)) ~E(a„)~ (see Ref. 20). (We note
that in the iteration scheme of the Gavrila-Kaminski
theory, which proceeds in inverse powers of the frequen-
cy, the parameter ao is kept fixed. ) The rapid decrease of
the ionization potential with ao, mentioned above,16

greareatly facilitates the satisfaction of this condition. In
fact it was shown that it can be satisfied at present laser

6intensities (for example, for the laser of Rhodes, for
which a0=25).

+2t'o„-

+1/u,

0-
-2A() +20'()

III. THE DRESSED POTENTIAL:
GENERAL CLASSIFICATION OF STATES

As is easily seen from Eq. (2), Vo is the potential due to
a uniformly charged circle (of charge 1 a.u. ) with radius
o.o, which is centered on the origin in the plane of polar-
ization. The dressed potential is symmetric with respect
to rotations about the z axis and is also invariant under
reAection in the origin. Consequently, the magnetic
quantum number (m) and the parity remain good quan-
tum numbers to describe the states of the atom in the
field. Since the symmetry of our problem is in fact the
same as that encountered in homonuclear diatomic mole-
cules (D „(,), we adopt the standard notation of the elec-
tron terms of the latter (e.g. , 5„ for states with ~m~ =2
and negative parity; it follows from symmetry considera-
tions that the energy of the terms does not depend on the
sign of m; consequently, levels with ~m~%0 are doubly
degenerate).

The dressed potential Vo is represented graphi. cally in
Fig. 1. Here we have set out the absolute value of Vo as a
function of the position in a plane, passing through the
axis of symmetry. (Compare Fig. 1 of Ref. 10 for the case
of the dressed potential corresponding to a linearly polar-
ized laser field. ) It is clearly shown that the modification
of the Coulomb potential is such that it now attains a
finite value at the origin: —1/ao. The two towers in Fig.
1, separated by a distance 2+0, appear at the positions
where the circle of charge passes through the base plane.
This represents the fact that the dressed potential is
singular at the location of the circular charge distribu-
tion. As we will prove in Sec. V, it is this (logarithmic)
singularity, that dominates the high-ao behavior of the
eigenfunctions and energies of Eqs. (1) and (2). At dis-
tances large with respect to the radius uo of the charged
circle, the potential Vo approaches the original Coulomb
potential.

FIG. 1. The absolute value of the dressed potential for circu-
lar polarization as a function of the position In the plane
through the axis of symmetry. The two logarithmic singulari-
ties appearing at the positions where the circle of charge passes
through the base plane were cut off at a finite value. Note that
at large distances from the circle of charge the potential ap-
proacroaches the original Coulomb potential as indicated by the cir-
cular contour lines.

Vo= — K2

Pf+
(3)

[Compare Eq. (17) in Ref. 10 for a similar expression in
the case of linear polarization. ] When expressed in terms
of the usual circular-cylindrical coordinates (p, z, (t ) (with

p the distance from the z axis) the quantities r+ and r
in Eq. (3) are given by

—[( + )2+ 2]1/2 (4)

The geometrical significance of r+ and r is the largest
and smallest distance from the charged circle, respective-
ly.

Adopting circular-cylindrical coordinates and separat-
ing off the p-dependent part of the full wave function ql

in the usual way,

imP
%(p, z, P) = N(p, z )

the Schrodinger equation, Eq. (1), yields

The integral expression for Vo, Eq. (2), can be cast m a
form containing an elliptic integral of the first kind
~.16,21

2 1/2 1

a' 1a+—
2 Qp2 p Qp

m 2
m.[(p+ao) +z ]'~

4a(p

(p+ao) +z

1/2

N(p, z ) =E&b(p, z ) .
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Note that the Hamiltonian appearing in Eq. (6) depends
upon the magnetic quantum number m through the term
m /2p . This represents the centrifugal barrier associat-
ed with the rotational motion of the electron around the z
axis.

In earlier work, ' states belonging to the same irreduc-
ible representation of D„h [i.e. , having the same molecu-
lar symmetry (tT, o „,vr, vr„, . . . )] were grouped togeth-
er. However, here we will adopt an alternative grouping
scheme, to be explained hereafter, which is better suited
to the case of present interest.

Since the Hamiltonian of Eq. (6) is symmetric in z, the
wave functions fall into two classes, namely, of states
symmetric and antisymmetric with respect to reflection
in the xy plane. Noting that a reflection in the xy plane
can be decomposed into a reflection in the origin and a
rotation about 180' about the z axis, it is readily seen
from Eq. (5) that 4(p, z) is symmetric with respect to
reflection in the xy plane for states with parity
(
—1) (og, ~„,5g, . . . ), while it is antisymmetric for

states with parity ( —1) +'(tr„, mrs, 5„, . . . ).
The division into functions @(p,z) symmetric or an-

tisymmetric with respect to reflection in the xy plane is
applicable whether the parameter m in Eq. (6) is an in-
teger or not. Increasing m in this equation continuously
from the value zero, the eigenfunction 4(p, z ) corre-
sponding to a o (o „)state of lowest energy develops into
the eigenfunctions corresponding to the vr„, 5, P„, etc.
(ns, 5„,gs) states of lowest energy, as m passes through
integer values. The same applies for the state next lowest
in energy, and so on. This suggests the grouping togeth-
er of states appearing at the same energy positions in ei-
ther of the two series [i.e., (o,m.„,5, . . . ) or
(cr„,m, 5„, . . . )]. Since the centrifugal barrier in Eq. (6)
becomes more repulsive as

l ml increases, the energy ei-
genvalues of the members of each family thus formed are
ordered with respect to

l
m l: E & E & Es & (and

g M

similarly for o „,7r, 5„, . . . ). In fact, the dependence of
the energy on the magnetic quantum number of the
members of a family can be expressed exactly as an in-
tegral with respect to lml over the expectation value of
the inverse square of p:

&( lml ) =&(»+j & p

For the hydrogen atom in the case of high ao each fam-
ily will appear in the spectrum as a multiplet of closely
spaced levels (see Sec. VII). This special situation arises,
referring to Eq. (7), whenever the average distance from
the z axis is sufficiently large, such that the centrifugal
barrier can be regarded as a small perturbation. The
eigenfunctions @(p,z ) associated with the members of a
family will then be approximately equal.

FIG. 2. The toroidal coordinates (t), 9,$). The circle of
charge located in the xy plane which forms the basis of this or-
thogonal coordinate system is indicated in the figure in bold-
face. The largest and shortest distance from the circle of charge
is denoted by r+ and r, respectively. The logarithm of the ra-
tio between r+ and r defines the coordinate g, while the angle
enclosed by these two distances defines the coordinate 0. The
angle P is defined in the usual way.

better adapted to the geometry of our problem than are
the circular-cylindrical coordinates (p, z, tt ), the toroidal
coordinates (g, 8, $). '

The coordinates g and 0 are defined by the logarithm
of the ratio of the distances r+ and r

g=ln(r+ /r ),
and the angle enclosed by them, respectively (see Fig. 2).
The angle P is defined in the usual way. Thus the sur-
faces of constant g are a family of tori, converging to the
circular charge distribution as g~ ~. The surfaces of
constant 0 are a family of spherical bowls, orthogonal to
the tori and having the charged circle as a common rim.
(The surfaces of constant P are a family of half-planes or-
thogonal to both the tori and bowls. ) We take 8 to have
positive values above the xy plane and negative values
below it.

The relation to the circular-cylindrical coordinates
(p, z, P) is given by

p=sinhq/S (0& g& oo ),

z =sin8/I ( ~& 8 & ~), —

with

IV. THE SCHRODINGER EQUATION
IN MODIFIED TOROIDAI. COORDINATES

4= ( cosh' —cos8) /ao . (10)

In order to make the mathematical analysis of Eq. (6)
more tractable, we adopt a coordinate system that is

The Schrodinger equation, Eq. (6), in the toroidal coor-
dinates (g, 8,$) reads (for the derivation, see Appendix
A)
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1 $2 Q2+
2 Qq2 (A@2

(m ——')
4

sinh g

—3/2
K((1— '")' ') 4( 0)=$ 'E4(2), 0),

pe~"

where we have set

4(2), 0)=P' @(P,z) .

k(r, 0)=4(2), 0)=p' @(p,z )

(12) [see Eq. (12)] and P and 6 by

(15}

r =2aoe " (0(r (2ao) . (13}

Close to the circle of charge, r and 0 have a particularly
simple geometrical interpretation. In this limit the coor-
dinate r tends to the length of the connection line to the
circle of charge (denoted by r) and 0 tends to the angle
enclosed by this line segment and the xy plane (denoted
by 0) (see Fig. 3). In the modified toroidal coordinates
(r, 0, P), we obtain from Eqs. (11) and (13) the following
Schrodinger equation:

1 8 1 8 1 8+- +
}r r Br r Qg

(m ——')
4

a 2@2

Note that in this system, with g as defined in Eq. (8), the
argument of the elliptic function E, as appearing in the
expression for the dressed potential, Eq. (3), now depends
only on this single coordinate. The transformation of Eq.
(12) is carried out in order to cast the Laplacian in this
coordinate system in a separable form (see Ref. 25).

In order to obtain the Schrodinger equation, Eq. (11),
in a form that is more suitable for further analysis we in-
troduce a new variable r which replaces g, defined by

P= 1+
2ap

2

2

r--2 cosO,
2cxp

(16)

V. DERIVATION OF THE HIGH-ao LIMIT

We now derive the asymptotic behavior of the eigen-
values and eigensolutions of the Schrodinger equation,
Eq. (14), for large ao. Substitution of the scaled variable

2Ap

Note that for P independent of 0, the Schrodinger equa-
tion, Eq. (14), would be separable.

In order that the full wave function 4(p, z, P) be nor-
malized to unity, we should have

f f" ~4(r, g)~ P rdrdg=l, (17)
0

which follows directly from the expression, Eq. (A6), of
Appendix A by carrying out the substitution
2) = —ln(r /2ao).

P—3/2
K(Q' ) f&(r B)=P E&$(r 0), (14)

g=(mao) ' r (18)

map

where we have defined 4(r, 0) by
in the Schrodinger equation in the toroidal coordinates
(r, g, p), Eq. (14), yields

1 8 1 8 1+ + +
gg2 g Qg g2 g02

2(m —
—,
'

)

Q2
p, +P / in(+(P / —P )(lnp —21n2)

—P [K(Q' )+lnp+lng —2ln2] P„(g,g)=P s„g„(g,g) . (19)

Here we have introduced

p=(vr/4ao)' (20) K(6'")= y Ss=0

1
2

2

[—ln(pg)+g(s+ 1)

c. = E —1np+21n2,P g 2 (21) —P(s+ —,')](pg) ', (23)

p„($0)= 4 $,0
2p 2p

(22)

In writing Eq. (19) in the given form we had in mind the
expansion for the complete elliptic integral K(k) in terms
of its "complementary modulus" k'=(1 —k )'/ (Ref.
21). Application of this to K(0' ) yields the following
series in terms of pg:

with P as usual the logarithmic derivative of the I func-
tion [P(1)—P(1/2) = 2 ln2]. (Note that P and 6 [see Eq.
(16)] are functions of r /2ao= pg. )

It is thus easily seen that the limit p $0 (ao~ ~ ), while
keeping g finite, exists and yields

1 8 1 8 1

Qg2 () $2 $02
+— + +in/ $0(g, 0)

=so/0((, 0) . (24)
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FIG. 3. The geometrical significance of the quantities 9 and 0
being the limiting case of the toroidal coordinates r and 0 when

approaching the circle of charge.

normalized in the usual way as [see Eqs. (25) and (26)]

f ~y, (x) ~'dx =1 . (28)

Equation (27) is similar to the radial equation arising
from spherically symmetric problems, with
( =0, 1,2, . . . ) playing a role analogous to the azimuthal
quantum number 1. For a given ~A, ~, Eq. (27) gives a set
of eigensolutions, which we will specify by a generalized
principal quantum number v: v= ~A.

~
+0+ 1, with k their

number of nodes. We will adopt the same spectroscopic
notation for a level characterized by v and ~k, as cus-
tomary for the quantum numbers n and I, associated with
a spherically symmetrical problem. For example, we
denote the level with quantum numbers v=3 and ~A.

~

=1
by (3p ), where the prime is included to make a distinc-
tion between the two cases.

Reexpressing the solutions of Eqs. (24) and (26) in
terms of the original unscaled quantities [using Eqs. (18)
and (20)—(22)] yields

(29)

Equation (24) displays that the Schrodinger equation is
separable in the high-ao limit. Equation (24) can be
solved by substitution of

iA, H

P ($, 8)=g ' y (g)
277

' (26)

with I, integer.
Thus we find that g0 is the solution of the following

one-dimensional Schrodinger equation with a logarithmic
potential:

1 d
2 . dx2

+lnx go(x)=E~o(x), (27)

The solutions of Eq. (24) are subject to the condition of
I. integrability:

+
(25)

1E
~a0

ap——ln +c
~&~

—3 ln2
2 77

(30)

The solutions Eq. (29) are normalized [from Eqs. (22) and
(25)] as

f f ~4, &(r, 8)~ r dr d8=1
0

(31)

[compare Eq. (17)].
The energy eigenvalue E

~&~
and eigenfunction

4 &(r, 8) of Eqs. (29) and (30) are thus expressed in the
eigenvalue e„~&~ and eigensolution y, ~~~(x) appearing in

Eq. (27). Note that the wave function 4„&(r,8) scales
with a0 in the coordinate r, but that the angular part is
independent of this parameter.

Equations (29) and (30) are solutions of the
Schrodinger equation [from Eqs. (18), (20)—(22), and
(24)]:

a' i a &
a'

2 Br r Br r- c)g vra0
ln

2a0
—2 ln2 4 &(r, 8) =E„~&~4 &(r, 8) . (32)

Equations (29) and (30) are important results, because
they represent the eigenstates and energy eigenvalues of
our hydrogen atom in the consecutive limits co~ ~ and
a0~ ~. More precisely it is derived in Appendix 8 that
Eq. (30) correctly gives this energy in the high-frequency
limit up to order ln a0/a0. The Schrodinger equation,
Eq. (32), should be considered as the high-ao limit of the
exact Eq. (14).

VI. DEFORMATION OF THE ATOM
AT HIGH ao

In this section we will discuss the physical conse-
quences of Eq. (29). Equation (29) represents a dramatic

deformation of the atom. As a0 increases, the overall size
of the atom as determined by the radius of the charged
circle increases linearly with a0. At the same time, the
atom dilates uniformly and proportionally to +ao in all
directions orthogonal to the circle, i.e., in the toroidal
coordinate r. This dilation as well as the decrease of the
binding energy [as obtained from Eq. (30)], which accom-
panies it, rejects the decrease of the strength of the
dressed potential with a0. It corresponds to the decrease
of the linear charge density of the circle with a0, its
charge of 1 a.u. is spread out along its periphery 2~a0
(see also Sec. VIII). In particular, referring to Eq. (29),
for sufficiently high a0, the wave function will attain ap-
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preciable values only inside a torus about the circle of
charge, of internal radius ro= +a.aoxo and will rapidly
drop to zero in all other parts of space. Here we have
denoted by xo some value of the argument of
x '~ y, ~i (x) beyond which this function decays rapidly
to zero. Note that the atom contracts proportionally to
Qao, if the ratio of its spreading to the radius of the
charged circle is taken. We thus find that —in this rela-
tive sense —the atom localizes on the circle of charge.

In Appendix C we discuss the solutions of Eq. (27).
Based on this appendix we will now discuss in some more
detail the shape of the atom. In the strong-field limit, s'
states of the atom (for which ~A.

~
=0; they do not depend

on 8) attain a finite value at the location of the charged
circle, whereas states other than s' in contrast vanish
there. As demonstrated in the Appendix, cusp behavior
is absent, since the derivative of 4 i(r, H) with respect to
r vanishes as r tends to zero. For states other than s' the
wave function increases as one departs from the circle as
r ~ ~ from the value zero. The region of higher probability
density of 4 i(r, 0) shifts to higher values of r as ~A,

~

in-
creases, with k(=v —

~A,
~

—1) kept constant. This can be
ascribed to the repulsive action of the centrifugal barrier

~
l2r associated with the rotational motion of the

electron around the charged circle in the surface of con-
stant P. This term arises in the Hamiltonian of Eq. (32)
by substitution of the angular part of 4& i(r, 8), namely,

iA, O

The spreading of the wave function with respect to the
circle as well as the linear growth of the radius of the cir-
cle ao causes the amplitude of the wave function to de-
crease in space. In particular, it follows from Eqs. (5),
(15), and (29), that for s' states, the probability density to
find the particle at the location of the circle of charge de-
creases as uo

VII. THE ENERGY SPECTRUM AT HIGH ao

Let us now discuss the energy spectrum for the
strong-field case. We found in Sec. V that the levels of
the two-dimensional problem, Eq. (32) [see Eq. (29)] for
~A, ~=O are nondegenerate and that the corresponding
solution is symmetric with respect to rejections in the xy
plane (8~ —8). For ~A, ~WO the levels are doubly degen-
erate. By taking appropriate linear combinations
[cos(~A, ~O) and sin(~A, ~8)], we can assure that one of the
two independent solutions is symmetric with respect to
rejections in the xy plane and that the other is antisym-
metric. We will denote the associated (normalized) wave
functions by 4 '+~i'~(r, 8) and 4 '„ i ~(r, 8), respectively.

We also have found that the exact equation, Eq. (14),
leads in the high-ao limit to Eq. (32), which no longer de-
pends on the magnetic quantum number. Consequently,
each level v~A,

~

is infinitely degenerate with respect to
~m ~. [The associated eigenstates of the hydrogen atom
are obtained from Eqs. (5) and (15). This gives, for the
full wave function, %(p, z, P) =(2irp) ' ~4 '„+—

~&~(r, 8)e' ~. ]
The levels ~A,

~

=0 therefore each consist of a single series
of sublevels (cr, ir„,5, . . . ) in the high-ao limit. The
levels with

~
A, PWO consist of two series of sublevels

(og, ir„,5s, . . . ) and (o„,m.g, 5„, . . . ).

For finite ao the sublevels corresponding to a given
pair v~A,

~
no longer coincide. Note that at high ao, levels

corresponding to states that are symmetric with respect
to a reAection in the xy plane appear in groups
(o z, ir„,5&, . . . ) associated with different main levels
v~A, ~. Consequently, all states (o, ir„,5, . . . ) converg-
ing to some level v~A,

~
have the same energy position in

their symmetry class. Therefore, they constitute a family
in the sense of Sec. III. [The same applies to the an-
tisymmetric case appearing in groups (o „,ir~, 5„, . . . ). ]
The energy splitting between the states in such a family
arising at finite ao can be obtained from Eq. (7). Since at
high o.'o the wave functions lie about the circle of charge,
we are allowed to replace (p ) by its lowest-order ap-
proximation 1/ao '

mE( ~m~ ) =E(0)+
2(xo

(33)

Thus we see that the splitting is indeed of higher order
than the expression for the energy E ~&, Eq. (30). In this
way the levels of a family are ordered with respect to the
magnetic quantum number in accordance with the dis-
cussion in Sec. III.

VIII. VALIDITY AND INTERPRETATION
OF THE RESULTS OF THK HIGH-ao LIMIT

En this section we will derive an estimate for the region
of validity of the asymptotic expressions Eqs. (29) and
(30) on the basis of the discussion in Sec. VI. In going
from Eq. (14) to Eq. (32) we see that P in Eq. (14) can be
replaced by unity and the elliptic integral can be replaced
by the first term in the expansion, Eq. (23). Note that the
term involving Q in Eq. (14) does not appear in Eq. (32).
The contraction of the atom relative to the radius of the
charged circle, as discussed in Sec. VI, explains why in
the high-ao limit Eq. (32), only the behavior of the
dressed potential near the location of the circle (i.e. ,
r ((2ao) is relevant. The fact that at high ao the wave
function is concentrated in the region near the circle also
explains why the Schrodinger equation is asymptotically
separable. For distances close to the circle the dressed
potential is invariant with respect to rotations around the
circle, keeping the distance to it, r, and the polar angle P
constant.

In going from Eq. (14) to Eq. (32) it is clear that Eqs.
(29) and (30) represent approximate solutions of Eq. (14),
provided 4'„—~4(r, 8) has decayed sufficiently in the re-
gion where r/2eo is no longer negligible with respect to
1. As a criterion of the boundary of the volume outside
which the wave function drops rapidly to zero we take
the surface E = Vo(ao, r) (access to this region is classical-
ly forbidden). In the toroidal coordinates (r, (9,$) this
surface is determined by the equation

(34)

For czo high we replace E on the left-hand side by the
asymptotic expression of Eq. (30) and on the right-hand
side we approximate P by 1 and we replace the elliptic
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FIG. 4. Correlation diagram between levels at low ao (left-
hand side), designated by the weak-field quantum numbers, and
the levels at high ao, designated by the strong-field quantum
numbers (right-hand side). (Only the levels corresponding to
n ~ 4 are shown. )

function E by the first term of its expansion in terms of
its complementary modulus [see Eq. (23)]. Equation (34)
thus yields the torus with radius

ro =Qn.aoexpE (35)

valid for suKciently high o.o. We thus obtain for the re-
gion of validity of Eqs. (29) and (30), requiring ro ((2ao:

ao &&exp2c (36)

IX. CORRELATION OF STATES
IN THE WEAK- AND STRONG-FIELD LIMITS

We now introduce the strong-field classification of
the levels of our hydrogen atom by adding on the end

It shows that our asymptotic expressions, Eqs. (29) and
(30), represent at finite values of the parameter ao better
approximations the lower the energy of the associated
state.

Let us finally comment on the interpretation of the
solutions of Eqs. (32), (29), and (30). Equation (32) has a
simple physical interpretation from which its relation to
the original problem (i.e., that of a particle moving under
the influence of a uniformly charged circle with radius
ao) becomes clear. It can be looked upon as the
Schrodinger equation, corresponding to an electron mov-
ing in the potential due to a linear charge distribution of
infinite extent and with density 1/2mao, expressed in
circular-cylindrical coordinates with the polar axis
chosen along the line of charge. (In this case the coordi-
nate r is the distance from the polar axis and 0 the polar
angle. )

of the molecular-spectroscopic term symbol
(crs, o „,rrg, rr„, . . . ) the quantum numbers v and !kj of
the main level at which each of the indi. vidual levels con-
verges [e.g. , 5„(2p )' designates the state with ! m! =2 and
negative parity, which converges in the high-ao limit to
the level with quantum numbers v=2 and !A. ! =1]. Note
that this classification determines the levels uniquely,
since not more than one level of a certain species
(crg, cr„,m.g, m.„, . . . ) converges to a certain level with to
quantum numbers v and !A, ! in the strong-field limit.

A unique correspondence can be made between the lev-
els at high ao, designated by the strong-field quantum
numbers, introduced above and the levels at low ao,
designated by the weak-field quantum numbers, intro-
duced earlier (see Ref. 16). The weak-field quantum num-
bers are obtained by adding in front of the molecular-
spectroscopic term symbol the principal quantum num-
ber n and the azimuthal quantum number l of the state
from which it develops continuously in the low-ao limit
(e.g., 3pvr„designates the state with ! m! = 1 and negative
parity, which develops in the weak-field limit from the
unperturbed hydrogenic state with n = 3 and 1 = 1). Note
that the weak- and strong-field classifications of levels are
defined in analogy with the united-atom limit and the
separated-atom limit of (one-electron) homonuclear dia-
tomic molecules.

The ordering of the sublevels, corresponding to a cer-
tain principal quantum number, at low ao (left-hand side
of Fig. 4) can be obtained from perturbation theory for
the Coulomb potential [see Eqs. (24)—(27) of Ref. 16], to
which the dressed potential tends in the weak-field limit ~

The ordering of the sublevels which correspond to a cer-
tain pair of quantum numbers v and !A, ! at high ao
(right-hand side of Fig. 4) is immaterial for the actual
correlation. [As will become apparent in the next para-
graph, this is because, as we have seen, not more than one
level of a certain species (o,cr„,vr, vr„, . . . ) converges
to a certain level with quantum numbers v and ! A, !.] Nev-
ertheless, we have ordered the states within each family
(in the sense of Sec. III), i.e., with respect to the magnetic
quantum number. The ordering of the main levels v!k!
[see Eq. (30)] is obtained from Table I of Appendix C. In
order of increasing energy we have ( ls)', (2p)', (2s)',
(3d)', (3p)', (3p)', (4f)', . . . .

The correlation can now be established, as shown
schematically in Fig. 4 by the connecting lines, by the
Wigner —von Neumann "noncrossing rule. " Since the
parity and the z component of the angular momentum
are conserved at all o,o, two separate states having the
same molecular symmetry (belonging to the same irre-
ducible representation of D

& ) cannot cross, as the pa-
rameter ao is varied. Thus the lowest o state on each
side is correlated with each other, then the n.ext-lowest
pair, and so on, the same holds for the other symmetries
(cr„,vr, m„, . . . ). Note that cross. ings of states having
different symmetries are not forbidden and occur fre-
quently in Fig. 4.

The weak-field classification of states lowest and next
lowest in energy of a species (cr,cr„,m. , ~„, . . . ) can be
easily derived directly from the spectrum of the Coulomb
potential. One thus finds that for families of states of
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lowest or next-lowest energy in either series
(cr,~„,5, . . . ) or (cr„,n~, 5„, . . . ) every next member
in the family has a principal quantum number n and an
azimuthal quantum number l, which is one higher than
its predecessor. For example, the family of states next
lowest in energy in the series (o,vr„,5, . . . ) concerns
2so, 3pm „,4d 5~, SfP„, . . . . However, for the families
of states associated with an energy position higher than 2,
the situation is more complex, because here the 1 degen-
eracy of the Coulomb potential plays a role. To obtain
the appropriate l quantum number it is necessary to
know how the unperturbed Bohr level splits up in weak
fields [see Eqs. (24) —(27) of Ref. 16; it was used in the
correlation diagram Fig. 4]. The assignation of a princi-
pal quantum number to the levels follows the same rule
as above: it increases with unity for every next member
in the family.

To gain some insight into how wave functions in the
weak-field limit develop into the wave functions in the
strong-field limit it is useful to investigate the location
and shape of nodal surfaces in these two limiting cases.
Let us consider the states of lowest energy in the series
(og, m„,5, . . . ): iso, 2pn„, 3d5, 4fg„, . . . . From
the correlation diagram we find that this family con-
verges in the strong-field limit to the level denoted by
( ls ) . Note that neither in the weak-field limit nor in the
strong-field limit have the wave functions any nodal sur-
faces, which suggests their absence at all ao.

Let us consider next the states of lowest energy in the
series (o „,vr, 5„, . . . ), 2pcr„, 3dng, 4f5„, Sgfz, . . . ,
and the states next lowest in energy in the series
(cr, 7r„,5, . . . ), 2so, 3prr„, 4d5g, Sf/„, . . . , for
n ~4. According to the correlation diagram these two
families converge to the same asymptote: the level denot-
ed by (2p)'. Note that the states of the antisymmetric
family have the xy plane as a nodal surface. This is also
the only nodal surface in the low-eo limit. In the high-ao
limit, as determined by the vanishing of sinO, the wave
functions vanish for 8=0 (the xy plane for p) ao) and
0=m. (the xy plane for p (ao), thus again yielding the xy
plane. In the symmetric case we deal with a spherical no-
dal surface in the low-ao limit. The position of nodal sur-
faces in the high-o, o limit is determined by the vanishing
of cosO. Now the surfaces 8=~/2 and 9= vr/2 cons—ti-
tute together also a spherical nodal surface (for z )0 and
z (0 respectively; see also Fig. 2), now passing through
the circle of charge. This suggests that no nodal sur-
faces other than of the given type are present at inter-
mediate ao. A similar conclusion about the occurrence of
nodal surfaces can be drawn for the family 3pcr„, 4d~,
Sf5„,6ggz, . . . , converging at the level (3d )'.

X. COMPARISON WITH NUMERICAL RESULTS

In this section we will make a comparison of the results
of our analysis with the numerical calculation of Ref. 16
carried out within the framework of the "decoupled l-
channels approximation. " We will first discuss the sizes
of the atom and subsequently discuss the energies of the
levels.

In Ref. 16 we calculated the averages of the radial dis-
tance r for states corresponding to principal quantum
number n ~4. We found for sufficiently high o.o a linear
relationship between r and ao with a slope of roughly 1.
From this linearity and from the scaling law that relates r
for atomic hydrogen to the case of arbitrary nuclear
charge Z [see Eq. (30) of Ref. 16], it is readily shown that
this quantity is independent of Z for sufficiently large ao.
Thus the size of the atom depends on the shape and size
of the dressed potential as determined by eo rather than
its overall strength Z. This is in agreement with the
present analysis, which shows that for sufficiently high o.o
the atom has the shape of a torus, the external radius of
which equals eo.

We will now make a comparison between our present
results for the energies of the levels and the numerical re-
sults in Ref. 16. Let us consider the states of lowest ener-

gy in the series (o,n„,5g, .. . . ), Iscrg, 2pm„, 3d5,
4fg„, . . . . In Fig. 5 we have given those levels corre-
sponding to n ~4, calculated by the method of Ref. 16.
As we predicted in Sec. VII, levels belonging to the same
family converge at high ao. It is clearly displayed, that
this is indeed the case in Fig. 5. From the correlation di-
agram, Fig. 4, we find that this family converges to the
level denoted by ( ls )'.

In Fig. 6 a comparison is made for the ground state
1 scr[g= r c(g1 )s'] between the asymptotic formula Eq.
(30) for E, , ~g~

—0 (with E
& q~=o obtained from Table I

of Appendix C) with the numerical result of Ref. 16. Ex-
cellent agreement is obtained up to quite low values of ao.
The agreement is even better than one may expect on the
basis of the estimate, Eq. (36). [Any discrepancy between
the analytical (dashed) curve and the calculated (solid)
curve at high ao is very likely to be ascribed to the fact
that we deal here in fact with a "decoupled l-channels ap-
proximation" (see Ref. 16), which we know to become
worse as ao becomes large. ]

In Fig. 7 a comparison between the analytical and cal-
culated curves is given for the other states appearing in
Fig. 5, 2pm„(ls)', 3d5&(ls)', and 4fg„( ls)'. Here we
have taken into account the effect of the centrifugal bar-
rier by simply adding m /2ao to the formula Eq. (30) [in
accordance with Eq. (33)]. Extrapolation of their asymp-
totes suggests that indeed the levels with

~
m

~

= 1, 2, and 3
originating from the ( ls)' level at high ceo, are connected
to the unperturbed hydrogenic states with n =2, 3, and 4
in the low-ao limit.

In Fig. 8 we have displayed the states of lowest energy
in the series (o „,m, 5„, . . . ), 2po „, 3dvrg, 4f5„,
Sgg, . . . , and the states next lowest in energy in the
series (erg, rc„,5g, . . . ), 2so, 3pvr„, 4d5~, Sf/„, . . . , for
n ~ 4. For all three families shown so far in Figs. 5 and 8,
we find that levels within a family are ordered with
respect to their magnetic quantum number (as predicted
in Sec. III). A typical difference with the former case,
Fig. 5, is that now in Fig. 8 two families (of states sym-
metric and antisymmetric with respect to reflections in
the xy plane) converge with the same asymptote, the level
denoted by (2p)' (see the correlation diagram Fig. 4).
This is in accordance with the discussion in Sec. VII,
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merical calculation (see Ref. 16). Energies are expressed in Rydberg units.

where we showed that for a main level of s' type, there is
only one corresponding family, whereas each main level
that is not of the s' type has two families associated with
it.

XI. CONCLUSIONS

that this Schrodinger equation is separable in the toroidal
coordinate system as O.p~ao. Explicit expressions are
given for its energy eigenvalues and its eigensolutions.
They correspond to a drastic reduction of the ionization
potential and a dramatic deformation of the atom. For
the ground-state energy we find

W have considered the structure of the hydrogene ave
atom in a circularly polarized laser field, as described y
a "dressed" potential if the photon energy becomes large
with respect to the ionization potential. We have shown
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APPENDIX A: DERIVATION
OF THE SCHRODINGER EQUATION

IN TOROIDAL COORDINATES {v], 8,$)

Expressing the Schrodinger equation, Eq. (1), in the
toroidal coordinates (r), 8,$) is most easily done, starting
from Eq. (6), in which we have adopted the circular-
cylindrical coordinates (p, z, {t)).

We first cast Eq. (6) in the form

1 +
t)p Bz

(m ——')
4 (p —ao) +z

2 2 1/2n[(p+ao) +z ]'/ (p+ao) +z 4(p, z ) =E+(p, z ), (A 1)

where we have set

@(p,z)=p'/ N(p, z) . (A2)

ap' az' aq' ae'

with S given by Eq. (10).
Substitution of the expressions for p and z in terms of rI

and 8, as given by Eq. (9), yields for [(p ao) +z ]'
[=r+, see Eq. (4)],

The transformation from circular-cylindrical coordi-
nates to the toroidal coordinates, (p, z)~(il, e), as given

by Eq. (9), can easily be shown to be orthogonal. Appli-
cation of the standard expression for the Laplacian for
such (two-dimensional) systems readily gives

APPENDIX B: DERIVATION OF THE NEXT
ORDER IN ao ' IN THE ASYMPTOTIC

EXPRESSION FOR THE LEVEL ENERGY

1 6
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In Sec. V we derived from Eq. (19) the expression, Eq.
(30), for the energy of the levels in the high-ao limit. To
find the next order in ao ', we expand Eq. (19) through
first order in p:

1 8 I & I r i i I

+7i/2g —i /2~+ (A4)

O
o

0
C:

0.3
0 2

0-1

0 ~ 0
0

I
' ! ' i I I I I i I

1.0 2.0 3 ~ 0 4 ~ 0 5 0 6 ~ 0 7 ~ 0 8 0 9 ~ 0 10.0

Making use of the expression for p in Eqs. (9), (A3), and
(A4) in Eq. (Al) then readily leads to the desired result,
Eq. (11).

In order that the full wave function 0'(p, z, P) be nor-
malized to unity we must have [see Eqs. (5) and (A2)]

0 8

0 4

(c)

I4(p, z)I dpdz=l . (A5)

-0 0

-0 2

-0.4

0 1.020304 ~ 05060708090100

I 1' lc(ge)l'4 dgde= 1 . (A6)

The Jacobian of the transformation of Eq. (9),
(p, z)~(r), 8), equals 4 . This yields for the normaliza-
tion of 4(g, e)

FIG. 9. Plots of x ' times the (normalized) solutions of the
one-dimensional Schrodinger equation with a logarithmic po-
tential, y, i~i{x) [=g„i~i{x)]as given by Eq. {27) corresponding
to the six lowest energy eigenvalues c ~&~. (a) The state of
lowest energy ( ~A,

~
=0, v= 1). {b) The nodeless excited states for

~A,
~

= 1, 2, and 3. {c)The excited states having a single node for
~k~ =0 and l.
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la 1 a'
gg2 g Qg g2 g82

+— + +Ing+pgcos8(31ng —4s& —lnp+21n2)+O(p In@) P ($, 8)=s P ($,8) .p p s p p (81)

Since the full problem, Eq. (14), is invariant with respect to refiections in the xy plane, the perturbation vanishes to all
orders between wave functions that are symmetric under the transformation 0~ —0 and functions that are antisym-
metric [to be specified by a superscript (+ )].

Therefore Eq. (81) can be solved up to order p in@, by applying first-order perturbation theory for nondegenerate
states (the twofold degeneracy of levels with

~
A, ~AO does not play a role), yielding

c„=cp+p p
—', 0 cosO 31n —4gp —lnp+21n2 d dO+0 p 1n p (82)

Note that the integral with respect to 0 equals either

f sin
~
A.

~
8 cos8 d 8,

or

J cos ik, i8cos8d8,

which is identically zero. We thus find that c„equals cp
up to order p ln AM. The relations (20) and (21) thus show
that expression (30) for E(ao) is correct to order
ln leap/ap.

APPENDIX C: THE SCHRODINGER EQUATION
WITH A LOGARITHMIC POTENTIAL

In this appendix we will discuss in some detail the solu-
tions of the one-dimensional Schrodinger equation, Eq.
(27).

The solutions of this equation can be expanded as

y(x)=x '+' g ln xg a x"
m =p

the coeKcients a „of which can be obtained from re-

I

currence relations.
In Fig. 9 we have plotted x '~ times the (normalized)

wave functions y ~z~(x)—which is the coinbination in
which they appear in Eq. (29) and which we shall hence-
forth denote by g ~i~

—corresponding to the six lowest-
energy eigenvalues c

~z~
as obtained from numerical in-

tegration of Eq. (27). From Eq. (Cl) we see that for x
small g i~(x) behaves as x . This shows that for s'
states, g ~i~ attains a finite value at x =0 in contrast to
states other than those of s' type [see Fig. 9(a)]. It also
explains why in Fig. 9(b) g ~z~

rises more slowly from the
value zero for p', d', and f' states, respectively. Note
that the maximum shifts to higher values of the argument
as ~A.

~
increases, which is due to the term ~A,

~
/2x in Eq.

(27), which acts as a centrifugal barrier and repels the
particle from the origin. Figure 9 demonstrates that g, ~z~

(for s' states) exhibits no cusp behavior as x tends to zero.
Indeed, from Eq. (Cl) it follows that the first derivative of
x ' g ~i ~(x) vanishes if x tends to zero. Note, however,
that the second derivative diverges logarithmically at
zero. Numerical values for the eigenvalues c

~&I
for v ~ 5

and ~A,
~

~ 4 are given in Table I.

TABLE I. Eigenvalues E, ~~~
of the logarithmic potential as determined by Eq. (27) for ~A,

~

&4 and
~%5

0.179 935
1.314 678
1.830 609
2.168 875
2.421 056

1.039 613
1.662 901
2.047 765
2.326 094

1.497 798
1.929 288
2.233 479

1.811 273
2.139 542 2.049 706
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"excess-photon ionization" (EPI).
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An elementary calculation from Eq. (9) and Eq. (13) yields
r =PA ' ', sinO=sinOA ', with A = 1+(9/2ap)'
+2(f /2ap)cosO. Our statement then directly follows by not-
ing that in the limit of close approach to the circle of charge
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To show this, we express the normalization integral of Eq. (17)
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f I ~4(r, O)~ P rdrdO= f" I ~$„($,0)~ P gdgd8,
from which Eq. (25) follows directly by taking the limit for
p&0 (i.e., ap~ ~ ).

2sIn fact, it corresponds to it for ~A,
~

= l+ —', i.e., for half-integer

values of I (
—

—,', ~, —,', . . . ).
The normalization of the wave functions N z(r, O), Eq. (31),
can be easily verified by substitution of the expression Eq.
(29). In the same way one can easily verify that Eqs. (29) and
(30) satisfy the Schrodinger equation, Eq. (32).
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tute families can, apart from the energy position argument,
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influence of the centrifugal barrier becomes negligible and
consequently the energy of the levels and the associated states
4(p, z) of a family converge to each other (see the end of Sec.
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same main level v~A. ~, since as cto~ oo their energies become
equal while they converge to the same function 4(p, z )

[ =p '~~4'q ~~~(r, 9)] which does not depend on m.
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and the contribution of the singularity of (p ')

~

as m
~
10
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can be checked for being a reasonable choice by comparing
this value making use of the data of Table I with the wave-
function plots in Fig. 9 of Appendix C.
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power. Obviously this deviation is a result of the approxi-
mate approach followed in Ref. 16.
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