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We develop a theory of the Keldysh-type appropriate for femtosecond excitation of atomic hy-
drogen. The new theory is tested by comparison with results of a direct numerical integration of the
three-dimensional Schrodinger equation. In the case studied it is found that several of the standard
approximations used in Keldysh calculations and in Fermi golden rule calculations are not valid. In
particular, the slowly varying population approximation is not valid, and inhibition of ionization by
coherent population trapping can occur.

I. INTRODUCTION

The first experimental observation of above-threshold
ionization (ATI) a decade ago' has stimulated a great
deal of work to develop the theory of the process by
which an electron absorbs several extra photons beyond
the minimum needed to ionize the atom to which it was
initially bound. In some experiments more than 30 peaks
have been seen in the spectrum of the electrons indicating
the absorption of this many excess photons by the elec-
tron. The theory is complicated by the fact that ATI is
fundamentally a high-order multiphoton process, by the
fact that ATI is a saturated process in which successive
order processes do not necessarily decrease in size, and by
the fact that most ATI experiments have been carried out
in xenon, an element with a rather complicated energy-
level structure. Nevertheless, a certain class of theories
has met with some success in modeling ATI cross sec-
tions. The most widely used theory was proposed by Kel-
dysh in 1965, and later modified by several authors.
The modified theory is now called the Keldysh-Faisal-
Reiss (KFR) theory.

At present, work is going on to extend ATI experi-
ments into the femtosecond regime and to atoms other
than the noble gases. Recently, Javanainen and Eberly
have compared several Keldysh models of the KFR type
with the results of a numerical integration of a one-
dimensional hydrogen atom, finding poor agreement be-
tween theory and numerical experiment. In the present
paper we will develop a variant of the Keldysh theory ap-
propriate for short pulses and test it by comparing its
predictions with a direct numerical integration of the full
three-dimensional Schrodinger equation for single-photon
ionization of hydrogen.

The numerical integration of Schrodinger's equation
reveals several new ATI effects. In order to use the nu-
merical integration as a test of Keldysh theory it is neces-
sary to understand these effects. The first effect is inhibi-
tion of ionization due to coherent population trapping.
The result of this effect is that the electron is partially
trapped in its initial bound state even though the fields
are of exceptional intensity, 2.2X10' W/cm . Second,

we find that the slowly varying population approximation
(SVPA) fails in this example of ATI. The failure of the
SVPA will be discussed in Sec. V. The SVPA is used in
the derivation of several theories of ATI, and in the
derivation of Fermi s golden rule. Inhibition of ioniza-
tion due to population trapping will be described in Sec.
III.

In Sec. IV we will present a rigorous derivation of a
variation of Keldysh theory beginning from
Schrodinger s time-dependent equation. In Sec. IV we
compare the proposed theory with the results of the nu-
merical integration of Schrodinger's equation.

Several theories resembling Keldysh's original proposal
have been discussed in the literature. ' ' The best known
modification to Keldysh's original proposal is the KFR
theory. These theories are sometimes called Volkoff
final-state theories for reasons that are explained in the
Appendix. Here we adopt the more common practice of
calling them "theories of the Keldysh type. " The theory
developed in this paper yields formulas closely resem-
bling the Keldysh formulas, although the derivation is
very different. In the Appendix we compare the conven-
tional (KFR) Keldysh predictions with the results of the
numerical integration, and discuss the relationship be-
tween our theory and the conventional Keldysh theory.

II. NUMERICAL METHODS

Although typical ATI experiments require the absorp-
tion of many photons to ionize the atom, in the example
that we investigate a single photon takes the electron
from the initial state to the continuum of unbound states.
The initial state is taken to be n =3, l=2, and m =2 in
hydrogen. The peak intensity of the laser pulse is taken
to be 2.2X10' W/cm . The field is linearly polarized,
with frequency equal to —,

' of the Rydberg frequency, with
a Gaussian-shaped envelope and a duration of three opti-
cal periods full width at half maximum (FWHM). This
choice of initial state and field polarization simplify the
excitation in an important way. Because the dipole ap-
proximation is made throughout, the dipole selection
rules for linearly polarized light forbid transitions from
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the l=2, m=2 initial states to the l=1 states. This
prevents, for example, a Rabi oscillation between the
n =3, l= 2 and the n =2, l= 1 states that would greatly
complicate the problem.

The numerical integration of Schrodinger's equation is
carried out in the following fashion. The equation is in-
tegrated on a complete set of states, the set of eigenstates
of the Hamiltonian of a hydrogen atom in a spherical po-
tential well. It is assumed that the atom is at the center
(r=O) and that there is an infinite spherical potential bar-
rier at radius r =R. The resulting set of states is com-
plete for solutions of Schrodinger's equation satisfying
the boundary conditions r4'(r)=0 at r=O and r =R. To
guarantee that r 4(r) =0 at r =R, we verify that the wave
packet representing the ionized electron has not reached
the boundary r =A at the end of the pulse. The problem,
then, is a well understood Sturm-Liouville problem. We
make the dipole approximation and neglect the pondero-
motive forces. These are the only significant simplifi-
cations. The dipole approximation is well justified in the
regime we will study. Ponderomotive effects, which are
due to large gradients in the electric field strength, can
greatly modify ATI spectra. These effects are strongly
dependent on experimental parameters and are largely
classical. We will simplify our theory by omitting this
effect, which can be easily grafted on to describe a partic-
ular experimental situation.

The advantage of integrating the equation on a com-
plete set of discrete, physical state is that bound states
may be removed from the set during the integration to
see what effect they have on the ATI energy spectrum.
This tells us unambiguously the origin of effects such as
the inhibition of ionization. Using a physical basis set
and knowing which bound states are of importance dur-
ing the excitation allows us also to generalize results to
other one-electron atoms. It is easily seen from the
energy-level diagrams of lithium and sodium that the re-
sults would differ little in the m=2 case if the atom were
lithium or sodium. In recent years, another numerical
method, the Sturmian method, has become increasingly
popular in problems of the sort discussed here. It should
be noted that the Sturrnian basis states are not equivalent
to the hydrogenic basis states drawn in Fig. 1. A recent
review of the advantages and disadvantages of the two
methods is given by Susskind and Jensen.

The energy-level diagram is drawn in Fig. 1. For each
azimuthal quantum number l there are an infinite number
of states. The positive-energy states do not form a con-
tinuum but are at discrete energies due to the cavity
boundary conditions. To make the diagram more legible
every fifth positive energy state is plotted. In Fig. 1 the
thick arrows are a photon's length in energy and are
drawn to represent the most probable path that popula-
tion takes during the excitation. The population also fol-
lows the thin lines, but these excitation paths do not con-
tribute significantly to the final spectrum.

More than 1600 states (1=2, 3, 4, 5, and 6) are used in
the integration. Many more states than are necessary for
the integration are kept in the basis. In particular, we
keep states of high energy and high angular momentum
that receive negligible population and that can only re-
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FICx. 1. Energy-level diagram for the numerical integration
of Schrodinger's equation. The thick arrows represent the most
probable paths taken by population during the excitation. The
population also follows the thin lines these paths contribute
insignificantly because of the smaller dipole moments. One in
five of the unbound states are plotted. Altogether over 1600
states were used.

ceive population through many-photon transitions. To
produce the result shown here the step size of the time in-
tegration is made sufBciently small that the wave func-
tion 4' remains normalized to ten significant figures
throughout the integration. We then repeated the nu-
merical integrations with a smaller step size, so that the
wave function remained normalized to 15 significant
figures. The results remained unchanged.

III. NUMERICAL RESULTS

In this section we will discuss some of the complica-
tions and effects revealed by the numerical integration. It
is necessary to understand these complications ia order to
test the Keldysh-type theories in subsequent sections.

In Fig. 2 we have plotted the results of integrating
Schrodinger's equation. The solid curve represents the
energy distribution of the electron at the end of the pulse.
The curve is constructed by dividing each photon-energy
interval (of energy —,

' Rydberg) into ten bins. The amount
of population in each bin is plotted in Fig. 2. The bound
states are drawn as rectangles; the population in unbound
states (the ATI spectrum) is plotted with a smooth curve
rather than a histogram to make comparison with the
other theories easier. There are four ionization peaks, al-
though the fourth, with 0.09% of the population, is not
visible in the figure.

In Fig. 3 is plotted (solid line) the population of the ini-
tial state (n=3, 1=2, m=2) during the pulse. The pulse
peaks in intensity at t=0 and has a FWHM of 3T„,
where T is the period of the electric field. From Fig. 3 it
is evident that when the pulse is the most intense
(t =0+1.5T„) almost no net population leaves the initial
state. The rapid oscillations in the population of the ini-
tial state have frequency of twice the optical frequency of
the electric field. There are counter-rotating oscillations
that are normally discarded in the rotating-wave approxi-
mation.

This inhibition of ionization may be characterized as
an intense-field modification of the Fermi golden rule
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parts, the initial state 4, defined above, and the final state
By +& we mean the coherent superposition of all

positive-energy states. This subset of the complete set of
states of Fig. I was chosen because experience with the
numerical integration indicated that discarded states play
little direct role in the excitation. Then Schrodinger's
equation is

d%'g
ih =[Ho+8;„,(t)]%'~

dt

The effect of taking the projection of the equation on ( p ~

was to replace the canonical momentum operator p in the
interaction Hamiltonian H;„, with a c number p. At the
end of the pulse, p is the physical momentum of the ion-
ized electron.

The most important approximation in the derivation
will be called the "plane-wave approximation. " By the
plane-wave approximation we mean that

+ Bo+H;„,(t) i R—
dt

(2)

mc
A p+ A A c(pr)

2mc

+ pHO+ iW 4 t
dt

~ ~ ~

where Ho is the atomic Hamiltonian and H,„,(t) is
—ep 3/mc+e A- A/2mc .

Now writing the final state as g c(p, t) ~p), a super-
position of plane-wave states, and taking the projection of
Eq. (2) on (p~ yields

i&B ie )P

(4)

The assumption is, then, that the Coulomb potential per-
turbs the final states insignificantly. The plane-wave ap-
proximation is closely related to the zeroth-order Born
approximation. It is well known' that the first-order
correction to the zeroth-order Born approximation is
small in transitions from an initial bound state of quan-
tum number l to final unbound states of quantum number
l +1.

With this approximation, Eq. (3) may be immediately
integrated to give

~c(p, t)~ = —f dt'exp —' f dt" P P +H, „,(t")
2m p 80+H~„, i', &II;—(t')

(
G

dt'

In the interaction Hamiltonian of Eqs. (2)—(5) we have
kept the A. A term even though a simple transformation
might have removed it from the dipole-approximation
Schrodinger equation at the start. In the dipole approxi-
mation, the A A term has no effect on the ATI spec-
trum. If 4 is a solution of the Schrodinger equation with
the A. A term, and if 4 is a solution of the Schrodinger
equation without the A- A term, then %' and 4 are relat-
ed by a simple transformation

A. A
exp — dt

2mc'
e2A A . d

2mc dtr, e A AX exp —— dt'
2mc

d—
dt

(7a)

mula for c(p, t) that uses &I', instead of q&;. Setting
&I&, =exp[ —i (e /2mc A') f 'A. A]&P;, and using

i ~, e A(t') A(t')t(r, t) =exp — dt'
2mc

%(r, r) . (6)
yields

The gauge transformation, Eq. (6), is sometimes called a
contact transformation.

The Schrodinger equation for 0 and the Schrodinger
equation for &I& predict (in the absence of approximations
beyond the dipole approximation) the same physical re-
sults. Next in this section we will show that our theory
[Eq. (5)], with its approximations, predicts the same phys-
ical results whether it is derived from the Schrodinger
equation for +' or the Schrodinger equation for O'. This
corrects a well known' '' defect in the conventional Kel-
dysh theory, which gives different physical predictions
depending on whether it is derived from the Schrodinger
equation for 4' or the Schrodinger equation for V.

Let us now transform Eq. (5), using Eq. (6), to get a for-

~c(p, t)~ = —f dt'exp —f dt"

2
ep. A dX p o

— —ifz, 4, t'
mc dt'

(7b)

Equations (5) and (7b) are equivalent and must give the
same predictions if properly evaluated. Equation (6) may
be thought of simply as a change of variables to simpify
the numerical integration of Eq. (5).

Equation (7b) is just the formula that would have fol-
lowed from a Schrodinger equation that had no A A
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FIG. 4. Electron energy at the end of the laser pulse. The
solid line is the prediction of numerically integrating
Schrodinger s equation. The dotted line is the prediction of the
Keldysh-type theory proposed here, Eq. (7).

term in the interaction Hamiltonian. We have shown,
then, that our theory gives the same physical predictions
whether it is derived from the Schrodinger equation for +
or that for 41. This is true because we kept the operator
d/dt in the matrix elements of Eqs. (5) and (7b). If, by
contrast, we were to discard the d/dt term in Eq. (5),
then such a theory, if it were derived from the
Schrodinger equation for %', would give physical predic-
tions difFerent from those of a theory derived from the
Schrodinger equation for %. In Sec. V we will show how
to remedy this problem in an approximation in which the
d /dt operator is discarded.

To make a quantitative comparison between the nu-
merical integration of Schrodinger s equation and the for-
mulas derived above we will use the numerically integrat-
ed initial state 4;(t) defined in Sec. III. In practice we
solve Schrodinger's equation without the A. A term to
get t; directly, and then use Eq. (7b). To get an energy
spectrum we sum all of the plane-wave states

~ p ) in each
energy interval (E,E +dE), where dE is the bin width of
the spectrum of Fig. 2. This is a standard method of cal-
culating a cross section with the Born approximation. A
good textbook discussion of its justification is given by
Gottfried. ' The approximation is good except near the
E=0 ionization threshold. At the E=0 ionization
threshold the density of plane-wave states goes to zero,
whereas the true density of states does not go to zero at
E=0.

In Fig. 4 we plot (dotted line) the results of our full
theory: the energy spectrum predicted by Eq. (7b). The
agreement is good enough to give us confidence in our
numerical methods. The third and fourth Keldysh ion-
ization peaks have the wrong side-lobe structure in com-
parison to the numerical integration, but the right cross
section and shape for the central part of the peak.

The theory presented here, Eq. (7b), is basically
Schrodinger's equation in the momentum picture
simplified by two approximations. The first approxima-
tion was to discard from the basis set of Fig. 1 some
unimportant states. Experience with the numerical in-
tegration suggests that this approximation is very good.
The second approximation is the plane-wave approxima-

tion, Eq. (4). Finally, in using Eq. (7b) to calculate a cross
section, the plane-wave density of states is used. This ap-
proximation is good except near the threshold of ioniza-
tion. '

V. SLOWLY VARYING POPULATION
APPROXIMATION

In Sec. IV we used the numerically integrated initial
state %, (t) in order to test how well Eq. (7b) predicts the
ATI spectrum. This strategy was useful in testing theory,
but the strategy is not of much use in modeling experi-
ments. In order to make the theory of practical value in
situations where Schrodinger's equation has not been or
cannot be integrated, it is necessary to use an approxi-
mate 4;. In this section we will review a standard ap-
proach to choosing an approximate 4;, which we will call
the slowly varying population approximation. The re-
sults of this section are also necessary in order to com-
pare our theory with the standard Keldysh theories,
which are formulated in the slowly varying population
approximation.

By the slowly varying population approximation we
mean the assumption that the population of the initial
state remains constant during the excitation, or is slowly
varying. This approximation is commonly made in order
to use formulas such as Eq. (7b) to calculate transition
rates, or equivalently cross sections. To see the effect of
this approximation of Eq. (7b), consider the operator
Ho ikd/d—t in the matrix element of Eq. (7b). This
operator, acting on any state yields

Ho —i A g a, (t)exp( —iE, t /A')
~li )

1

da;(t)
exp( iE, t /fi ) l i ) .—i,. dt

In Eq. (8), Ho is the atomic Hamiltonian, E; is the energy
of the ith state, and the a, (t) are the probability ampli-
tudes of the states. In the slowly varying population ap-
proximation it is assumed that each amplitude a;(t) is
constant in time or so slowly varying that da, /dt is negli-
gible. By the slowly varying population approximation
we mean, then, that Ho —i Ad /dt disappears from the ma-
trix element of Eq. (7b).

In Sec. IV it was pointed out that conventional Kel-
dysh theory predicts different physical results, depending
on whether it is derived from the Schrodinger equation
for 4 or from the Schrodinger equation for %. This
difficulty is avoided if the slowly varying population ap-
proximation is correctly applied.

The next step is to apply the slowly varying population
approximation to Eq. (5). Since the interaction Hamil-
tonian now has the A- A term in it, we apply the trans-
formation Eq. (6) to the wave function of Eq. (8). Consid-
er the operator 80 —i Ad /dt + e A. A/2mc acting on
that state
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.&d e AA + iyt, e AA
2mc', '

& — 2mc'
exp( —iE; t /trt)

~
i )

da, (t) i t, e'A A
exp ——I dt'i,. dt 2mc'

exp( iE—, t/fi)~i ) .

If the A A term is in the interaction Hamiltonian, then
the slowly varying quantity is the amplitude a, (t) of Eq.
(9) [assuming that a;(t) is the slowly varying quantity of
Eq. (8)]. Consequently, the slowly varying population ap-
proximation applied to Eq. (5) means that da, (t)/dt is
negligible and Ho —iA'd/dt +e A A/2mc is discarded
from the matrix element of Eq. (5). As a result, applica-
tion of the slowly varying population approximation to
Eq. (5) yields exactly the same formula that application of
the slowly varying population approximation to Eq. (7b)
yielded.

To actually model experiments, or calculate cross sec-
tions, a further approximation is usually made: it is as-
sumed that the population remains entirely in a single
bound state rather that the three that make up the %, (t)
used in Sec. IV. This further approximation will not be
investigated here. Instead the numerically integrated
4; (t) will be used in our test of the theory.

The slowly varying population approximation and its
consequence in Eq. (7b), Po ihd/—dt=O, are made so
commonly in the theory of multiphoton processes that it
is worthwhile to investigate its validity here. It is also
used in the standard Keldysh approach, the KFR theory,
to be discussed in the Appendix. So, in order to compare
our theory, Eq. (7b), with the KFR theory, we must ap-
ply the slowly varying population approximation to Eq.
(7b). To do this, we remove Ao ibid/dt from—the matrix
element of Eq. (7b) and plot the results.

In Fig. 5 is shown (dotted line) the energy spectrum
predicted by Eq. (7b) with the Ho —ih'd/dt operator dis-
carded. The ionization peaks predicted by the theory are

E
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FIG. 5. Electron energy at the end of the laser pulse. The
solid line is the prediction of numerically integrating
Schrodinger's equation. The dotted line is the prediction of the
Keldysh-type theory proposed here [Eq. (7)] in the slowly vary-
ing population approximation.

in the right places, but the cross section of the first Kel-
dysh peak is wrong by a factor of 2 and the cross section
of the second Keldysh peak is wrong by a factor of 4.

The d/dt operator plays such an important role in Eq.
(7b) because of the rapid oscillations in ground-state de-
cay, as shown in Fig. 3. These rapid oscillations have a
frequency of twice the frequency of the electric field.
They are sometimes called counter-rotating oscillations
because they are due to rapidly oscillating terms in
Schrodinger's equation that are discarded in the
rotating-wave approximation (RWA). In terms of Eq.
(8), the rapid oscillations mean that the functions a, (t)
have parts that go as sin(2cot) where co is the optical fre-
quency. As a consequence, Ho —ikd/dt gives a large
contribution in Eq. (7b).

VI. CONCLUSIONS

We have derived directly from Schrodinger's equation
a very general formula of the Keldysh type. The general
formula is valuable in two respects. First, it is this gen-
eral formula that makes possible a useful comparison of
Keldysh theory with the results of the numerical integra-
tion of Schrodinger's equation. The general Keldysh
theory agrees in some respects with numerical integration
and disagrees in others. The comparison is in effect a nu-
merical test of the first two major approximations neces-
sary to derive Keldysh-type theories. The general formu-
la is valuable in another respect. It allowed us to correct
a well-known' '' defect in the standard KFR Keldysh
theory. The standard theory gives different physical pre-
dictions depending on whether it is derived from the
Schrodinger equation with the A A term or alternately
from the Schrodinger equation without the A A term.
We have shown that our theory gives the same physical
predictions in either case. We have further shown how to
preserve this invariance in the limit of the slowly varying
population approximation.

Next we have discussed at length the slowly varying
population approximation. We have done this for two
reasons. The first season was to test the agreement of our
Keldysh theory in this limit with the numerical integra-
tion. This is important because so much of the theory of
multiphoton processes is done in the SVPA. The second
reason is that the standard Keldysh theory is in the
SVPA, and so the SVPA is the limit in which our Kel-
dysh may be compared with standard KFR Keldysh
theory. We have shown that ours is not equivalent to the
standard KFR theory (Appendix A). It is by this set of
steps that we have shown how to derive theories of the
Keldysh type directly from Schrodinger s time-dependent
equation, and it is by this set of steps that we have nu-
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merically tested the series of approximations necessary to
derive the theories.

Perhaps the most important characteristic shared by
all the theories of the Keldysh type is the plane-wave ap-
proximation, Eq. (4). Equation (7b) is very nearly
Schrodinger s equation, simplified only by the plane-wave
approximation; the essential states approximation in this
case is a very good approximation.

fields assumes that a single matrix element connects the
initial atomic bound state ql; to an unbound (dressed)
state +I. The final state %&(p, r, t) is assumed to be the
Volkoff state, an exact solution of Schrodinger's equation
for an unbound electron in a time-varying electric field.
With these assumptions the probability of scattering a
bound electron into a plane wave %&(p, r, t) of momen-
tum p is
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~M&;(p)~ = —f dt'(%'&(p, r, t)~H;„,(t')~i%', (r, t'))

(A 1)

where H;„, is the interaction Hamiltonian. The Volkoff
state is

APPENDIX

In this Appendix we will write down the standard Kel-
dysh formula describing ATI of atoms in intense fields,
namely the KFR theory, of Keldysh, Faisal, and Reiss.
The standard formula will be compared with the formula
derived in Sec. IV and with the numerical solution of
Schrodinger's equation. We will show that the two
theories predict different results.

A physically appealing derivation of the transition
probability ~MI; ~

describing an ATI transition in intense

4&( pr, t) =Voexp(ip r/A)

X exp —— — dt' +H;„,(t')
fi — 2m

(A2)
where %o is the inverse of the square root of the quantiza-
tion volume. The published Keldysh-type theories share
a form similar to Eq. (Al). Reiss derives an equivalent
formula from scattering theory. The equation is, in our
notation,

~c (p, t)
~

= —f dt'exp —f dt" +H;„,(t") (p~H;„, (t') ~i%', (t') ) (A3)

In Eqs. (A1)—(A3) the interaction Hamiltonian H;„, is
—ep A/mc+e A. A/2mc .

Now it is straightforward to see the relationship be-
tween our theory, Eq. (5), and the KFR theory, Eq. (A3).
In the KFR theory, a cross section or rate is calculated
from Eq. (A3) by choosing the initial state +; to be a
single bound state of constant population
=exp( —iE, t/R)~i ). One can readily verify that substi-
tuting this initial state into Eq. (5) yields Eq. (A3).

To further clarify the differences between our theory
and the KFR theory, we will show how to us our theory,
Eqs. (5) and (7b), to calculate an ionization cross section
from an initial bound state of constant population ~i ). It
follows from the discussion of Secs. IV and V that the
proper initial state of constant population to put into Eq.
(5) to get an ionization cross section is

ql;=exp[ i (e /2m—c A) f A. A]exp( iE, t/fi)~i ) . —

The proper initial state of constant population to put into
Eq. (7b) is 4'; =exp( —iE;t/A')~i ). To get the KFR equa-
tion and the related Keldysh formulas, we must put
4;=exp( iE, t/A)~ii —) into Eq. (5). Still another way to
characterize the difference between the theories is this:
our theory uses the dressed initial state; the KFR uses the

initial atomic state unperturbed by external fields.
It was shown in Sec. V that the slowly varying popula-

tion approximation fails in the example of ATI discussed
here. The approximation, however, is successful in a
wide class of problems and, in particular, may be useful
in modeling other examples of ATI. For these reasons, it

C

gp l I I I I I I

-0.25 0.0 0.25 0.50
electron energy (units of 13.6 eV)

FIG. 6. Electron energy at the end of the laser pulse. The
solid line is the prediction of numerically integrating
Schrodinger's equation. The dotted line is the prediction of
conventional Keldysh theory.
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is worth comparing the predictions of our theory, Eq.
(7b) (in the slowly varying population approximation)
with the KFR theory. We will show that the two
theories give different predictions. The prediction of our
theory is given in Fig. 5, and described in Sec. V. In Fig.

6 is shown (dotted line) the prediction of Eq. (A3). The
initial state 4, (t), used in Eq. (A3) is as defined in Sec.
III, the coherent superposition of three bound states.
Comparison of Fig. 5 (our theory) and Fig. 6 shows that
the theories predict different spectra.
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