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Interference effects in electron-ion recombination.
III. Excited target states and continuum-continuum coupling
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Provision is made for the existence of excited target states and projectile continuum-continuum

coupling, within the framework of the interacting resonance theory of electron-ion recombination
described previously [Phys. Rev. A 36, 4662 (1987); 38, 1820 (1988)]. This "extended" theory makes

explicit what was merely implicit in these earlier works. Dielectronic recombination probabilities,
which include the eAects of interaction and interference between resonances, are derived for two
model systems: (a) A target ground state supporting two coupled projectile continua, and one excit-
ed target state as a closed channel; (b) a ground and first excited target state, each supporting one
projectile continuum, and a second excited target state as a closed channel. Explicit calculations are
performed for model (b), wherein are included Rydberg series of fully interacting resonances built
on each of the two excited target states. The probability of excitation from the ground to the first
excited target state is also obtained for model (b). This probability includes the eft'ect of the interac-
tion and interference between resonances, as well as the interference between resonance and direct
excitation processes.

I. INTRODUCTION

In this work, an "extension" of the theory of interfer-
ence effects in electron-ion recombination is described.
That theory was expounded upon in earlier papers of this
series (Refs. 1 and 2, to be referred to as I and II, respec-
tively). Provision is now explicitly made in that theory
for (i) the existence of more than one singly excited target
state; (ii) the coupling among ground and singly excited
target states through interaction with the projectile elec-
tron, in its several continua; (iii) the coupling between
projectile continua due to interaction with the target, in
its ground and singly excited states.

These often important parts of any complete treatment
of the recombination problem were contained only impli-
citly in papers I and II, where it was emphasized that
wave functions in the (initial-state) P space were assumed
to diagonalize the P-space Hamiltonian. However, the
implications of this assumption were not fully examined.

The effect of these considerations on calculations of the
dielectronic recombination (DR) probability are prob-
lematic, and of considerable current interest. Our intent
here is to improve the present DR formalism, as
exemplified in papers I and II, to the point where such
problems can be treated successfully.

The notation and procedures adopted here are identi-
cal to those described in detail in paper I. As in that
work, we use the Feshbach notation, as adapted for
recombination problems by Crau and Hahn.

Our work has implications for the calculation of
electron-ion impact excitation probabilities, and in this
area, it represents a continuation of the past efforts of
many other groups. These prior results have been sum-
marized and discussed in several review articles. Our
formulation of the excitation probability [Eq. (44)], which

includes interacting resonance and interference effects,
may be seen as an extension of the work of Pindzola et
al. Other recent work in the area of resonance excita-
tion, but which does not include the effects of interfer-
ence, has been reported in Refs. 10—14. Resonance exci-
tation is generally thought to be of significance in the
evolution of nonequilibrium plasmas, especially plasmas
containing highly charged ions.

In order to implement our program, an explicit separa-
tion of the incoming channel (one target state and one
continuum partial wave) from all the other relevant P
space channels is performed. That part of the P-space
projection operator which projects onto the incoming
channel will henceforth be referred to as P&. All other
P-space states will be assigned to the projection operator
P2, i.e., such that

P=P, +P
P ) P2 P2P

&

=0

The P, and P2 spaces are connected via the electron-
electron interaction operator V= g, & (1/r, ), whenever
P, VP, =(P2 VP, ) WO. See the remarks following Eq. (2)
for a definition of the projection operators and the Ham-
iltonian governing this electron-ion system.

In Sec. II, the set of relevant Feshbach equations is
summarized, and an explicit general solution of these
equations is obtained, when P2 contains just one state.
Using these results, in Sec. III two model problems are
considered. Explicit forms of the DR probability are ob-
tained for each model, in the "pole approximation" [see
discussion preceding Eq. (23)], and when just a single in-
coming electron linear momentum contributes. These
problems feature (a) two coupled continuum partial

40 558 1989 The American Physical Society



INTERFERENCE EFFECTS IN. . . . III. 559

II. FC)RMALISM

As discussed in the Introduction, the full P-space pro-
jector P is first divided into two parts. These are P, ,
which projects onto the incoming channel (a target state,
with N electrons bound, coupled to a projectile electron
state of fixed continuum partial wave), and its P-space
complement P2, see Eq. (1). From Eq. (3) of paper I, the
coupled Feshbach equations ' for this system become

Pi VP2'IIp, +P& VQ+g (E P]HoPi )+p,

2 I Pi 2 Q Q 2 0 2 P2

QVP)+p +QVP2qIp + QDR +~ =(E—QHoQ)+(2,

RDQ%'g =(E RHoR )O~—
(2)

where D ~ g;(r; r. , ) is the electron-photon coupling
operator, Ho is a sum of the kinetic energy operators for
all electrons, plus the diagonal (in P, , P2, and Q) part of
the electron-electron interaction operator V, and E is the
total system energy. Subscripts on wave functions denote
projected quantities; e.g. , 0'p =P, +, 0'z —=P2+, etc. We

I 2

note that Eq. (2) is equivalent to the full Schrodinger
equation for this problem.

We summarize the characteristics of the projectors
P, , P2, Q, and R as follows. (1) Together they form a set
of mutually orthogonal and idempotent operators cover-
ing the space of physically meaningful wave-function
solutions of Eq. (2). The construction of such a set of
operators is possible in principle, albeit sometimes
difficult in practice, especially for target ions containing
two or more electrons. '' (2) Q projects onto the space of
wave functions with N+1 (all) electrons bound, and no

waves, each computed in the field of the target ground
state, and one target excited state as a closed channel; (b)
one continuum partial wave computed in the field of the
target ground state, one continuum partial wave comput-
ed in the field of the first excited target state, and a
second excited target state as a closed channel. As in
model (a), the two continua are coupled via interaction
with the target.

The excitation probability is also described for model
(b). Hence, as in calculations based on multichannel
quantum-defect theory (MQDT), ' predictions of proba-
bilities for both DR and excitation are obtained in a
unified theory.

Explicit calculations of both the DR probability P
and the excitation probability P" are performed for mod-
el (b). "Fully interacting" Rydberg series of closed-
channel resonances are included in both calculations.
The term "fully interacting" is used here in the sense of
paper I; also, see the remarks following Eq. (23) for a
definition of this term. Throughout, all quantities are in
atomic units.

In Sec. IV, the results of Sec. II are generalized to al-
low for the existence of more than just two P-space states.
The efT'ects of direct radiative coupling between initial
and final states, as described in detail in paper II, are then
added in an ex post facto manner.

photons; R projects onto the space of wave functions
with N + l electrons bound and one photon P:P

&
+P2

projects onto the space or wave functions with N elec-
trons bound, one electron in the continuum, and no pho-
tons. Other possibilities are ignored; i.e., one or more
photons in the Q and P spaces, two or more photons in
the R space, and more than one electron in the P-space
continuum. For recombination and excitation problems,
the most important states in the Q space are doubly excit-
ed, while the most important electronic states in the R
space are singly excited. The bound component of the P
space is usually limited to ground and singly excited
states.

The second and fourth equations in Eq. (2) can be
solved formally in terms of +p and +& to give

PP:gP (P2 VP& PP +P2 VQq g )

+~ =g~RDQ'Pg

where

(3)

(4)

gP = (E P2HoP—2 )

and as in Eq. (4) (of paper I)

g~ =(E—RHoR )

=O'P +g 'P P, V'Q+g,

where

V:V+ VP2gp P2 V

and where 4 p is the P j -space solution of the equation
1

(E P]HoP) P) VP2gp P2 VP) )N 'p =0

The tilde indicates an operator or function modified by
coupling between the P spaces, while the prime reflects
the influence of the P2 space on the P&-space functions,
or vice versa. At this point in the development, the
prime may be considered to be a redundant label.

The corresponding P, -space propagator is given for-
mally by

g p =(E PiHoPi Pi VP2gp, P2VPi ) (10)

As per the development leading up to Eq. (15) (of paper
I), the individual Q-space wave functions 4& ——(a~+&a
are then given (but still formally) by

4'g = g (0 ') PGgtt(P~ V 'P, C& P
P

where the (a~ are eigenstates of QHoQ, such that
( a

~ QHo Q = ( a s, and the Q-space propagator is

A formal solution for +~ may be obtained in terms of
1

Og as

%P:@P +g P P)( V+ VP2gP P V2)Q%
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Gg = (E—e —( a ~DRgR RD (a &
—

& a
~ VPzgj Pz V ~a & g, =(E—E,—(i~}VP g P, V~i)) (20)

(a—}V P,g,' P, V')a&)-' (12) (no prime) and the P-space interaction A, has the elements

The Q-space mixing operator 0 has the elements X,, =&i~VP,g, P, v~j& . (21)

fl t3=6 j3
—

( 1 —6 ts) Gg A ts,

which depend upon the interaction A, with elements

A j3= (a},DRgjiRD ~p)+ (a~ VPzg~ Pz~p)

(13)

&t g p Ij) =(~ '),,g, , (22)

By the same means, the full P&-space propagator is ob-
tained as

+&aiV'P, g,' P, V iP& . (14)

= y (C,RD~a) y(n-'). ,G~,&P~V'P, e,' ) .
A p

(15)

The formal DR probability amplitude, from Eq. (8) (of
paper I), is then

M = ( N ji RDQ iIIg )

= g (C RD la &+~.

in Eqs. (17), (19), and (21), if only a single continuum elec-
tron linear momentum participates, then co=6. In gen-
eral, Eqs. (11), (12), and (14) for the Q-space wave func-
tions, and mixing operators 0 and A are valid, but now
Eqs. (17) and (22) describe the relevant coupled P~-sp ac e
functions. This completes the explicit solution of the
coupled (P, Q, and R spaces) channel recombination
problem, for two P-space states, and without direct radia-
tive coupling between initial (P space) and final (R space)
states. Both the generalization to more than two P-
states, and the inclusion of direct radiative coupling can
be performed ex post facto. See Sec. IV.

= & &tlVPzgp PzVil&+ pj,
l+I

(16)

where i (or j) labels the initial target state, incoming con-
tinuum partial wave, and a particular value of the incom-
ing continuum electron linear momentum. The total en-
ergy in the incoming channel is Ej;—= (i ~P, HOP, }i ), and

1

4 'j, ——(i ~4 j ). The solution of Eq. (16) is

(17)

where 4j, ; (no prime) is the single-momentum P, -space

asymptotic wave function which solves

(E —ej, ; —(i
~ VPzgt, Pz V}i ) )4j;=0,

and the P-space mixing operator co has the elements

a~;, =6;, —(1 —5;, )gj;A, ;, .

(18)

(19)

In Eq. (19), the single (linear) -momentum P, -space prop-
agator is given by

In order to facilitate actual calculations based on Eq.
(15), it is first necessary to construct explicit solutions for

, the coupled asymptotic state in the incoming chan-
1

nel, and g ~, the coupled P&-space propagator. To this
I

purpose, the momentum in the incoming channel is
discretized. Of equal importance, generally, the Pz-space
projection operator P2 and propagator g~, must be2'
defined more carefully. However, if the Pz space con-
tains just a single state, then these operators need no fur-
ther definition. This simplest case will be considered next.
In Sec. IV results obtained here will be generalized to in-
clude an arbitrary number of P2-space states. With these
stipulations, Eq. (9) becomes

(E—E —(i }VP g P V~i))4'

III. MODEL PROBLEMS

In this section, two model problems will be considered.
In both models, the pole approximation will be invoked,
and a single continuum electron linear momentum wi11 be
assumed (co=5). Formulas derived in Sec. II will be em-
ployed. As described in paper II, by the pole approxima-
tion we mean that the real parts of all P- and R-space
propagators are set equal to zero.

(a) In the first model, a target ground state with two
coupled continuum partial waves, one singly excited tar-
get state, and a set of fully interacting resonances in the
(closed) excitation channel is assumed. For example, a
process of the form

2p + k, i( 1, i
=0)~3dnp ~ 2pn 'p + )

~3dnp~2p+k, z(l;z=2) (n ~3), (23)

in LSJ coupling (L = 1), is such a case.
In Eq. (23), the ground and first excited target states

are labeled by 2p and 3d, . respectively, while I,
&

=0
denotes the incoming electron continuum partial wave.
A similar equation holds when L =1 with the roles of i,
and i 2 reversed; i.e., in which the incoming continuum
partial wave is l, &=2. For L, =3, an analogous equation
holds in which l, i

=2 and 1;z=4 (or l, i
=4 and l, z=2) are

coupled.
The Rydberg series of resonances 3dnp (n ~ 3) is fully

interacting in the sense of paper I. To recapitulate, by
fully interacting Q-space states we mean the following: (i)
First, the individual Q-space states (labled by nLSJ) are
assumed to already diagonalize the Q-space Hamiltonian.
Thus n is intended to be only an effective principle quan-
tum number. (ii) Second, these Q-space states interact
further via coupling to the P and R spaces, through the
mixing operator II [Eq. (13)]. Note that, in analogy to (i),
we intend Zpn'p to represent one of a set of R-space states
which already diagonalizes the R-space Hamiltonian.
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Thus n' is also an effective principal quantum number.
For this example, the full P, -space propagator, from

Eqs. (20) and (22), is

&1Ig p, Ii&=&11gp Ii &

=(1—gp, (1IP1VP2gp P2VP1Ii &) gp;,
(24)

Gg =
{E s(2 + U12 [k;ik;2 V12 A, 1(a ) A, 2(a ) ]

+(i /2)[I „(a)+U, 2 A„(a)+ U12 A, 2(a)]]

(34)

and the Q-space "widths" are given by

I (a,p) =g k rD fDf/3+ k 2Va2 V'2p+ U, 2k;, V a, V Ip,
f

(35)

where gp; is given by
1

gp, =(E—sp;)

Then, in the pole approximation,

(25)

A„(a)=k, , V, ,

A, 2(a) =k,.2V 2,
I „(a)=gk~D f .

f

(36)

g 'p; =(1+k;1k;2V12/4) gp; = U12gp;

which defines U, 2, and where

and

k;1=(2E)'

k;2= [2(E—b, )]'

(26)

(27)

(28)

From Eq. (17) in paper I, the DR probability is then, for
the process of Eq. (23),

P;, =U12k;, g I g g kyD„-„(A, ')„„,Gt1„.V'„
n" n n'

= U, 2A„ok;, g g (II ')„„„,Gg„,
n" n'

X [ V„., —( ik, 2/2 ) V„2V2, ]

(37)

+ P; =4P; = U)2C Pl, , (29)

where the uncoupled asymptotic initial state 4p; solves
l

(E—sp;)Np; =0 . (30)

Then, from Eqs. (7) and (8), the exact incoming wave is

pp: U124 p + U12gp g (1'1
I
V'la&+Q.

12@P i+ U12gp1' y V lang

+a I
= U]2+I, l

+ U12gP; X [ Vla (ik;2/2) Vi2 V2a]4 (31)

having inserted a set of Q-space states labeled by a; i.e.,
where, from Eq. (23), a enumerates the states 3d 3p, 3d4p,
3dsp, . . .

From Eq. (11), the Q-space states become

= U, 2 g (II ') PGg VP1,
P

(32)

where, from Eq. (13), the matrix elements of the Q-space
mixing operator are

fI p=5 p+(I l'3 13)(i/2)Gg—I (a,f3),

the Q-space propagator is

(33)

In Eq. (28), the target ground-state energy is set equal to
zero and the target excitation energy is denoted by
~12 S3d E2P ( ~12

Continuing, from Eqs. (17), (18), and (26), the full
asymptotic incoming wave is

ls+k, .i(l, i
= 1)~2snp ~1s2s+y (n + 2),

ls+k, i(l, 1
= 1)~2pn 's ~ lsn "s+y (n' ~ 3), (38)

js+k;, (1;,=I)++2pn's~2s+k;2(l;2=1) (n'~n„),
where P, projects onto 1s+k;,(l, , =1), P2 projects onto
2s+k, 2(1,2=1), and LSJ coupling is assumed. The
ground and first two excited target states are labeled 1s,
and 2s and 2p, respectively. The threshold value of n', at
or above which the process 2pn's ~2s+k;zl;2 is energeti-
cally allowed, is denoted n . The minimum energy re-
quired to make the 1s ~2s transition is denoted
b, 12=E2, —ei, (6,2) 0), so that on the energy shell one
has that k, 2

=k, ,
—2h, z & 0, when the 2s channel is open.

for the partial wave labeled by i, ; a similar expression
holds for P;2, but with the roles of 1 and 2 reversed. In
Eq. (37), A„o=kr(D & is the 3d~2p radiative probabil-
ity, assumed independent of n, the principal quantum
number of the spectator electron; i.e., D„.„=(D&5„„.
Note that in Eq. (17) of paper I, the factors k, , and k
did not appear explicitly, but were "understood" to
occur. See Eq. (78) of paper II for a more complete un-
derstanding of the origin of these factors.

(b) Next, an example of DR is treated in which two
singly excited target states exist, but in which the total
energy is below the threshold for impact excitation of the
uppermost state. Just one projectile electron-continuum
partial wave is assumed to occur in both the initial
(ground) and first excited-target-state channels. The two
channels exhibit continuum-continuum coupling in the
sense of Eq. (9). Two series of fully interacting (through
the P space) resonances are included; e.g. ,
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The minimum energy required to make the ls ~2p tran-
sition is denoted 6»=c.2~

—c„. In all of what follows,
we assume that the 2p channel remains closed
(k, , &2b. , 3).

Now, Eqs. (31)—(36) remain valid. From Eq. (37), the
DR probability is

P = U, 2k;, g g g k~Df~(Q ')~pGgpV p, , (39)
f a P

pDR

0.8—

where f enumerates the states is 2s, 1s 3s, 1s4s, . . . , and
a labels the states 2s 2p, 2s 3p, Zs 4p, . . . , and
2p3s, 2p4s, 2p5s, . . . . Note that if the continuum ener-

gy is at or below the first excited-state threshold (2s chan-
nel closed) k,

&

&2b, &&, then in the pole approximation all
quantities proportional to k;2 are zero; e.g. , in Eq. (34),
A, 2=0, U, 2=1; in Eq. (35), V'= V; etc.

With reference to Eq. (39), one sees that our formula-
tion of P includes the effects of (a) an interaction be-
tween resonances, mediated by the generally nondiagonal
mixing operator 0 (0 mixes Q-space states via interac-
tion with the P and R spaces); (b) a further shifting of the
positions and widths of individual responces due to a cou-
pling between the P, and P2 spaces [as refiected, in Eq.
(34), by the presence of U&z]; (c) the interference between
resonances mandated by the coherent sum of resonant
amplitudes appearing in Eq. (39). This formulation of
P conserves probability; see the remarks following Eq.
(47).

Based on Eq. (39), we performed calculations with this
model when

(k;&)' V(2snp~ls+k, &I, &)—:(A,o&/n )'~ for n ~2,
(k;, )' 2V(2pn's~ls+k, , l, , )=(A,02/n' )'~

for n'~3,
k, ~)'~ V(2pn's 2s+k, 2t;2)—= (

for n'~n
and

k D ( 2snp ~ 1s 2s + y ) =—( 8 3 „OIn )
'

k D(2pn's~lsn "s+y)=—(A„o)'

0.4—

QZ—

() I) UQ"

—3.0
I—8.0

I

—1.0 0.0 1.0 2.0

E (10 a.u.)
FIG. 1. P vs E for model (b) ~hen A pl

=0 0
Aa()2 Agp3 0.2, and A „p

=2.0 X 10 ', the zero of E is set at
the 2s threshold; both the 2s and 2p thresholds are indicated by
vertical lines.

0.010

In Fig. 1, we plot P versus E when A, p&=0. 0 and

A&p2 3 p3 0.2; in Fig. 2, we plot P when A, p,
=0.2

and A, p2 3 p3 0.0; and in Fig. 3, we plot P when

reap~ A p2 i4&p3 0.2. An overlay of Figs. 1 and 3 ap-
pears in Fig. 4, for a limited range of energies. Note from
Fig. 4 that the effect of the 2snp resonances on P is not
negligible. For example, the integral of P over
—2.0X10 ~E ~ —0.4X10 is equal to 4. 17X10 if
A, o&

=0.0 (dashed curve in Fig. 4), while the correspond-
ing quantity is equal to 3.54X10 when A, p, =0.2
(solid curve in Fig. 4). This is in spite of the fact that the
2snp resonances themselves make only a very few small
contribution to P, when considered in isolation from
the 2pn's resonances (see Fig. 2). The limits on the range
of n and n

' in these models are 10 n 40 and
10~n'~65.

The dependence on principal quantum n of Auger and
bound-bound radiative transition probabilities described
here is consistent with the well-known behavior of these
quantities. '

Results of these calculations appear in Figs. 1 —4. In
all cases, we chose A,p

=2.0 X 10, n„= 18, and

623 =A, 3
—6]z

=cz —
2, = l. 54 X 10 (parameters

which are appropriate, approximately, for a C + target
ion). The range of included Rydberg states was always
10~ n ~40 and 10~n' ~ 65, and the zero of total energy
E was placed at the 2s threshold. Because of the upper n'
cutoff, values of P obtained for E) 1.4X10 may be
inaccurate (Figs. 1, 3, and 5); because of the upper n

cutoff, values of P obtained for —0.27 X 10 (E
&0.0 are also suspect (Figs. 2 and 3). For the purpose of
evaluating Rydberg state energies, and in order to facili-
tate comparison with results appearing in paper I, we
choose Z = l.

0.008—

0.006—

0.004—

0.000
—3.0

FICy. 2. Same.or= A.o3=o 0

—2.0

E (10 a.u.)

0.0

as Fig. 1, except A, p,
=0.2 and
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0.8—
0.8—

DR
DR

0.6—

0.4—
o.4—

0.2—
U OZ—

gtr i)il

—3.0
I

—2.0
I—1.0 0.0 1.0 2.0 —3.0

I—2.0
I—1.0 0.0

I

1.0 2.0
E (10 'a.u.)

FIG. 3. Same as Fig. 1, except A, p&= A, pz= A, p, =0.2.

E (10 a.u.)

FIG. 5. Same as Fig. 1, except P obtained in the isolated
resonance approximation.

For further comparison, in Fig. 5 we plot P comput-
ed in the isolated resonance approximation (IRA; see pa-
per I), when A, o, =0.0 and A, o~= A, O3 0.2. Figure 5

should be compared with Fig. 1. As remarked previously
in paper I, the IRA is especially bad when resonances in-
teract, since it does not conserve probability; i.e., P
can be greater than 1 in the IRA. We note, finally, that
the case A, p&= A,p3:0.0 3 p2:0.2 has already been
considered; see Fig. 1 of paper I.

(c) Lastly in this section, we consider the excitation
process allowed in model (b). For this model, a direct ex-
citation must follow the path

M '=(a, P, VP, q, ) .

A resonance excitation follows the path

1s + k,-
&
I, , ~2pn 's ~2s + k; 21; 2

and has the probability amplitude

M"=&+, P, Vga, ) .

The total probability for excitation is then

P'"=k ik;2!M +M

(41)

(42)

(43)

(44)

1s+ki iI, , ~2s+ kj 2l, 2

with the probability amplitude being given by

(40) when k, 2
= k, ,

—2A, 2) 0, where A»=c.z,
—c.&, . In Eqs.

(41) and (43), 4z solves the equation
2

(F. P2HOP2)&p =—0 .

Then, from Eqs. (31)—(36),

0.8—

M = U, ~ V2, + U, 2 V~, (
—lk;, /2) g V I~'Pg~,

MRE y V qg
(46)

DR

0.6—

0.4—

where

+g = g(O ') pGglsVp, U, 2,
P

oz—

—1.2 —0-8

E (10 a.u.)

—0-4

FIG. 4. P s E; for model (b), when A„p=2.0X10 ' and

pl
= A p2

= A p3 =0.2 (solid curve); A, pl =0.0 A p2
= A p3

=0.2 (dashed curve) ~

and, from Eq. (23), a (and P) enumerate the resonance
states 2pn s, 2p(n + l)s, 2p(n, +2)s, . . . . More pre-
cisely, a (and P) may be said to enumerate all of the 2snp
and the 2pn's (n (n ) states as well. The effect of these
"far from resonance" states on P'" may not be small.

With reference to Eqs. (44) and (46), and as per the re-
marks following Eq. (39), we point out that our formula-
tion of P'" includes the effects of (a) interaction between
resonances, as mediated by 0 (f1 mixes Q-space states via
interaction with the P and R spaces); (b) further shifting
of the positions and widths of individual resonances due
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th P and P spaces [as reAected, mto cou ling between t e, anp g
f U ] (c) interference betweenEq. (34), by the presence o „,; c inr, d b t en resonant and direct scatteringresonances, an e ween

rocesses, man ate yd d b the coherent sum of scattering
CXin E . (44). This formulation of P (andamp itude in Eq. . is and

P ")conserves probability; i.e. , ~ P0+P
lot P" versus E for the set of parametersIn Fig. 6, we p o v

adopted in model (b) and w en
PDR= A, O3=0. 2 (solid curve); for comparison, P ap-

as well as the total inelastic proba-p~~~s (dashed
bilit P +P'" (dotted curve). In Fig. 7, is p o

=0.2 (solid curve); for compar-
s well as the to-'

on a ain, P appears (dashed curve j, as we
P R+P'" (dotted curve). In bothtal inelastic probability P

obabilit isFi s. 6 and 7, the elastic scattering proba i ity is
", f k & 2A i.e., below the threshold for

c f F 6 and 7 shows that, for thisA comparison of Figs. an
t s the eftect of the resonancechoice of model parameters, e

on P" is not small. For example, the value of2pns states on is n
P" integrated over the range 6,2 E,3 is

=0.0 (resonance excitation only, the solidwhen aol
uantit ob-curve in Fig. 6), while the correspondmg quan

'

y
when 3 =0.2 is 8. 5 X 10 (resonance plus

the zero of total energy hass been set at the 2s thres o
Limitations on the range of n and n 'n' are as was descri e

reviously for model ( ).b . Values of P" for
1.54 X 10 are therefore suspect since1.42X10 &E &
f ' & 65 have been omitted from theresonances 2pn s or n

calculation.
irect excitationW te that our prediction of the direc exce noe

the ole a-robability, in eb l, the absence of resonances in e p p-
h nl a single continuum electronproximation and w en on y a

linear momentum contributes), is
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FIG. '7. Same as Fig. 6, except A, o, = A, o, = o):0.2.

2 2P =k, , k, ~ M
~

=k, , k, ~U, 2V, ~

=k k V /(1+ kk2 V2 /4), (48)

having used Eqs. (26), (44), and (46). This prediction
h h M~DT result for this model, only up to

18terms of order V&z, the MQDT result being given by

2P =1—exp( —k, &k, 2V|2) . (49)

The reason for this discrepancy is not yet apparent.

while now t eh P -space propagator satisfies an equation
similar to Eq. (9):

IV. GENERALIZATIONS

We made the two following generalizations.
(1) W 'der the generalization of the preceding re-e consi

suits to more an wth two P-space states. Specifica y,
the case of t ree -spacef h P- ace states, one has the following.

~ eThe propagator or t e 3f h P space satisfies an equation
analogous to Eq. (5); i.e.,

gp =(E—P, H PO)3,
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g p =(E P, VP3g p P, VP—2)

The P 1 -space propagator is then, instea q.a ofE . (9),

g" =(E Pi VP, gp P, VP, Pi—,g p2 2
V'P ' P V'Pl )

(51)

(52)

0
0.0

I

0.6
I

1.0

E (10 'a.u.)

I

1.5 2,0

where

(53)V'= V+ VP3gP P3 V .

The full P, -space wave function is gi y,iven b, instead of
Eq. (7),

FICx. 6. P'" (solid curve), P (dashedd curve), and P"'+P
(dotted curve), a vsll E for model (c), when 2,„,=0 0,
3 (»= A, o&=0.2, and A,O=2. 0&10002

Vp =Np +g p P, V "Q

where + p is the solution of

(54)
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(E P—, HQP, —P, VP3gp P, VP, G& =(E—
E&

—(a~DRg~RD ~a ) —(a~ VP2gp P2 V ~ta )

P& V'P2g p P2V Pi )@p =0 (55) (—a~V P, g p P, V ~a&)-', (63)

and where

V "=V '+ V 'P2g p P~ V ' . (56)

and where, instead of Eq. (8) for V ', one has that

V'= V+ VP2gp P~ V, (64)

The full Q-space propagator is, instead of Eq. (12),

G& =(E—
s(2

—(a~DRgzRD ~a) —(a~ VP3gp P3 Via)

(ai —V P,g', P, V'ia&

—&ai V "P,g," P, V "ia))-' (57)

From Eq. (14), the Q-space interaction now has the ele-
ments

&.q= &aIDRg~RD IP&+ &al VP3gp, P3V IP&

and instead of Eq. (10) for g p
1

g p
= (E P&HOP1 Pi DRgg RDPi

P, VP—2gp P2VP, ) (65)

The formulas appearing in Eqs. (2) —(59) can now all be
modified to take account of RDP coupling by making the
following two changes throughout: (1) P HQP
~P (Ho+DRgzRD)P, for each of the P-space states
labeled by j; and (2) V~ V, where V appears in Eq. (61).
Details will be deferred to a future publication.

+&a~V'P, g', P, V'~P&

+(a( V "P,g", P, V")P), (58)
V. SUMMARY

This completes the description of the three-state P-space
case. Formulas for the case of four or more P-space
states can be obtained from Eqs. (48)—(57) by induction.

(ii) Finally, as per the transition from the formulas of
paper I to those of paper II, in which relevant operators
and functions were modified to take account of direct ra-
diative coupling between initial (target plus continuum)
and final (recombined) states, the formulas of the present
work can be correspondingly altered in order to include
these effects. For example, when the P space contains
just two states, so that Eqs. (2) —(22) hold, then the effect
of RDP coupling is to modify the preceding formulas as
follows. The asymptotic P, -space wave function solves,
instead of Eq. (9), the equation

(E —P, HoP, Pi DRgq RDPi—

P, VP2gp P2VP—, )4 p =0, (60)

where, as in Eqs. (13) and (15), respectively, of paper II,

V= V+DRg~ RD,
gp: (E P2HOP2 P2DRgg RDP2 )

(61)

(62)

and gz is still given by Eq. (6). In Eq. (60), @p has been
1

underlined in order to denote the RDP coupling. Similar-
ly, the propagator in the Q space is now, instead of Eq.
(12),

and, from Eq. (15), the DR probability amplitude is now

M = g (4„RDla) g (0 ') pGgp(Pl V "P,4 p ) .
CX /3

(59)

The results described in this paper may facilitate calcu-
lations of DR probabilities and excitation probabilities,
which are more accurate than those available today.
These formulas can account for the effects of interaction
and interference between resonances, and interference be-
tween resonance and direct processes, in the case of both
excitation and recombination. They can self-consistently
describe the effects of autoionization into an excited tar-
get state during both recombination and excitation, in-
cluding the effects of interference. They can describe the
effect of radiation damping on the excitation process. ' '

The effect of radiation damping on recombination alone
has been discussed in paper II.

One concludes from this work that the effects of inter-
channel coupling on P will not always be negligible.
In model (b), P, integrated over a range of energies,
was reduced by —15% when such coupling (between 2s
and 2p excitation channels, and the Q-space states) was
included. Nor can the effects of interchannel coupling be
neglected, generally, in calculations of P'" In model (c.),
approximately 40% of P'" arose from resonance excita-
tion.

Recall that, in paper I, a demonstration of the impor-
tance of coupling among the Q-space states (via interac-
tion with a single P-space state) in calculations of Pn~
was given; and in paper II, the importance of a proper in-
clusion of direct radiative coupling between initial and
final states was discussed. In the light of these results, it
seems reasonable to expect that future accurate calcula-
tions of P and P" for real systems, should include
many, if not all, of these interaction and interference
effects.
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