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The bound-state three-body problem is solved using the Faddeev-Noyes equations. The infinite
domain of these equations is dealt with using a transformation of the hyperradius instead of the usu-

al cutoff. The Faddeev-Noyes equations are reduced to a matrix equation by spline approximation
and orthogonal collocation. This matrix equation is solved using a method that is based on the ten-
sor structure of the matrices and reduces storage requirements by at least two orders of magnitude,
thus allowing personal computers to produce results that previously could only be obtained with

very large computers. Some of the results obtained with these methods are presented.

I. INTRODUCTION

The quantum-mechanical three-body problem has been
an area of active research during the last three decades.
Urged by the desire to gain insight in the nucleon-
nucleon interaction, many workers have calculated
three-nucleon bound states. The scattering problem for
neutral particles has also successfully been tackled.
Among the most commonly used methods are variation-
al, ' hyperspherical, ' Green's function Monte Carlo, '

and Faddeev calculations. ' Most workers now consid-
er these problems solved and devote their attention to the
scattering problem of three charged particles, or the
problem of more than three particles.

Indeed, for most applications the accuracy of three-
particle bound states that can be calculated by the vari-
ous numerical methods is better than that of experiment.
The research on muon-catalyzed fusion, however, re-
quires the determination of three-particle bound states of
(muonic) atoms to a very high accuracy, which currently
can only be obtained by variational' ' and hyperspheri-
cal' ' calculations. Although variational calculations
are very successful for atomic systems, these methods
rely heavily on the amount of work which can be done
analytically, limiting the potentials that can be treated to
a small set. Also, the accuracy of the wave function
remains a problem. In this paper we present a method
for solving the three-particle bound-state problem based
on the configuration-space Faddeev equations. It can be
used on small computers to obtain results with an accura-
cy that is comparable to that of conventional supercom-
puter calculations, or on very large computers in order to
obtain highly accurate results. We believe that this
method makes configuration-space Faddeev calculations
competitive with variational calculations.

We will state the three-body problem by the Faddeev-
Noyes equations, which are solved using a method simi-
lar to that used by Payne and co-workers. " ' It reduces
the differential equations into a matrix eigenvalue equa-
tion which is usually of very large order and therefore

II. FADDEEV-NOYES EQUATIONS

The Faddeev equations in configuration space were
first used by Noyes, to study the three-body scattering
problem. We derive these equations for three nonidenti-
cal particles, after which we review the effect of the
(anti)symmetrization condition on the Faddeev-Noyes
equations, when two or three particles are identical.

We will follow Noyes and use mass-weighted Jacobi
coordinates to remove the particle masses from the equa-
tions:

m 111+m 2r2+ m 313

m1+m2+m3
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m2+m3
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di%cult to solve on present-day computers. We have de-
rived an alternative representation for the matrices that
appear in this equation, based on the tensor structure
that is inherent to the solution method mentioned above.
Also, we have shown that it is possible to maintain this
structure during the process of solving the matrix equa-
tion.

In the next section we describe the Faddeev-Noyes
equations for the bound-state case. We then describe
the solution technique used by us. Although it is largely
based on the techniques used by Payne and co-workers,
finite-difference techniques can also be used, ' without
altering the validity of the remaining sections. In Sec. IV
we concentrate on the solution of the resulting matrix
problem, and introduce a solution technique that uses the
tensor structure of the matrices. In Sec. V we show and
discuss some of the results that were obtained with our
method. In the Appendix we have included the content
of the matrices that occur throughout this paper.
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mi Pl2m3
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Ix, y, R&, . (2)

The three-particle Schrodinger equation

(H E) I%—') =0,
can —after separating out the center-of-mass motion —be
expressed as

The subscripts 1,2,3 can be replaced by cyclic permuta-
tions, giving the definitions for (x~, yz) and (x3,y3). We
write an eigenstate of the operators x, , y, , and R&, )

with
eigenvalues x, y, and R as lxyR);. These states are relat-
ed to the eigenstate Ir, rzr3) of the set of position opera-
tors of the three particles by

1/2

When all three particles are identical, we find that the
three Faddeev equations are equivalent. Furthermore,
we have gi=gz=g3=ll and

As an example we write the explicit form of the sym-
metry requirements for a system in which particles 2 and
3 are electrons in the singlet state. In that case, we can
easily write down the conditions for the spatial part of
the Faddeev amplitudes. (The Faddeev amplitudes are
defined by li;(x, y)=, &xylg, ), where, &xyl is a simul-
taneous eigenstate of the operators x; and y;.) These con-
ditions are

(Ho+i~ + V, + V~+ V3)l+) =0,
Pz( —x, y)=$3(x, y) .

(10)

g2 p20 x, y,.
(5)

Furthermore, we have written K = —E', where E' is the
energy of the system in its rest frame.

The Faddeev decomposition consists of replacing Eq.
(4) by three coupled equations for the so-called Faddeeu
components lit; ) = Go V; I

4 ):

where we use V; to denote the interaction between parti-
cles j and k, and Ho, which can be written (using the
Jacobi coordinates) as

The antisymmetry of the wave function is entirely con-
tained in the spin function, and the spatial part must
therefore be symmetric.

The configuration-space Faddeev-equations can be re-
duced to coupled partial differential equations by expand-
ing the Faddeev amplitudes onto a bipolar harmonic
basis:

Ill;&=+(x,y;) 'Iy.'&;la&, ,

where we have chosen the decomposition so that

lq, & =G, V, (lllz&+ Il(3&),

ill, ) =G, V, (Ii(3&+ l@i &),

ly, & =G, v, (lg, &+ lg, &) .

(6)
, & xyly' ), =, & xyl&' (x,y),

, & xyla), =, & xy Ia(x, y),

and a(x, y) is the following bipolar harmonic:

(12)

Addition of these three equations gives the Schrodinger
equation for the total state I%') =

I f, ) +
I gz ) +

I g3 ). In
these equations we have used the Green's functions G;:

G;(z)=(z —Ho —
V, ) '=(V„+V'„—it —V, )

t i

with z= —ii . Equation (6) can be used for the bound-
state problem, and also for the scattering case, by adding
a driving term which describes the initial condition. In
the bound-state case, the Faddeev equations lead to a
unique solution even for systems containing charged par-
ticles.

When two of the particles in the system are identical,
we must symmetrize (for bosons) or antisymmetrize (for
fermions) the wave function with respect to the exchange
of these particles. W'e can label the two identical parti-
cles as particles 2 and 3. If we assume that the potentials
satisfy the condition P23 V2P23 = V3, then we find that the
second and third Faddeev equations are equivalent, and
that the Faddeev components must satisfy the following
symmetry conditions:

(8)

where p =+1 if particles 2 and 3 are identical bosons,
and p = —1 if they are identical fermions.

a(x, y)=[Yt (x) Yt (y)]LM

=g g(l m L M ILM)Yt (x)Yt M (y) .
m M

(14)

When dealing with particles with (iso)spin, the basis func-
tions are tensor products of the bipolar harmonics and
the spin-isospin basis functions. We will not go into this,
since the extension is straightforward. The symmetry
requirements of Eqs. (8) and (9) can be met by restricting
the set of basis functions to functions that satisfy these
conditions.

The terms in the expansion (11) are usually called
channels (These mu. st not be confused with the four
channels of three-particle scattering theory. )

The Faddeev equations can be written in configuration
space by multiplying each equation from the left with
;&al;&x;y;Ix;y;G; ', and inserting unit operators of the
form

f f«dyglw &;IP&;;&Ol;&xyl .

Using the orthonormality of the channel basis, and ex-
plicitly writing the remaining matrix elements we arrive
at
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(bo —a-')(5'(x, ,y, ) —gv'e(x;, y, )pp(x, ,y;)=gv' (x;,y;) g f f dx;dy; y*(x;,y;)pjp(x, ,y, )P(x, , y, ),'xy
with

+p 0 +
Bx;

I (I +1)
x2

L (L +1)
(16)

and

v'~(x, y)= f f dx'dy'; &xyl, &~I I'IP&; x'y'&; . (17)

Note that the Faddeev equations can only be written in the form (15) if the matrix elements, & a
I V, I/3&, are local.

It is convenient to use polar coordinates

x; =p cosO, ,

y; =p sinO, ,

and to average over M, so that we can rewrite Eq. (15) into

(18)

y*(x;,y; )f3(x, , y, )
(5,' —x. )P'(p, 0;)—gv'p(pcos0;)Pp(p, 0, )=gv' (pcos0;) g f d0 g . ' '

Q~p(p, 0, ), (19)
13

(2L+1)stn2 p,

where 6,' is b, expressed in polar coordinates, 0, -,

denotes the interval [0,0+], where 0 = I0, —Ip„ I I
»d

For the bound-state case the boundary conditions are

P'(p, o)=P'(p, vr/2)=P'(O, 0)=P'( ~,0)=O, (21)

(cf. Fig. 1), and the numbers Ip," I
are defined by

1 /2

cosp;~ = m, m.

(m, +m„)(m +m„) (20)

where ti,j,k I is a permutation of I1,2, 3I.
Equation (19) is an elliptic partial (integro-)differential

eigenvalue equation, having unique solutions when
boundary conditions are specified on a closed surface.

for alii and a.
In the next section we will describe the numerical solu-

tion of Eq. (19) using the spline method.

III. SOLUTION OF THE DIFFERENTIAL EQUATION

The Faddeev-Noyes equations are defined oui an infinite
interval, which must in some way be reduced to a finite
interval to make them suitable for numerical solution
techniques. Usually, this is done by factoring out the
(known) asymptotic behavior of the Faddeev amplitudes,
and demanding that the reduced amplitudes F are con-
stant outside a finite interval. ' This gives BF/Op=0 as
the approximate boundary condition. We use another
approach, which makes sure that the boundary condi-
tions are exact. This method consists of a transformation
of the variable p to a variable r (not to be confused with
the particle coordinates r, ):

r=1 —e (22)

This transformation maps the interval [0, ~ ) onto [0, 1).
It is not the only transformation that can be used, but it
has proven to work well. The parameter A, can be used to
optimize the accuracy of the numerical solution. (Note
that when a cutoff method is used, there is also a parame-
ter: the cutoff radius. ) It plays an important role in the
asymptotic behavior of the transformed amplitudes. As a
function of p, the asymptotic behavior (for short-range
potentials) is

(5' (p, 0, )- A (0)p ' e (23)

FIG. 1. Domain of integration for matrix elements.

so that transformed wave functions have the following
asymptotic behavior:

P' (r, 0, ) —3 (0)ln(1 —r )(1—r )'
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M+1 N+1
P'(r, O)= g g a' „s (r)s„(0),

m=O n=O
(25)

Thus the number K/A, is the exponent of the lowest-order
term of the asymptotic behavior (24).

Apart from the absence of approximations on the
boundary, the transformation method has the advantage
of not destroying self-adjointness of the differential opera-
tor. (In the cutoff method, a function depending on ir is
factored out. )

Now we expand the channel amplitudes P' on a bicubic
spline basis: '

trum. This means that an iterative method for the "in-
verted" problem [ Ax=i(Bx —+Bx=(1/A ) Ax] can be ex-
pected to converge very rapidly. As a consequence, we
can avoid (implicit) inversion of the matrix D. Payne has
proposed to use the unsymmetric Lanczos algorithm and
found it a very powerful method for solving the eigenval-
ue problem. '

In the following section we will discuss an alternative
method, based on an observation concerning the special
structure of the matrices, caused by the numerical solu-
tion technique.

where M is the number of intervals in which we subdivide
the interval [0, 1), and X the number of intervals in which
we subdivide the interval [O, rr/2]. The cubic Hermite
spline functions s; are piecewise cubic polynomials,
nonzero on two adjoining intervals, and have a continu-
ous first derivative.

An even-numbered spline function equals 1 in the
center of its domain, whereas an odd-numbered spline
equals 0 and has unit derivative there. The boundary
conditions (21) can therefore be met by dropping the first
and one-but-last basis function:

M N

P'(r, 8)= g g a' „s (r)s„(0),
m=1 n=1

(26)

( A ~B —C)a=—Da, (27)

where the matrix 3 contains the differential terms, B the
unit term associated with the eigenvalue, C the terms
containing the potential on the left-hand side, and D the
right-hand side of the Faddeev-Noyes equations. The
vector a contains the expansion coefficients a' „. (Note
that the matrices carry eight indices: A

& „.) In the

Appendix we show the contents of these matrices explic-
itly.

The s'olution of Eq. (27) is far from trivial, since the or-
der of the matrices is usually very large. Close examina-
tion of the matrices reveals that except for D they are
very sparse. Therefore we must look for a solution
method that does not require inversion of this matrix.
The method introduced by Payne ' is to substitute an es-
timate Ko for K and to introduce a parameter A:

( A —i~oB —C)a=ADa . (28)

By regarding this equation as an eigenvalue problem in A
the original problem can be solved: When 1 is an element
of the spectrum, we have substituted a correct value for

It is important to note that (according to Payne) the
eigenvalue we look for (A = 1) is the smallest in the spec-

where we have relabeled sM+, to sM and sN+1 to sN.
A numerical approximation of the solution to the

Faddeev-Noyes equations can be obtained by substituting
Eq. (26) into (19) and requiring that the differential equa-
tion is satisfied in the four two-point Gauss-quadrature
points of each interval. This method is known as orthogo-
nal collocation, and provides fourth-order conver-
gence. ' Orthogonal collocation reduces the Faddeev-
Noyes equations to a matrix equation:

IV. AN ALTERNATIVE SOLUTION TECHNIQUE

The solution of matrix problem (27) requires a very
large computer, when the number of intervals in the
mesh and the number of channels become large. One
part of the problem consists of the number of flops that is
required to solve the problem. This, however, is usually
not prohibitive (although the inversion of the left-hand
side can be very expensive for fine grids). The second,
and most important part, is the amount of memory re-
quired to store the matrices. In practice, it is impossible
to store the matrices in central memory, and a very large
background memory is required. On small computers,
background memory often has low storage capacity and
low access speed, making the solution of the matrix prob-
lem prohibitively expensive.

It is possible to reduce the amount of storage required,
by recognizing that the matrices can be constructed from
tensor products. This is an immediate consequence of the
solution method that was used: the Faddeev-amplitude
P; is expanded on a basis which is decomposed; every
basis function can be written as the product of functions
depending on only one variable. As an example, we show
that the matrix B can be written explicitly as a tensor
product. Its elements can be described by

a, pq, pmn aiS ij m p n q
(29)

where the first matrix is defined in the space of amplitude
numbers, the second in the space of channel numbers,
and so on. The matrices S are defined by

S =s (r ). (31)

Clearly, the tensor representation requires much less
storage than a representation where the tensor products
are explicitly calculated. Furthermore, the inverse of a
tensor product is the tensor product of the inverses of the
components, so it is also expected that the number of
flops required to solve the matrix equation can be re-
duced. We now introduce a notation, to make the
remainder of this paper more clear. Using this notation,
we can write (30) as

(32)

Note that we write (r,8 ) to denote the value taken by
the coordinates ( r, 8) in the collocation point which is la-
beled (p, q ). The above expression is equivalent to

(30)
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where the presence of an asterisk on a corner of a matrix
means that this matrix works in the space associated with
that corner. From the top-left corner to the top-right
corner we have the amplitude numbers, channel numbers,
spline and collocation point numbers in the r direction,
and the spline and collocation point numbers in the L9

direction.
Unfortunately, it is not possible to decompose all the

matrices fully into tensor products, but by transferring
the term containing the matrix C to the right-hand side
and again introducing a parameter A, it is possible to
write the resulting equation in the following form:

~ Q contains the 0-, channel-, and amplitude-space
part of these terms.

~ J contains the 0-, channel-, and amplitude-space part
of the integrals that occur in the right-hand side of the
Faddeev-Noyes equations.

It should be noted that Q is diagonal in both the ampli-
tude and the channel space, so that J is the matrix requir-
ing by far the most storage. For the explicit form of the
elements of these matrices, see the Appendix.

Note that in the language of operators, Payne and co-
workers iterate

(M, g „*IgS*+N„g*„Q*)a

=A „*P„*(S„*,I181S*+S,, *J*)a .

Pl AG1 Vl( 12+03)

whereas we solve

(34)

This form does not seem to be much of an improvement
when compared to the original equation (27), because
there is still a matrix P which acts in all four spaces.
However, it should be noted that this matrix (containing
the matrix elements u'&) is diagonal in three of these
spaces. When the potential is central it is also diagonal in
the fourth —i.e., the channel-number —space.

The contents of the remaining matrices in Eq. (33) are
described below.

~ M describes the terms in the differential operator
that contain only operators in r space. (This is the only
matrix that depends on ~.)

~ N describes the r-space part of the remaining terms
of the differential operator.

01 AGO Vl(01+02+ 03) (35)

In other words, in our method the entire potential is
scaled by A, whereas in Eq. (34) only a part of the poten-
tial is scaled.

Since the parameter A can be regarded as the coupling
constant of the potential, the solutions to Eq. (33)
represent the set of potential strengths for which there is
a bound state at a given energy. This means that when
we substitute for —~ the exact ground-state energy, 1

will be the smallest eigenvalue in the spectrum, unless the
set of "inverted" potentials (V;~ —

V, ) supports bound
states at even smaller strengths. But even then, 1 is
among the smallest elements of the spectrum. It is there-
fore possible to apply the Lanczos algorithm on

M, g *„I@S*+N„a*,Q" )
' „*P,*(S„g„*IsS*+S„e„*J*)a=—a . (36)

In general, it will not be necessary to invert M IS+N Q explicitly since the Lanczos algorithm is soley based on
multiplications of basis vectors by the matrix in Eq. (36), but the special structure of this matrix makes it relatively easy
to perform the inversion explicitly. We show an example method here, based on the simultaneous diagonalization of
matrices in both terms. We write

(M„)-'N, =C„II.(C„)-',
(eI@Sg)—1 gQe eDg e s(eDg) —1

(37)

(38)

where II and:- are diagonal. These diagonalizations can be obtained by the QZ algorithm, at relatively low cost —the
matrices that must be diagonalized usually have order 100 or smaller. Using Eqs. (37) and (38), we can write

(M, lg*, lg S*+N„e,*Q*) '=(C, e„*D*)(,*I,*+II,g*,=*) '(C„e„*D*) '(M„a*,Ie S*) (39)

This is an expression for the explicit inverse, which can
be stored in a relatively small amount of memory.

We solve Eq. (36) by application of the Lanczos algo-
rithm. This algorithm generates a biorthogonal basis
set by repeated multiplication of a pair of estimate vec-
tors with the matrix on the left-hand side of (36). This
basis is then used to approximate the matrix by an n X n

tridiagonal matrix. In general, the number of iterative
steps n that is needed to obtain an accurate approxima-
tion is very small.

In the next section we present some of the numerical
results that were obtained using the tensor method.

V. SOME RESULTS

In this section we discuss some of the results obtained
with a program that solves the Faddeev-Noyes equations
by methods described in the preceding sections. All cal-
culations were performed on a VAX 8600 computer, us-
ing 64 bit floating point real numbers (VAX double pre-
cision).

We find the transformation method to be a very gen-
eral method of dealing with the infinite interval. The
cutoff method fails in some cases, such as for very strong-
ly bound states (factoring out the asymptotic behavior
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gives rise to very large variations in magnitude of the re-
duced wave function). Furthermore, the transformation
method has a parameter A. which can be used to scale the
interval to obtain optimal results. In the cutoff method it
is necessary to use a nonuniform grid in order to obtain a
reasonable accuracy. The amount of nonuniformity can
be expressed by the ratio between the sizes of neighboring
intervals. The optimal value for this ratio, however, is
grid-size dependent. We have found that (S ) must be
approximately a constant to obtain the best results for
every number of intervals, where S is the ratio of the
lengths of neighboring intervals in the p direction, and I
the number of intervals. The grid dependency compli-
cates investigation of the convergence properties of the
method. In the transformation method we can afford to
keep the grid uniform, because the transformation has an
effect similar to the use of a nonuniform grid.

The parameter A. must be chosen so that ~/A, is a num-
ber larger than 1, but otherwise there is no strict limita-
tion to this number. Figure 2 is an illustration of this
fact. (Here we have used the Malfiiet-Tjon-V (MT-V) po-
tential with parameters from Ref. 33: V~ =570.3316
MeVfm and VR =1438.4812 MeVfm; for the nucleon
mass we used fi /M=41. 47 MeVfm .) From this figure
we see that any value of ~/A, between 1 and 3 will do.
The large error that appears when ~/A. is chosen smaller
than 1 is probably caused by the singularity at infinity,
which must be compensated by a wave function that goes
to zero at least as fast as 1 —x does, for x ~1. For high
values of ~/A. the error is caused by the lack of grid
points near the origin. (This situation is comparable to
that of choosing the grid too uniform when using the
cutoff method. ) Thus we have a method that is stable,
and that requires only one parameter instead of three.

The first results we show are ground-state energies of a
three-nucleon system described by the MT-V potential.
This potential is defined as an s-wave potential, acting be-
tween three identical bosons. It has been used as a test
case by many groups, so that the result is rather well es-
tablished. The variational upper bounds are —8.22(2)

(MeV), —8.244, and —8.26. Further results are—8.251, —8.26(1), and —8.251, corresponding to a hy-
perspherical (a result by Fabre de la Ripelle, quoted in
Ref. 37), a Green's function Monte Carlo (GFMC), and
a configuration-space Faddeev calculation, respectively.
In Table I we show the results of our calculations, using
parameters inferred from Ref. 32 ( V„=578.089 MeV fm
and Vz =1458.047 MeV fm), and fi /M=41. 47
MeVfm . The longest calculation (using five channels
and a grid of 31 X 34 intervals) took the VAX less than an
hour of CPU time, and less than six megabytes of storage
(including storage for program code, run-time unit, and
all other data). These requirements are quite modest, so
that a personal computer equipped with a large RAM
disk and Aoating-point coprocessor can obtain similar re-
sults in a few hours of CPU time.

The last column in this table contains extrapolations to
infinite grid size, whereas the last row contains an extra-
polation to an infinite number of channels (the errors are
estimates, and probably smaller than given here). The
first of these extrapolations is not just a cosmetic im-
provement of the accuracy of the calculations, but it is
based on the observation that the error in the eigenvalue
(and the wave function) behaves as

~—&=ah +bh +ch + . (40)

TABLE I. Convergence of the partial-wave series and the
spline approximation for the MT-V potential, using w/it=2.

where a, b, and c are constants. This means that we can
reduce the error by taking a suitable linear combination
of the results for different grid sizes h, and thereby can-
celing the lowest-order terms in the series.

The extrapolation to an infinite number of channels is a
more complicated matter. Also it will be more di%cult to
find an improved wave function than it is to find an im-
proved energy. However, extrapolation does give an in-
dication of the energy that can be expected for an infinite
number of channels. Our best result for the binding ener-
gy is 8.2526 MeV, which we estimate to be approximately
0.2 keV below the actual value. This result is in excellent
agreement with those mentioned above, and an improve-
ment in the accuracy of approximately one order of mag-
nitude. The accuracy reached here gives an indication of
the power of the tensor method: in combination with a
very large computer, it is possible to obtain results with a
very high degree of precision.

We also used our program to calculate binding energies
of two-electron atoms and similar systems. Variational
methods have been very successful in this area and very
accurate results have been obtained, so that we can use
these cases to test the correctness and the performance of

15 X17 21X24 31X34

I I I I I I I I I I I I I I I I I I I I I I I I I

1 1.5 2.5 3

MT-V
and a

~/P
FIG. 2. The number A —1 as a function of ~/A. for the

potential, using Eo = —7.539 76 Me V, one channel,
10X 12 grid.

8.044 53
8.231 14
8.251 25
8.253 63
8.253 99

8.2542

8.041 50
8.228 44
8.248 60
8.250 98
8.251 35

8.2515

8.042 22
8.229 18
8.249 33
8.251 72
8.252 09

8.2523

8.0427+0.0001
8.2297+0.0001
8.2499+0.0001
8.2522+0. 0001
8.2526+ 0.0001

8.2528+0.0002
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our programs. We show results for the helium atom, and
the e e+e system in Tables II and III, respectively.
The helium atom was modeled using an infinitely massive
nucleus. (This calls for special measures concerning the
evaluation of the elements in the integral matrix D.) The
most accurate calculation (11 channels on a 28 X 32 grid)
is comparable in size to the 34-channel calculations per-
formed by Payne and co-workers, ' since the matrices for
a system containing only two identical particles are four
times as large as those for a system containing three iden-
tical particles. This calculation required less than 12
hours of CPU time and less than 30 megabytes of storage.

Our results compare well to the Faddeev results of
Cravo and Fonseca, who use a Sturmian expansion for
the potential. The results for the highest number of
terms used by them are 2.905 16 a.u. for the helium atom
and 0.263029 a.u. for the e e+e system. This expan-
sion leads to binding energies that converge to a wrong
value, whereas the partial-wave series does converge to
the correct value (within the estimate error limits). The
accuracy is not nearly as high as that of variational calcu-
lations performed by Yeremin, Frolov, and Kutukova'
(which result in 2.903 72437705+5X10 '' a.u. for the
helium atom, and 0.262005070232 5+5 X 10 ' a.u. for
the e e+e system), but our results were obtained on a
relatively small computer, and in contrast to variational
results, we expect the wave function to be approximately
as accurate as the energy eigenvalue. Also, we expect
that the accuracy can be greatly enhanced by using extra-
polation techniques such as the ones mentioned above on
finer grids. Note that extrapolation techniques work best
for fine grids, where a large number of terms can be can-
celed, and the error of the remaining terms is small. The
tensor method allows much finer grids to be used than
classical methods, making extrapolation very effective.

VI. DISCUSSION AND CONCLUSION

The tensor representation of the matrices that occur in
the numerical solution of the Faddeev-Noyes equations
reduces the amount of storage required by two or more
orders of a magnitude (typically eight times the number
of intervals used in the r direction). As we have shown in
Sec. V this makes it possible to obtain results of consider-
able accuracy on small computers.

The tensor method also has the advantage that it is
very simple to update the matrix system when one of the
parameters changes. For example, we can change the es-
timate energy v by changing just one (very small) matrix.
Also, the dependence on the potential is confined to just
one matrix, the other matrices are more or less universal
to the three-body problem.

Another aspect of the method described here is the
transformation of the infinite interval to a finite interval.
This procedure reduces the error due to inaccuracies in
the boundary conditions to zero, and keeps the
differential operator self-adjoint. This can be of impor-
tance since it enables the use of algorithms for symmetri-
cal matrices when we use a finite-difference method in-
stead of the spline method. This makes the solution to
the matrix problem easier to obtain and more accurate.
(The spline method, on the other hand, has the advantage
of giving quite accurate results on relatively coarse grids,
due to the smoothness of the basis functions. ) Further-
more, the transformation method is stable and requires
only one parameter, whereas the cutoff method has three
parameters, of which two are grid-size dependent (the ra-
tio of the sizes of neighboring intervals must be chosen
closer to 1 as the number of intervals increases. )

Finally, we transfer all the terms containing the poten-
tials to the right-hand side, and introduce a new parame-
ter which acts as a simultaneous strength parameter of
the potentials, instead of introducing a parameter in the
right-hand side of the original equations. Our method
has the advantage over the method suggested by Payne of
keeping the spectrum real (cf. discussion above), giving
physically significant data for every calculation, and ob-
taining more than one state at once (excited states show
up in the spectrum as eigenvalues smaller than 1). The
method suggested by Payne does not render physically
significant data when an incorrect energy eigenvalue is
substituted, since in that case A&1 and therefore, we
have solved a problem that is related to the original prob-
lem in a peculiar, nonphysical way.

A disadvantage of ordering the terms so that all the
terms containing the potential are on the right-hand side
is that the Lanczos algorithm does not converge as fast as
it does when using Payne's method, but this is largely
compensated for by the fact that the Lanczos steps them-
selves are somewhat cheaper due to the tensor structure.

The storage requirements have until now restricted

TABLE II. Convergence of the partial-wave series and the spline approximation for the helium
atom, using ~/A, =3.

Nch

1

2
3
4
5

7
9

11

14 X 16

2.937 439
2.946 335
2.908 036
2.908 122
2.904 812
2.904 266
2.904 132
2.904 090

20 X 23

2.937 089
2.945 991
2.907 769
2.907 855
2.904 559
2.904 018
2.903 885
2.903 843

28 X 32

2.937 001
2.945 906
2.907 700
2.907 787
2.904 493
2.903 953
2.903 820
2.903 778

2.936 963+0.000 008
2.945 869+0.000 008
2.907 671+0.000 002
2.907 757+0.000 002
2.904 465+0.000 002
2.903 924+0.000 002
2.903 791+0.000 002
2.903 749+0.000 002

2.904 06 2.903 81 2.903 75 2.903 72+0.000 02
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TABLE III. Convergence of the partial-wave series and the spline approximation for the e e+e
system, using sc/A. =3.

Nch 9X10

0.256 88
0.274 58
0.263 69
0.269 25
0.266 01
0.267 65
0.266 65

12X 14

0.249 45
0.270 28
0.260 69
0.264 84
0.262 76
0.263 74
0.263 17

17 X 19

0.246 61
0.269 11
0.259 96
0.263 65
0.261 96
0.262 73
0.262 31

0.245 36+0.000 11
0.268 60+0.000 05
0.259 64+0.000 03
0.263 1320.000 05
0.261 60+0.000 04
0.262 29+0.000 05
0.261 93+0.000 03

0.266 97 0.263 36 0.262 43 0.262 02+0.000 04

configuration-space Faddeev calculations to relatively
coarse grids, and it was therefore not possible to obtain
high-accuracy results. The tensor representation enables
the use of much finer grids, which —in combination with
higher-order methods —makes these calculations com-
petitive in problems where high accuracy is needed, such
as muon-catalyzed fusion. We are presently engaged in
the implementation of our programs on a Cyber 205 vec-
tor computer, and investigating the effectiveness of
different higher-order methods. Extrapolation techniques
seem especially promising.

The programs that we used are written in VAX FOR-
TRAN and can be easily implemented on personal com-
puters. The source code can be obtained from one of the
authors (N.W.S.) A full description of the methods used
is given in the report of Bosveld and Schellingerhout.
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APPENDIX

When we express 6,' in r instead of p, we find

2
a'

=A. (1 r) — —k(1 —r)i, a

a'

p (r) 88;

I (I +1)
p (r)cos 8;

a
p(r) Br

L (L +1)
p (r)sin 8;

(Al)

where p(r) = —A, 'ln(1 —r ).
The Faddeev-Noyes equations (19) expressed in the

variables 0; and r, reduce after collocation in the points
(r, 8;)=(r,8 ) to the following matrix equation [cf. Eq.
(27)]:

We are indebted to the Werkgroep Gebruik Supercom-
puters for granting the funds to experiment with

(A ~ 8 —C)a=Da,
where the matrices A through D are defined as

(A2)

A(1 r)—
3; pq &(s „=5;.5 & A. (1—r ) s "(r )s„(8 )

—A. (1 —r )s' (r )s„(B)+ 's' (r )s„(8q)
p(rp)

+ s (r„)s„"(8 )—
p'(rp )

i apqjgmn ,ij aP m p n q

I (l +1) L (L +1)+ s (r )s„(8 )
p (r )cos 8 p (r )sin 8q

(A4)

C; & „=5;.v'&(p(r )cos8q)s (rp)s„(8 ),
16m.

D; pq i& „= (1—5J ) g QU' ~(p(rp )cos8q )s (rp )
M y

dO-

&;,- sin2~p, ,

(A5)

(A6)

Here we have used the definition

cos p cos 8'+sin p sin L9' —cos 0
v;~(8, 8') =

2 cosp jsinp'Jcos6I sin0'
(A7)

upon this value. )

As mentioned in Sec. IV, the tensor representation of
(A2) reads

This function has the property vi;(8~, 8;)=x; y;. (The
channel basis functions can be chosen to depend only =*,P*„o(S,@'„&gS'+S, ', J*)a . (AS)
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The matrices Used in this equation read ik pqs tkgqs tk Uq
s» ~r (A14)

M =A, (1 r—) s "(r ) —t(, (1 r—)s' (r )

t((1 —r )+ s'(r )
—tcs (r ),

p( )
(A9)

with

'" U't=v (p(r )cos8 ) . (A15)

with

S~"=s„(8 ),
1

Npm 2 sm(rp )
p (rp)

ij ~qn ij g i OqnaP~ aP a

(A 10)

(A 1 1)

(A12)

Finally, we have for S, and ,*J*:

S =s (r ),
kJ g $»t kjg kj Is»t
yP" yP

with

(A16)

(A17)

'O~"=s„"(8 )
'

l (l +1) L (L +1)
+

cos 6q sin 6
For *,I',*we have

s„(8 ). (A13)
16

2L+1 M &,; ' sin2~p, ,

Xs„(8,)13(v, (8,0 )) .

(A18)

(A19)
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