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Solution of the pair equation using a finite discrete spectrum
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A method for the solution of the pair equation, by summation over a complete and finite basis set,
is presented. The basis set is obtained by diagonalization of a discretized Hermitian one-particle
Hamiltonian. The number of operations required to solve the radial pair equation is proportional to
N where N is the number of radial lattice points used. An application to the ground state of heli-
um, evaluating the total energy to an accuracy of a few parts in 10, is presented. The method is

equally well applicable to the study of pair correlation in many-electron atoms.

I. INTRODUCTION

To extract valuable information from accurate experi-
mental results on atomic systems, accurate atomic calcu-
lations are often needed. Combining experiments and
calculations, different theories can be tested and secon-
dary information such as nuclear moments and the nu-
clear charge distribution can be extracted.

There are three widely used approaches to accurate
atomic calculations, configuration-interaction (CI), mul-
ticonfiguration Hartree-Fock (MCHF), and many-body
perturbation theory (MBPT). Despite the access of very
fast computers the improvement of the accuracy and per-
formance of these methods relies mainly on further devel-
opment of their formulation and on new numerical tech-
niques.

The diagrammatic formulation of MBPT, introduced
into atomic physics by Kelly, ' has proved to be a
convenient framework for systematic calculations. With-
in this formulation the wave function naturally con-
sists of building blocks describing one-particle, two-
particle, . . . , n-particle excitations and all products of
such excitations. An elegant formulation of this is the
coupled-cluster (CC) theory. '

A procedure has been developed to solve the CC equa-
tions including all clusters for single and double excita-
tions, ' referred to as the CCSD method. This involves
the numerical solution of radial one-particle and two-
particle differential equations. The solution of the two-
particle equation (the pair equation) is particularly
demanding. A method to solve the pair equation and ob-
tain the pair functions by direct numerical integration
has been developed and described in detail by
Mkrtensson. The numerical solution of the pair equa-
tion originates from earlier work by McKoy and Winter.
The CCSD method and its implementation in a new pair
program will be presented separately together with appli-
cations on four-electron systems. This new pair pro-
gram has been used in the present work.

In this paper we present a method to solve the radial
pair equation based on summation over a finite spectrum.
This spectrum is obtained by diagonalization of a discre-
tized one-particle Schrodinger Hamiltonian. The method

to obtain a finite single-particle spectrum has similarities
with the B-spline method used by Johnson and Sapir-
stein.

We test our new method on the ground state of helium
to determine the numerical accuracy. Since the CCSD
method is formally exact for a two-electron system we
can compare our numerical results with the very accurate
variational calculation by Frankowski and Pekeris, " re-
cently improved by Freund et al. '

In Sec. II we derive the pair equation for the helium
ground state. The problem of discretizing the one-
particle Hamiltonian is discussed in Sec. III. There we
show how a finite orthogonal basis set of orbitals is ob-
tained, which is complete on the discrete space chosen,
and how such a basis set conveniently can be used to
evaluate the radial pair functions. The numerical results
for helium are presented in Sec. IV and carefully exam-
ined in relation to the accurate variationa1 calculations.
Special attention is given to the convergence of the
partial-wave expansion of the wave function. Some con-
clusions are presented in Sec. V.

II. PAIR FUNCTIONS

The ground state of helium can be obtained as a solu-
tion of the Schrodinger equation

H% =E%,
where the Hamiltonian can be divided into a single-
particle Hamiltonian ho for each electron, describing the
motion in the nuclear potential, and the Coulomb repul-
sion between the electrons V&2

= 1/r, 2

H =hp(r, )+hp(r~)+ V, ~ .

A first approximation of 4' can be obtained by neglecting
V, 2, leading to an independent-particle solution %p (since
H is spin independent, we consider only the orbital space
part of the wave function, which is symmetric for the
ground state of helium)

+p(r„rp) =~ ),(r, )@„(r2)= l
»'&,
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where N&, is an eigenfunction of ho

hp+„(r)=s„+„(r) . (4)

We define the remaining part of 0 as the pair function

g and the part of the energy E beyond the independent-
particle model (IPM) as the correlation energy E,

ql( r, , r2) =VP(r1, r2) +2)(r1, r2),

E =2E,$/+'Ei +Eg

where E, =
& ls

l
I lr, 2 l

ls }. If we substitute Eqs. (2)—(6)
into Eq. (1) and rearrange the terms, we get an equation,
the pair equation, for the pair function q

having at least one electron excited. If such a complete
one-particle basis set is available, the pair function can be
obtained by a simple sum of overlaps with the rhs of Eq.
(7). As described above, 21 can be expanded in partial
waves and evaluated in an iterative way. In the first ap-
proximation of the pair function, the rhs [of Eq. (7)] is

12

omitting the orthogonality term which does not contrib-
ute when evaluating the pair function according to Eq.
(10). The expression for the radial pair functions defined
in Eq. (9) is then to lowest order, with k = I,

[2s„—hp(r, ) —hp(r2)]l2) }
1

l
ls +2I &

—(E, +E, )lls +21 & . (7)
"i2

Integration from the left with & ls
l

gives the correlation
energy

virt

P"(r„r2)= g P„1(r1)P„,1(r2)
n, n' 2~ &s ~nI ~n't

(12)

E= 1 1 +g —E= 1

where we have used intermediate normalization of '0

The pair function g can be expanded in partial waves,
using standard notations,

1
v1(r1, r2) —g P (rl, r2)Yiy(81, $1)Y q(82, $2)

k, q
"]~2

k k 0
x( —1)" (9)

By applying boundary conditions at some large distance
R, the continuum part of the spectrum is represented by
a discrete one. In the limit when R goes to infinity the
continuous spectrum is restored. The pair function can
then be expressed as, using the discrete representation of
the spectrum [A denotes the right-hand side of Eq. (7)],

lrs & & rslW
21 r„r2 =

„2e1s sr es
(10)

which satisfies Eq. (7). The sum in Eq. (10) excludes the
lls & state and thus is restricted to virtual pair states,

q
—

q 0

For each partial wave k, one radial pair function p is re-
quired. Substituting this expansion into Eq. (7) leads to a
coupled system of differential equations for the radial
pair functions. To get the exact pair function g, an itera-
tive procedure is used, since the right-hand side (rhs) of
the pair equation, Eq. (7), contains 21. For many years
our method to obtain the radial pair functions has been a
direct numerical solution of these differential equa-
tions.

Another way to obtain the pair function is to expand q
in a complete one-particle basis. Such a basis set is gen-
erated by the spectrum of ho

where we have used the partial-wave expansion of the
Coulomb interaction. " Successively better approxima-
tions of p can then be obtained using the full rhs of Eq.
(7) with the latest approximation of 21 given by Eq. (9).

It is well known that it is not an easy task to solve an
inhomogeneous partial-differential equation. Numerical
instabilities can occur due to contamination by homo-
geneous solutions. On the contrary, the method using a
direct summation over a basis set does not suffer from
such difficulties. This method is also more flexible since
we have the spectrum explicitly. For these reasons we
have chosen to develop the second method, which also
turns out to require less computing time. The main prob-
lem is to generate a suitable basis set. If we choose to
represent all the radial functions on a finite number of
discrete radial lattice points, a finite basis set can be ob-
tained which is complete on this discretized space.

III. NUMERICAL METHODS

A. Discrete finite spectrum

Usually when working with numerical basis sets one
generates a finite number of bound-state orbitals and
represents the continuum with a finite number of contin-
uurn orbitals by choosing a mesh in k space. This has
two disadvantages. Since one cannot generate all basis
orbitals, the basis set is incomplete. Such a basis set also
tries to describe the full space, which is quite unnecessary
for an atomic bound state. There are also problems in
performing radial integrals involving two continuum or-
bitals, since these integrals can converge very slowly as a
function of the cutoff radius if the energies of the two
continuum orbitals are close.

An alternative way to view the problem is to consider
the atom put in the center of a spherical box, large
enough not to disturb the atomic bound-state wave func-
tion. Discretizing the radial coordinate inside the sphere,
by choosing a lattice of N radial points, one can generate
a basis set, with X basis orbitals, which is complete on
this discretized space. It is preferable to have the basis
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set composed of orthogonal orbitals, which is guaranteed
if the discretization leads to a symmetric eigenvalue prob-
lem.

The radial Schrodinger equation which generates the
basis set orbitals is, using atomic units e =m, =A=4meo
=1,

1 d l(l +1) Z+ P(r)= EP(r),
2 dr2 2r2 r

(13)

which, if discretized on a linear lattice, would yield a
symmetric eigenvalue problem. A better description of
the atom, however, is obtained by using a logarithmic lat-
tice (r =e", with a linear lattice in x instead of r) In o. r-
der to preserve the Hermiticity of the differential opera-
tor when discretized, it is necessary to make the transfor-
mation

P(r)~ P(x) .
1

r

which is possible to discretize in a symmetric manner on
the logarithmic lattice. Using the symmetric five-point
formula

y "(x)= [—y(x —2h)+16y(x —h) —30y(x)1

12h

+16y(x +h) —y(x +2h)]+0(h )

(h is the lattice spacing) for the second-order derivative of
y(x)=(llr)P(x) in Eq. (14), leads to the N XN sym-
metric eigenvalue problem

( A +D)P=sP,

where the vector P is given by

P=(P(xl), P(xp), . . . , P(x~)) .

The matrix 3 is diagonal

With this transformation Eq. (13) becomes

1 1 d 1 (1+re) Z—+ ——P(x)=EP(x),2rd~ r 2r r
(14)

z3"=——+
(&+—,

')'
2r

i =1,2, . . . , N

and D is a symmetric band matrix

(16)

1

24h

30

16
r2r(

0

16
r& "2

30
r2r2

16

r4l 2

1 r3

16

2r3

30

16
r4rg

0

r2r4

rgr4

30
r4r4

0

16
r4r5 r4r6

The boundary conditions need special attention. To express the second-order derivative in the first and last few points
one needs to know P in a few points outside the N chosen lattice points. Since the sphere is chosen so that the atomic
wave function is negligible outside the sphere, it is natural to assume P to be zero beyond the last lattice point. Close to
the nucleus (upper left corner of D) P can be approximated by

P(& ex) ~ I+3/2 Zr
(17)l+1

for a point nucleus. This formula relates P at the points needed outside the lattice to P at the first few points on the lat-
tice, introducing corrections to the upper left corner of the matrix D. Care has to be taken to maintain the symmetry in
making these corrections. This can be achieved by taking

P(xo) P(xo)
P(xo)=a P(xl )+(I—a) P(x2),P(x, )

' P(x2)

P(x, )= P(x, )
P(x, )P x,

and choosing a appropriately [the ratios are calculated
from Eq. (17)].

Now, diagonalization of the symmetric matrix (A +D)
leads to ¹ rthogonal basis-set orbitals and their eigen-
values. It also follows from matrix algebra that this basis
set is complete in the sense that any function on our lat-
tice can be described exactly by the basis set. By extrapo-
lation from lattices with different spacings, the accuracy
can be increased, approaching the exact description on
the continuous space. This kind of extrapolation is need-
ed if high accuracy is demanded and can be made in a
systematic way.
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B. Hartree-Pock spectrum

For larger atomic systems the potential from the bare
nucleus is a poor approximation, and one has to use ei-
ther a more general local potential or a nonlocal potential
such as the Hartree-Fock (HF) potential in the
independent-particle mode1 used as the first approxima-
tion of the atomic wave functions. A Hermitian potential
consistent with the IPM then has to be used when gen-
erating the spectrum. For He we have, in addition to the
kydrogenlike potential considered so far, also applied the
HF potentia1. Using the HF potential leads to the follow-
ing modifications. In Eq. (16), Z is replaced with the
effective charge from the direct part of the HF potential

Z~Zd;, (r, ) .

The exchange part of the HF potential leads to an addi-
tional full matrix V,„ in Eq. (15), which for the helium
spectrum with angular momentum l =k is

k
1

2( +1 (19)
ij

The function (r & Ir &+'
)&2 has a cusp when r, = rz, and

an ordinary trapezoidal formula would not be very accu-
rate when integrating over such a cusp. By giving
different weights to the points close to the cusp, however,
we can simulate a more accurate integration formula, as
discussed in Sec. III C. Such weights are included in the
implementation of Eq. (19), although not explicitly given
here.

P„(r, )P„(r, ) .

C. Evaluation of pair functions

12

used to evaluate the first approximation of the radial pair

In Sec. IIIA, a five-point formula was used for the
second-order derivative when discretizing the Schroding-
er equation. This gives an error of order O(h"), where h

is the lattice spacing. To be consistent in evaluating in-

tegrals of discretized functions one has to use an interpo-
lation formula leading to an error of the same order.
This can be achieved for a smooth function with a sym-
metric four-point Lagrange polynomial approximating
the function between two lattice points. Using the corre-
sponding integration formula to evaluate radial integrals
leads to the same result as using the trapezoida1 formula
(i.e., the same weight on all lattice points) if the function
goes to zero fast enough outside the region defined by our
lattice, so that the contribution from an imagined con-
tinuation of the lattice is negligible. This is true to a
good approximation if the first lattice point is chosen
close to the nucleus. Being able to use the trapezoidal
formula simplifies the evaluation of integrals consider-
ably. It is also important to notice that this is consistent
with the properties of our spectrum, which, since it is

evaluated from a symmetric matrix, is orthonormal using
the trapezoidal formula (ordinary scalar product). Un-

fortunately this is not true for a function with a cusp like
the first-order W, originating from the partial-wave ex-

pansion of Eq. (11),
k

(20)

functions. It is possible to remedy this by giving a weight
different from one to the points next to the cusp' when
constructing the rhs. This weight can be chosen so that
the simple trapezoidal formula yields an 0 (h ) error, the
same kind of error as obtained from a four-point
Lagrange interpolation polynomial on a smooth function.

In this work we present a new method to treat the
cusp. This method is more accurate than the one
presented previously, ' particularly for high partial
waves (large k), and can be derived as follows. In con-
trast to the previous method we consider an integral over
both radial coordinates of a function involving a smooth
part and the factor (r & /r &+')iz with the cusp. The
smooth part is approximated with symmetrically located
interpolation polynomials on the squares between the lat-
tice points, while the cusp factor is treated analytically.
Integrating over both radial coordinates then yields the
weights for the different lattice points. Formally we get
these weights by considering a function which is zero on
all lattice points except one and integrating over all
squares. For a function without the cusp factor, we
would get the same weight on all lattice points, the
weight one if the lattice step h is appropriately included
in the function. Including the cusp factor we also get the
same weight on all points that do not give contributions
to the integral on both sides of the cusp. This weight is,
however, different from unity and depends on h and k.
For the lattice points close to the cusp, giving contribu-
tions to the integral on both sides of the cusp, weights
also depending on h and k are obtained. These weights
come out to be the same on each subdiagonal.

Using four-point Lagrange interpolation polynomials
for the smooth part, we thus end up with five weights to
be calculated for each h and k, one weight for the diago-
nal r, =r where the cusp is located, one weight each on
the three main subdiagonals, and one weight for the rest
of the lattice points. In deriving the different weights we
have utilized the properties of a logarithmic grid. Apply-
ing these weights to the A, Eq. (20), all integrations can
then be done with the simple trapezoidal formula.

The evaluation of the radial pair function of Eq. (12) is
now straightforward. For a fixed n the single-particle
wave packet formed by summing over n

' can be calculat-
ed and the corresponding two-particle contribution add-
ed to the pair function using approximately 4N multipli-
cations. Since this has to be done for n running over all
the N basis functions, the total number of multiplications
to evaluate a pair function is approximately 4N . This
result does not depend on using the first-order R of Eq.
(20) but is valid for any (higher-order) radial J7 originat-
ing from Eq. (7).

The effort to set up the first-order 8, Eq. (20), is pro-
portional to N and is negligible compared to the evalua-
tion of the pair function. Evaluating higher-order radial
A's involves integrals over previously calculated radial
pair functions. The effort to evaluate these integrals is
also proportional to N, but since the number of integrals
to evaluate increases with the number of radial pair func-
tions used in the calculation, the evaluation of % will
take a substantial amount of the computing time if many
pair functions are involved.
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IV. RESULTS FOR HELIUM

In this section results from numerical solution of the
pair equation Eqs. (7) and (10) are presented. The first-
order equation decouples to independent radial equations
for the different partial waves with A given by Eq. (20).
From the corresponding first-order radial pair functions,
Eq. (12), the contributions to the second-order correla-
tion energy are calculated using Eq. (8).

We have also solved the pair equation to self-
consistency. This involves an iterative solution of cou-
pled radial equations, for the different partial waves, us-
ing the full rhs of Eq. (7). The corresponding all-order
energies are then achieved from Eq. (8).

The equations given in Sec. II were derived considering
a hydrogenlike spectrum. In addition to using such a
spectrum, we have solved the Schrodinger equation for
helium using a Hartree-Fock spectrum. The correspond-
ing equation is more complicated and involves the cou-
pling between single and double excitations.

The range of the lattice used in all calculations is
—8.0 3.0

min max
7"

7

which was found to give sufficiently small boundary
effects. To achieve high numerical accuracy, several lat-
tice spacings were used and the results extrapolated to
zero spacing. Although the discussion in this paper for
simplicity reasons involves using a five-point formula for
the second-order derivative, our calculations were actual-
ly performed using a seven-point formula.

All the calculations reported were performed on a
SUN 4/110 work station using a total amount of about
20 h of CPU time. The solution of one pair function in,

say, 101 points is, however, only about 10 s. The total
amount of computing time involves iterative solution of
the pair equation to self-consistency for all the l limits
with I ~ 10 in the four different lattices used.

A. Second-order results

+O(l )] . (21)

Using this formula, the tail contribution from l & 10 can
be calculated to be

hE' '( l) = (4357.5 ) X 10 a. u.
1=11

The (1+1/2) term in this sum is almost negligible,
contributing a few parts times 10 a.u. The tail contri-
bution can also be evaluated from our numerical results
(the calculated b,EI' '). Making a fit to the last few hE&' '

with two terms proportional to (I +1/2) ' yields the
tail contribution from 1)10 to (4357+1)X10 a.u.
consistent with the analytical result. Adding this tail
contribution we get agreement for the second-order
correlation energy to eight decimal places with the very
accurate result of Baker et al. '

In Table I we give partial-wave contributions EEI' ' to
the correlation energy using hydrogenlike orbitals and
compare with similar results from a B-spline method used
by Johnson and Sapirstein. ' The two calculations are in
excellent agreement with each other.

The contributions AE&' ' are for high l asymptotically
given by the Schwartz formula' '

+E(2)— as (l + i
)
—4[1 s(l + &

)
—2+ &ss(l + &

)
—4

256 2 4 2 64 2

TABLE I. Second-order contributions AEI' ' from different partial waves I to the correlation energy
of He. The correlation energy is evaluated relative to the energy —2.75 a.u. , the expectation value of
+0 constructed from hydrogenlike orbitals. Energies in atomic units.

0
1

2
3
4
5

6
7
8
9
10

—0.125 333 84
—0.026 495 16
—0.003 906 13
—0.001 077 73
—0.000 406 10
—0.000 185 00
—0.000 095 79
—0.000 054 40
—0.000 033 12
—0.000 021 29
—0.000 014 30
—0.000 043 57

This work

—0.125 333 84
—0.151 829 00
—0.155 735 13
—0.156 812 86
—0.157 218 96
—0.157 403 96
—0.157 499 74
—0.157 554 14
—0.157 587 26
—0.157 608 56
—0.157 622 86

Johnson and Sapirstein'
EE(2)

—0.125 333 83
—0.026 495 16
—0.003 906 13
—0.001 077 73
—0.000 406 10
—0.000 184 99
—0.000 095 79
—0.000 054 39
—0.000 033 12
—0.000 021 29
—0.000 014 30
—0.000 043 57

1=0
Exact

—0.157 666 43

—0.157 666429 5

—0.157 66640

'Reference 10.
Reference 17.
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TABLE II. All-order correlation energies of He in different partial-wave limits using hydrogenlike
orbitals. Correlation energies EI are given relative to E0+E& = —2.75 a.u. Energies in atomic units.

aE
This work

E
Carroll et aI. '

E
MArtensson

E

0
1

2
3
4
5

6
7
8
9
10

—0.129 028 77
—0.021 487 48
—0.002 250 61
—0.000 554 23
—0.000 197 52
—0.000 087 11
—0.000 044 18
—0.000 024 73
—0.000 014 90
—0.000 009 50
—0.000 006 35

—0.000 01902'

—0.129 028 77
—0.150 516 25
—0.152 766 85
—0.153 321 09
—0.153 518 60
—0.153 605 72
—0.153 649 89
—0.153 674 62
—0.153 689 52
—0.153 699 02
—0.153 705 37

—0.129 028 765
—0.150 516220
—0.152 766 822
—0.153 321 079
—0.153 518 598
—0.153 605 71
—0.153 649 88
—0.153 674 59
—0.153 689 47
—0.153 698 95
—0.153 705 27

—0.129 02
—0.150 50
—0.152 74
—0.153 28
—0.153 47

—0.153 60

1=0
Exact

—0.153 724 39

—0.153 724 377 034

—0.153 724 3

'Reference 18.
Reference 8.

'Using C3 and C4 from Eq. (26) and our estimated C5, as described in Sec. IV B.
Reference 12.

B. All-order results

The partial-wave expansion of the pair function is
given in Eq. (9). When solving the pair equation to self-
consistency, we have to truncate this expansion after
some k =I. The truncated solution then gives, through
Eq. (8), the partial-wave limits EI of the correlation ener-
gy. Our calculated EI are presented in Table II. We
claim our partial-wave limits to be accurate to a few parts
in 10 . In Table II we also compare with results previ-
ously obtained in our group using a different method,
and with results by Carroll et al. '

In the method previously used in our group the radial
differential equations originating from Eq. (7) were solved

directly with a numerical method. Comparison with the
present calculation shows a substantial improvement in
accuracy. This has mainly two sources: the improved
treatment of the cusp and the use of more dense lattices.
In Table III our results for the different lattices used are
presented to show the magnitude of extrapolation due to
finite lattice effects. Although we have used a seven-point
formula for the second-order derivative giving an O(h )

error in our spectrum, we have found the dependence on
lattice spacing for correlation energies to behave as

E(h)=E(0)+a&h +azh +a3h +O(h ) .

This we attribute to higher-order effects of the cusp in the

TABLE III. All-order correlation energies, using hydrogenlike orbitals, for different number of points N in the lattice, and the cor-
responding results extrapolated to zero spacing. The two figures after the decimal point are only significant for describing differences
between the different lattices. Energies in atomic units (10 a.u. ).

0
1

2
3
4
5

6
7
8
9
10
10

1=0

N=85
—12 902 869.31
—2 148 735.00
—225 044.02
—55 404.98
—19 732.59

—8691.94
—4398.79
—2454.80
—1472.96
—934.55
—619.78

—15 370 358.72

N=91
—12 902 871.36
—2 148 738.58
—225 048.43
—55 409.69
—19 737.32

—8696.51
—4403.08
—2458.76
—1476.55
—937.79
—622.66

—15 370 400.73

N= 101

—12 902 873.45
—2 148 742.25
—225 053.04
—55 414.69
—19 742.43
—8701.53
—4407.88
—2463.27
—1480.71
—941.60
—626.10

—15 370 446.95

N= 121

—12 902 875.33
—2 148 745.58
—225 057.30
—55 419.44
—19 747.41
—8706.55
—4412.80
—2467.99
—1485.19
—945.77
—629.98

—15 370 493.34

Extrapolated

—12 902 876.74
—2 148 748.13
—225 060.53
—55 423.35
—19751.73
—8711~ 19
—4417.54
—2472.68
—1489.96
—950.30
—634.54

—15 370 536.69
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D4 D5

2,3,4
5,6,7
8,9,10

—0.0716
—0.0742
—0.0743

—0.0409
—0.0305
—0.0294

—1854
—1901
—1903

TABLE IV. Coefficients in the asymptotic formula for AEI
[Eq. (22)] determined from three consecutive partial-wave limits
using a difFerent maximum l. The resulting tail contributions
(10 ' a.u. ) for I & 10 are also given.

ing accurately more than the first two D„coefficients by
such a fit. Neglecting the D6 term we achieve the results
given in Table IV. Adding the tail contribution from
Table IV achieved with /, „=10,we get the total correla-
tion energy within a few parts in 10 (Table II). The cor-
responding result using /, „=5 gives an error of about
4X10 a.u. The D4 and D~ coefficients can also be cal-
culated as an integral over the wave function. This has
been done by Hill' giving

D4= —0.074225 7, D~ = —0.030989 1 . (23)

HEI =D4(l + ,' ) +D5(l + —') +D6(l +—')—
+O(l ) . (22)

The D„coefficients can be estimated by a fit to our calcu-
lated hE&. We have found numerical problems determin-

pair functions. We have used four different lattices with
85, 91, 101, and 121 points, respectively. Using a single
lattice with, say, 91 points, the error due to the finite lat-
tice is about one part in 10 for the / =10 limit. Using
two lattices, the h -dependent error can be removed,
which should be sufficient for heavier systems with many
electrons. The use of four lattices is only justified for
two-electron systems for which the pair equation
represents an exact result.

The results by Carroll et a/. given in Table II were
achieved by a CI calculation analyzed in terms of natural
orbitals. Comparing with their result, extrapolated in the
number of natural orbitals, we find good agreement ex-
cept for the higher / limits. We believe that our high /-

limit results are the more accurate ones.
Including partial waves up to /=10 gives the total

correlation energy accurate to two parts in 10 (see Table
II). Due to the slow I convergence it would be too tedi-
ous to increase the accuracy substantially by calculating
explicitly higher / limits. The tail contribution from high
partial waves thus has to be extrapolated to increase the
accuracy. This extrapolation is the main limitation of the
accuracy for two-electron systems.

For the all-order results the asymptotic formula for
b,E& includes also odd powers of (l + I/2) in contrast to
Eq. (21) (Ref. 18)

+O(l ) .

The connection with the formula for b,EI [Eq. (22)] is

D4 = —3C3, Ds = —4C4, Ds = —5( —,
' C3+ Cs ),

which gives

C3 0.024 74 1 9, C4 =0.007 747 27

(24)

(25)

(26)

In Table V we give the contribution from the C3 and C4
terms of Eq. (24) for different l, and the contribution from
the remaining terms deduced using our calculated / lim-
its. For large / the C5 term should dominate this
remainder. In Fig. 1, a log-log plot of the remainder is
given. The slope of the curve in Fig. I is approximately—4.7, indicating that we have the expected (l +1)
dependence. Assuming this dependence the coefficient
C& can be estimated, by a least-squares fit, C5 = —0.015.
One would have expected the slope to come closer to —5
going to larger / but we see a tendency for the opposite.
This artifact can be explained if we assume an error of
about two parts in 10 for our higher / limits. With our
estimated coefticient C5 we get the tail contribution from
I ) 10 to —1902 X 10 a.u. (Table II) giving the total en-
ergy of helium to —2.903 72439 a.u. It is interesting to

As can be seen from Table IV, our estimated values are in
good agreement with these values.

To explore further the accuracy of our / limits we can
look at the difference between our / limits and the ex-
tremely accurate calculation by Freund et a/. ' This
difference is given by the asymptotic formula'

EI E=C—3(1+1) +C4(1 +1) +C5(I +1)

TABLE V. Examination of the (I + 1) dependence in Eq. (24) using our all-order partial-wave lim-
its for He. Energies in atomic units (10 ' a.u. ).

4
5
6
7
8
9

10

—153 518 60.5
—153 605 71.7
—153 649 89.2
—153 674 61.9
—153 689 51.8
—153 699 02. 1
—153 705 36.7

A (I)
—C, (l+1)
—19 793.52
—11 454.58
—7213.38
—4832.40
—3393.95
—2474. 19
—1858.90

A4(l)
—C4(l + 1)

—1239.56
—597.78
—322.67
—189.14
—118.08
—77.47
—52.91

A (l)+
[E„(EI+A3+ A4)]—

455.9
186.3
87.6
45.7
26.2
16.1

10.8

'From Ref. 17; C3 =0.024 741 9 and C4 =0.007 747 27.
Using E = —0. 153 724 377 034 from Ref. 12.
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FIG. 1. Log-log plot of the residual energy from the last
column of Table V as a function of (1+1). Assuming an
(l +1) dependence, a can be determined as the slope of the
curve giving a =4.7.

note that the coefficient D6 in Eqs. (22), (23), and (25)
fortuitously is quite small due to cancellation

D6 = —5( —,
'

C~ + C5 ) = —5(0.012 371—0.015 )

=0.013, (27)

where the last figure is very uncertain. The contribution
to the I & 10 tail from the D6 term in Eq. (22) is thus only
about two parts in 10, explaining the accurate result us-
ing only the D~ and D5 terms in the fit (Table IV). Com-
pare this with the contribution from the C& term of Eq.
(24) giving a contribution of about one part in 10 to the
l ) 10 tail.

The discussion above shows that the slow l conver-
gence is a problem if high accuracy is wanted. The
reason for the slow convergence is the cusp in the wave
function when r, =rz. Promising attempts have been
made by Kutzelnigg to include the correct cusp behav-
ior in the wave function by making the ansatz

4=(1+—,'rI2)N

and expand N in partial waves. Already by approximat-
ing 4 with

~
ls ), using a hydrogenlike ls orbital, he

achieves the approximate D„coefficients [Eq. (22)]
D4= —0.071, D5= —0.029, and D6=0.016, which are
quite close to the accurate values of D4 and D, [Eq. (23)],
given by Hill, and our estimated value for D6 [Eq. (27)].

C. Hartree-Pock results

We have developed a general computer code based on
the coupled-cluster method including all effects of single
and double excitations. We have implemented our new
method to calculate pair functions into this code that can
treat a general potential. Results using the HF spectrum,
discussed in Sec. III B, are presented in Table VI. All the
partial-wave contributions AE& should be the same as the
corresponding ones (see Table II) using hydrogenlike or-
bitals, except the l =0 contribution, which is affected by
which

~
Is ) zeroth-order wave function is used. In prin-

ciple, we should expect the same accuracy in the two cal-
culations. In the HF calculation, however, we need a 1s
HF orbital as input to the code to build the HF potential,
Eqs. (18) and (19), and we introduce a small error (about
one part in 10 for the correlation energy) when interpo-
lating this orbital to the lattice used. The very good
agreement with the results using hydrogenlike orbitals
shows that the code treats correctly the coupling between
the single and double excitations occurring using the HF
potential.

V. CONCLUSION

We have described a method for the solution of the
pair equation based on summation over a finite spectrum.
This spectrum is obtained by diag onalization of the
discretized one-particle Schrodinger Hamiltonian. We
have succeeded in discretizing the Hamiltonian without
destroying the Hermiticity. Generating the spectrum in
this way leads automatically to an orthogonal and com-
plete spectrum which is very suitable for the use in per-
turbation theory when studying many-electron atoms.

TABLE VI. All-order correlation energies of He in different partial-wave limits using HF orbitals.
Correlation energies E& are given relative to E„„=—2. 861 6800. Energies in atomic units.

0
1

2
3
4
5

6
7
8

9
10

E,
—0.017 348 7
—0.021 487 4
—0.002 250 6
—0.000 554 2
—0.000 197 5
—0.000 087 1
—0.000 044 2
—0.000 024 7
—0.000014 9
—0.000 009 5
—0.000 006 3

EI

—0.017 348 7
—0.038 836 2
—0.041086 8
—0.041 641 0
—0.041 838 5
—0.041 925 6
—0.041 969 8
—0.041 994 5
—0.042 009 4
—0.042 018 9
—0.042 025 3

E~F +E(
—2.879 028 7
—2.900 516 2
—2.902 766 8
—2.903 321 0
—2.903 518 5
—2.903 605 6
—2.903 649 8
—2.903 674 5
—2.903 689 4
—2.903 698 9
—2.903 705 3

Ee'
—2.879 028 77
—2.900 516 25
—2.902 766 85
—2.903 321 09
—2.903 518 60
—2.903 605 72
—2.903 649 89
—2.903 674 62
—2.903 689 52
—2.903 699 02
—2.903 705 37

'Total energies E& =Eo+E~ +E&, using hydrogenlike orbitals, deduced from Table II.
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It is possible to implement the method so that an N
dependence for the number of operations needed to
evaluate a radial pair function is achieved, where N is the
number of lattice points used. An accuracy of one part in
10 is easily obtained for helium and can be further im-
proved by increasing the number of lattice points. This
numerical accuracy, achieved for helium, promises that
the method wi11 be sufficiently accurate applied to heavier
atoms with many electrons, for which we expect to lose
some accuracy due to the increased number of nodes in
the wave function. The numerical error will be negligible
compared to omitted many-body effects in most applica-
tions.

The method presented can easily, with some modi-
fications, also be applied to the relativistic case where it

seems to be even more promising. A great advantage
there is that the method yields explicitly the positive and
negative spectrum and thus no explicit energy projection
operators are needed. The effect of such projection
operators is trivially obtained by restrictions in the sum-
mations.
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