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Relativistic all-order pair functions are obtained by summation over a complete set of eigenvec-
tors to a discretized single-particle Dirac Hamiltonian. The discretization of the Dirac equation, by
substituting finite-difference formulas for derivatives, is discussed in detail. It is shown how to ob-
tain a symmetric eigenvalue problem, and a way to avoid spurious states in the spectrum is present-
ed. The number of operations required to solve for a radial pair function is proportional to N',
where N is the number of radial lattice points used. The method is applied to the ground state of
helium using the Dirac-Coulomb Hamiltonian and the no-virtual-pair approximation. An accuracy
of a few parts in 10 is achieved for the total energy. This accuracy allows a determination of the
leading term in the partial-wave expansion of the relativistic corrections to approximately
0.075' (I + —'), which implies a slow convergence compared to the partial-wave expansion of the

nonrelativistic energy.

I. INTRODUCTION

The demand for very accurate relativistic atomic calcu-
lations has grown rapidly in recent years. ' For very ac-
curate calculations on light systems or for heavier sys-
tems the correlation between the electrons, the pair
correlation, needs to be calculated relativistically. In
phase with these demands we present in this paper a
method to calculate relativistic pair correlation to all or-
ders.

Previously a method to calculate pair correlation non-
relativistically to all orders has been developed in our
research group. This procedure is based on the solu-
tion of inhomogeneous radial one-particle and two-
particle (pair) equations. ' The most recent progress is
based on a coupled-cluster procedure, including all
single- and double-excitation clusters, which has been ap-
plied on four-electron systems.

The solution of the nonrelativistic pair equation has
been extended to the relativistic case by Lindroth et aj'. ,
using a method based on the reduction of the full relativ-
istic pair equation to a Schrodinger-like equation for the
large-large component. Approximate energy projection
operators, correct to order a, were used.2

Here we explore a more direct method for obtaining
relativistic pair functions. In this method, which is an
extension of the nonrelativistic case, the pair functions
are obtained from a numerical orbital basis set by explicit
summation over the positive-energy states. No explicit
energy projection operators are needed. The effect of
such operators is trivially obtained by restrictions in the
summations.

~he numerical basis set is obtained by discretizing the
radial single-particle Dirac equation, using finite-
difference formulas, leading to a matrix eigenvalue prob-
lem. We show how this can be done to obtain a sym-
metric eigenvalue problem and how spurious states '

can be avoided. The discrete spectrum forms a complete
basis on the discretized space and includes both positive-
and negative-energy solutions. The method to obtain a
finite single-particle spectrum has similarities with the B-
spline method used by Johnson, Blundell, and Sapir-
stein. "

To test our new method, calculations have been per-
formed on the ground state of helium. Comparison is
made with our corresponding nonrelativistic results, and
with very accurate nonrelativistic calculations, combined
with an evaluation of the leading corrections due to rela-
tivistic effects given by the Pauli approximation. ' '

In Sec. II the discretization of the single-particle Dirac
equation is discussed. The method of using pair func-
tions is described in Sec. III and numerical results for the
helium ground state are given in Sec. IV. Finally some
conclusions are presented in Sec. V.

II. A DISCRETE DIRAC HAMILTONIAN

Numerical basis sets have been used in atomic calcula-
tions for a long time. ' Usually these basis sets are de-
rived considering the total space, which is quite unneces-
sary for the description of a bound-state wave function.
This leads to an infinite number of bound-state orbitals
and a continuous set of free orbitals which has to be ap-
proximated by choosing a finite number of these orbitals.

In the nonrelativistic case we have shown how a finite
number of orbitals can be generated which is complete on
a discretized space. Our way to view the problem is to
consider the atom placed in a spherical box, large enough
not to disturb the bound-state wave function considered.
Inside the sphere we discretize the radial coordinate by
choosing a lattice of X radial points. It is then possible to
formulate a symmetric eigenvalue problem generating a
basis of % radial orbitals, which are orthogonal and form
a complete basis on the discretized space. For details see
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the nonrelativistic paper, Ref. 8.
In this work the ideas above are extended to the rela-

tivistic case. Mostly this extension is straightforward,
but a problem with spurious states, ' not encountered in
the nonrelativistic case, is faced. The problem with
spurious states is discussed in Sec. IIA where we also
show how we have avoided such states. In Sec. II 8 the
discretization of the radial Dirac equation is discussed,
and it is shown how this can be done without destroying
the Hermiticity.

appear as a spurious state in the low-energy part of the
eigenvalue spectrum.

We have examined two approaches to overcome this
problem, namely, to use either forward and backward
difference formulas

f = (f—;+i f;—» g = —(g, —g, -i)1,1

or to let the large and small components be defined on al-
ternating sites of the lattice

A. Spurious states
f' —3 gi —2 fi —i gi f +i gi+2 (3)

2 d
mc c

f(x) & f(x)
g(x) . g(x)d

c
dx

Approximating the derivatives according to

There are several different origins of spurious states
occurring in the Dirac spectrum. In our approach they
seem to have an origin similar to that in lattice gauge
field theory, ' where it is well known that, in the spec-
trum of a discretized Dirac equation, spurious states
might appear, an artifact known as fermion doubling. '

An equation for a massless fermion field on a (D+1)-
dimensional lattice (D spatial dimensions and one time di-
mension) will describe not one but 2 fermions if no pre-
cautions are taken. '

We have investigated the problem with fermion dou-
bling in a more pragmatic way and have found a problem
with spurious states arising from the implicit second-
order derivative in a system of two coupled first-order
differential equations. To discuss this in more detail we
examine the case of a one-dimensional Dirac equation for
a free electron on a linear lattice:

with h running from site g,-
2 to g, in the above sequence

and

=1f =
h

(f;+i—f;-i»
l =2' 1

h
(gj+i gJ i j =2n, n =1,2, . . . , %.

f'(x)= [f(x ——h) —27f (x —
—,'h)+27f (x + —,'h)1

f (x + —3h)]—+O(h ) (4)

leads to the following expression for the kinetic energy,
corresponding to Eq. (2):

In the work by Stacey' it is shown that these methods
are equi ralent in the sense that they reduce to the same
second-order equation. Unfortunately, as demonstrated
below, this is not the case if higher-order difference for-
mulas are used.

Adopting the latter alternative with f and g defined on
alternating lattice sites, and using the four-point
difference formula

f +2 2f +f; 2— —

2m 4h
1+ f, ,

2mc

E =a+me

The left-hand side is the kinetic energy

where h is the space between adjacent lattice sites, and el-
iminating g in Eq. (1), gives an equation for f, ,

2

f (x)
2

1 1 (0.02f, 6
—l. 12f;

2m

+16.3f; 2
—30.4f;

+16.3f, +2
—1.12f, +4

+0.02f;+6) .

2

f (x)
2m

1

2m

f;+2 2f; +f; 2— —

4h' (2)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Thus using Eq. (2) to calculate the kinetic energy will be
the same as taking the derivative of a function with no
nodes. This means that a high-energy eigenvector can

The problem with this second-order derivative is that is
does not connect the even and the odd lattice sites. The
solution with the highest energy that can be represented
on the lattice behaves roughly as

This is very close to the ordinary five-point formula' for
the second-order derivative having the integer coefficients—1, 16, —30, 16, and —1. On the contrary, the large
and small component can be defined at the same lattice
sites and derivatives replaced by four-point backward and
forward difference formulas for the large and small com-
ponent, respectively. This gives the coefficients —0.66,
3.00, 6.00, —16.6, 6.00 3.00, and —0.66 in the resulting
formula for the second-order derivative. Due to the same
sign on two adjacent coefficients this formula will not
count the correct number of nodes on a high-energy
eigenvector and a spurious state can occur in the spec-
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trum. This we have tested and confirmed empirically in
the case of the discretized radial Dirac equation. The
conclusion is that spurious states introduced by the
discrete representation of the derivatives can be avoided
if the discretization is done according to Eqs. (3) and (4). d K

C +-
dr r

d
C

V(r) —2mc

f(r) f(r)
g(r) g(r)

B. Discretization

In the phase convention used, the single-particle Dirac
wave function takes the form

f„,(r)X„(8,$, o )e„. (r a)=- ig„(r)X (g, g, o )

where X is an ls-coupled spherical harmonic spinor.
The radial part of the Dirac equation can be written, us-
ing atomic units e =m, =A=4vrzo=1, a= 1/c,

which could be discretized using a linear lattice. Howev-
er, in order to get a good description of the wave function
close to the nucleus, a logarithmic lattice is used (r =e"
with a linear lattice in x instead of r) To. preserve the
hermiticity of the Hamiltonian when discretized we make
the transformation

1y(r)~ y(x)
r

for both f and g. With this transformation Eq. (5) be-
comes

V(r)

1 d 1 v 1
C — —+v'r dx v'r v'r v'r

1 d 1

Vr dx v'r

V(r) —2mc

1

v'r v'r f (x) f (x)
.g(x) . g(x) .

'

Since we have defined f and g on alternating lattice sites
we have to use an interpolation formula for the ~ terms.
The six-point formulas used for differentiation and inter-
polation of (1/V r )f(x) and (1/Vr )g(x) are given in
the Appendix, Eqs. (A 1) and (A2). The discretization ac-
cording to these equations gives a 2N X 2N symmetric ei-
genvalue problem

f (r)~ri&+ in+2[@+v—(Za)j i&+3&2

Za (2y+1)

@+a—2(Za)2
Z(2y+1) (8a)

D +E F F
B G G (6)

g(r) ~ )'+~ r+ in 2(l'+~) y+3i2r rZa a(2y+ 1)

The submatrices in Eq. (6) are given in the Appendix by
Eqs. (A3) —(A5). Here the discretized eigenvectors are

a(2& +2Ic+ 1 )

(2y+1) (8b)

(F,G)=(fi,f3, . . . , f2N 1&g2 g4 &»g?N)

where f, =f (x; ) and g, =g(x, ).
The boundary conditions need special attention. For

the differentiation and interpolation in the first and last
few points, one need to know f and g in a few points out-
side the N lattice points chosen for each component.
Since the sphere is chosen so that the atomic wave func-
tion is negligible outside the sphere, it is natural to as-
sume f and g to be zero beyond the last lattice point. We
have not encountered any problems with this. Close to
the nucleus, corresponding to the upper left corner of D,f and g can for a point nucleus be approximated by

(7)
where y = [s. —(Za ) ]'~ .

It is desirable to avoid energy-dependent corrections to
the eigenvalue problem of Eq. (6), and therefore the
energy-dependent terms within parenthesis, Eq. (8), have
been excluded. This is a good approximation for positive
bound-state energies, except for a. (0, when, in Eq. (8b),
the second and third terms can be of the same order. The
spectrum is intended for the description of bound atomic
wave functions with energies small compared to mc and
the boundary conditions for these wave functions are
consistent with the approximation above.

Using Eqs. (8a) and (8b) the value of g in the needed
points outside the lattice can be expressed in terms off in
the first few points on the lattice according to
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g (xo) g (xo)
g(xo) =p, f (x, )+p3 f (x3)

X) X3
ss

g (xo)
+Ps f (x5),

Xs

g(x 2)
g(x 2)=y, f(x, )

X)

g(x, )
+y3 f(X3),

X3

g(x 4)
g(x 4)= f(x, ),

X)

(9a)

(9b)

(9c)

H =ho(1)+ho(2)+ V)2 .

A first approximation of 4 can be obtained by neglecting
V&2, leading to an independent-particle solution Oo,

Vo(1,2)= ICb, (1)@[(2)j = ~ I ah j ) =
~ [ ls j ), (12)

where N, and 4t, are eigenfunctions of ho,

ho%, =c„4„c=a, b (13)

corresponding to m =+—,', respectively, and the curly
brackets denote antisymmetrization. Both space and spin
coordinates are implied by the numbers within
parentheses. The part of 0' that goes beyond the
independent-particle model can be expressed in terms of a
pair function i),&(1,2) =—i)&, (2, 1) according to

where the ratios are evaluated using Eqs. (Sa) and (Sb)
and

P&+P3+Ps=y)+y3=1

)II =
I N, (1)&[,(2)+7),q (1,2)j,

and we define here the correlation energy E, by

(14)

This leads to corrections to the upper left corner of the
matrix A. These corrections can be made symmetric by
choosing the weighting coefficients P; and y; appropriate-
ly. We have chosen to treat the corrections originating
from the differentiation (D) and the interpolation (K)
terms separately, thus evaluating diff'erent sets of p; and

y, for these two terms. By the ansatz of Eqs. (9a) —(9c)
the solution for the weighting coefBcients is then unique
when demanding symmetric corrections to the eigenvalue
problem. The treatment of f outside the lattice is done
analogously, with the only difference being that only two
values, f(x, ) and f (x 3), are needed. In this work a
point nucleus is assumed. Using an extended nucleus
only aff'ects Eqs. (Sa) and (Sb), which then have to give
the correct dependence of the orbitals inside the nucleus.

By rearranging the elements of F and 6 according to

(F,G)~(f(,g2,f3,g4, . . . ,f2~ [,g2[v ),
and the equations correspondingly, a band matrix can be
achieved. Now, by diagonalizing the symmetric 2N X2N
matrix in Eq. (6) one obtains an orthogonal basis set of X
positive- and N negative-energy orbitals and their eigen-
values. It also follows from matrix algebra that this basis
set is complete in the sense that any function can be
represented exactly on the lattice. By extrapolation from
lattices with different spacings the accuracy can be in-
creased, approaching the exact description on the con-
tinuous space. This kind of extrapolation is needed if a
high accuracy is demanded and can be made in a sys-
tematic way.

E =2c), +E)+E, , (15)

where E, =R (ls, ls ). Substituting Eqs. (11)—(15) into
Eq. (10) and rearranging the terms leads to an equation
«r I n.b j

[2E„—ho(1 ) —h 0(2) ] ~ I i),~ j )

~[I ls +7),[, j ) —(E, +E, )~ I ls +g,q j ) .
ri2

(16)

Using intermediate normalization, (% 0~%1 ) (% 0~ Po )
= 1, the following expression for E, is achieved by pro-
jecting Eq. (16) on ( I ls

E, = ([1s') 1 2[ls +q)) sE, , —

= ([1s [n:)) (17)

[2e„—ho(1) —ho(2)]~i), ~ )

1
lab +s1,s ) —lab +s1,s ) ab a + ,b)s1s1

12 r)2

Instead of working with the antisymmetrized function
one can work with the nonantisymmetrized pair

function g,&. Taking g,& as the solution to the following
equation, the pair equation,

III. PAIR FUNCTIONS

Nonrelativistically the ground state of helium can be
obtained as a solution of the Schrodinger equation

HV(1, 2)=E)II(1,2),
where the Hamiltonian can be divided into a single-
particle Hamiltonian ho, for each electron, describing the
motion in the nuclear potential and the Coulomb repul-
sion between the electrons V, 2

= 1/r, 2

1—Iba ws1s. )(ba ab+s1„),
12

(18)

ho~r) =E„~r), (19)

one easily verifies that I i),& j satisfies Eq. (16).
The solution to the pair equation, Eq. (18), can be ex-

panded in a complete set of orbitals generated by ho, in-
cluding both the bound states and the continuum part of
the spectrum,
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lab
7$ 7$

~1s ~r ~s
(20)

where A is the right-hand side (rhs) of Eq. (18) and the
sum is restricted to virtual pair states, and thus
r, s&a, b;b, a W. e let here the summation also denote the
integration over the continuum part of the spectrum.
Equation (20) is an implicit expression for r),b (since A
depends on r),b) and i),b can be obtained iteratively. A
first approximation is achieved by neglecting the depen-
dence of g,b in the rhs giving

I
re &(rs

virt 12

Dab
r, s 2&&s ~r &s

(21)

Relativistically we want to use Dirac Hamiltonians

ho(i)=c(a p);+mc (P—1),——2 Z
T).

for the single-particle Hamiltonians in Eqs. (11) and (19)
when generating the pair function g,b iteratively using
Eq. (20). With the use of this ho, however, having both a
positive- and a negative-energy spectrum, the derivation
above leading to Eq. (16) is doubtful. As pointed out by
Brown and Ravenhall' the relativistic time-dependent
counterpart of Eq. (10) has no stationary solutions due to
the possibility of real transitions to states where one elec-
tron has a negative energy and the other electron is far up
in the positive-energy continuum. For the time-
independent equation, Eq. (10) or Eq. (18), this means
that there are no normalizable solutions due to an infinite
degeneracy of the bound two-particle states, with states
having one negative-energy electron and one positive-
energy electron. The direct addition of the Coulomb in-
teraction to the independent-particle Dirac equation is
obviously not based on correct physical assumptions.
The missing physics is that the idea in Dirac's hole
theory of a filled engative-energy sea is not incorporated
in our equations and excitations to negative-energy states
[e.g., r or s being negative-energy states in Eq. (21)] will
incorrectly be allowed. The cure devised already by
Brown and Ravenhall' and later advocated by Sucher
is to deduce an equation in the framework of QED. In
QED the second quantization of the interaction field and
the matter field incorporates to the full the ideas of
Dirac's hole theory.

k (q)

m

V =1/2 j =0)a a

-m

V =1/2 I =0)
b b

FICr. l. Angular momentum graph (Ref. 4) corresponding to
G (~, m, a, b) in the partial-wave expansion, Eq. (22), of a ls'
state, and thus ~, =~b = —1 and m, = —mb =+—,'. Each vertex
represents a 3-j symbol involving j and m of the free lines and k
and q of the internal line. The k and q come from the partial-
wave expansion of the Coulomb interaction (Ref. 4). The sum-
mation over q is implicitly assumed in the graph.

In Dirac's hole theory excitations to the occupied
negative-energy states are forbidden. On the other hand,
excitations from the negative-energy states, creating
electron-positron pairs, are allowed. In this work the
"no-virtual-pair" approximation, omitting these excita-
tions from the negative-energy states, is used. Such exci-
tations contribute to order u Ry. ' In the framework of
this approximation, Eqs. (20) and (21) are correct, provid-
ed the summations are restricted to positive-energy
states. Formally this is equivalent to having positive-
energy projection operators surrounding V, 2 in Eq.

Recently Lindroth et al. have solved the pair equa-
tion, Eq. (18), by reduction to a Schrodinger-like equation
for the large-large component and then solved directly as
an inhomogeneous differential equation. Energy projec-
tion operators were needed and these are only known ap-
proximately in closed form, although correct to order a
Ry. With the method presented in this work, however,
there are no problems with projection operators, since
the spectrum is known explicitly. Thus this method can
be extended beyond the no-virtual-pair approximation.

The evaluation of the pair function using the finite
spectrum has been carefully described for the nonrela-
tivistic case. In the relativistic case the pair function
g,b, describing corrections to the 1s state, can be ex-
panded in partial waves according to

rj,b(1,2)= g g
k, x I

X, (1)
0

0 pl.l (ri, rp) pl."s(ri, r2) X„(2)
PsL, (~»"2) Pss("i "2)

0
kG (x, m, a, b), (22)

where X is an ls-coupled spherical harmonic spinor
and G is represented by the angular momentum dia-
gram in Fig. 1. Here K is

v = + (j + —,
' ), j =1+—,

'

I

gular momentum of the 1s state considered is zero and
the Coulomb interaction preserves parity. For each par-
tial wave, determined by v and k, one radial pair function
is needed. From the angular momentum diagram in Fig.
1 the possible values for k are deduced

and v is the same in both coordinates, since the total an- k =j+—,
' (23)
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using triangular conditions.
The lowest-order approximation of g,b was given in

Eq. (21). Using the standard partial-wave expansion of
the Coulomb interaction

/c

, g C,"(1)C",(2)( —1)~
r12 k r )+'

q

and the expansion of q, b in Eq. (22), leads to the follow-
ing expression for the lowest-order radial pair function:

~k

«k( )
PI L PLS
psI. pss

F(r, ) „,, (n, ~n2~~r& Ir& '~1 —1, 1 —1)

n&, n& 1S n1K n2K

Here F and G are the large (L) and small (S) radial com-
ponents of the spectrum orbitals. The radial pair func-
tions p

" are symmetric and consist of four components
corresponding to the four possible products of the large
and small components of the orbitals. For a nonzero
value of the reduced matrix element of the C" tensor in
Eq. (24), I +k +0 (notations of Fig. 1) has to be even.
This restricts k of the lowest-order radial pair functions
to a single value for each ~. Using the full rhs of Eq. (18),
however, both possibilities of k given in Eq. (23) contrib-
ute.

Despite the fact that, relativistically, the spectrum or-
bitals have two radial components, and the radial pair
functions accordingly have four radial components, most
of the procedure is equivalent to the nonrelativistic case.
The two radial components of the spectrum orbitals, be-
ing defined on 1V lattice points each, can be combined and
regarded as vectors with 2N elements, as in Eq. (7).
These vectors are eigenvectors of the discretized Hamil-
tonian in Eq. (6) and are orthogonal, using a simple scalar
product. In the same way the four radial components of
a radial pair function can be combined into a single ma-
trix p,.

"with 2N X 2N elements [see Eq. (24)]. The same is
true for the radial parts in a partial-wave expansion of
the rhs in Eq. (18), used in Eq. (20) when evaluating the
pair function. As in the nonrelativistic case a radial pair
function can then be obtained as a simple sum of overlaps
of the spectrum orbitals with the corresponding radial
rhs originating from Eq. (18).

In the no-virtual-pair approximation, summing over N
positive-energy eigenvectors for each radial coordinate,
approximately 12' multiplications are needed to evalu-
ate a radial pair function. This should be compared with
the nonrelativistic case for which 4X multiplications are
needed, only a factor of 3 different from the relativistic
case. The CPU time needed to solve for one relativistic
pair function is about 30 s on a SUN 4/110 work station.
The number of pair functions needed is, however, a factor
of 4 larger than in the nonrelativistic case (two x. values,
each with two k values, for excitations to a specific I
value). The total amount of computing time is thus
roughly a factor of 12 larger than that for the nonrela-
tivistic case. In practice, the factor is somewhat larger
than 12 due to the increased part of the total time needed
for evaluating the right-hand sides.

IV. RESULTS

In this section relativistic second-order and all-order
helium results are presented for the Coulomb correlation
energy in the no-virtual-pair approximation. Only the
Coulomb interaction has thus been treated, and other
effects such as Breit interaction, the Lamb shift, and finite
nuclear mass effects have so far been omitted. The results
given can therefore not be compared directly with experi-
ment, but a comparison can be made with the very accu-
rate results of Pekeris' or Drake. ' Their results come
from very accurate nonrelativistic calculations combined
with an evaluation of all the leading corrections due to
relativistic effects, which are of order u and given by the
Pauli approximation. The relevant terms to compare
with are, following Bethe and Salpeter,

4(pt+pz)

and

Z Z Q Z Q2 1 4 2 & 6 4
4 8 7 (25a)

=—,'Z+ —,'[1—ln(2)]a Z +, (25b)

using hydrogenlike orbitals of He+, where
y=[1—(Za) ]' . By subtracting these contributions
from the total a value of Drake, we obtain the a contri-
bution to the correlation energy which amounts to—1714X 10 a.u. (see Table I).

Our calculation is based on relativistic hydrogenlike
orbitals, and therefore higher-order effects beyond a are
included. For Eo = —4.000 213 03 a.u. and
E, = 1.250 098 06 a.u. the a effects are only about
2X10 a.u. and cancel almost exactly (see Table I).

H4=ma [Z5(r, )
—5(r,2)],

which according to Drake amount to —0.000 132 11 a.u.
The main part of this comes from the relativistic a con-
tribution to the zeroth-order and the first-order energies
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TABLE I. Ground-state energy of He resolved in terms of different order of a . Only the Coulomb correlation energy is included
as described in the text. Energies in atomic units.

2Cl
s 1s

Correlation
Total

Nonrelativistic

—4
+ 1.25
—0.153 724 38
—2.903 724 38d

10 (Terms of order ~ )

—213 01
+9804
—1714

—132 11

10 (Terms of order a )

—2
+2
(1'
(1b

Relativistic

—4.000 213 03
+ 1.250098 06
—0.153 741 52
—2.903 356 49

'a expansion of the analytical expressions given in Eqs. (25a) and (25b).
Deduced from the other numbers in this column.

'An estimate based on the relative importance of a contributions to 2c, &, and R (1s, ls ).
Deduced from Drake, Ref. 13.

The corresponding contribution to the correlation ener-

gy, being an order of magnitude smaller, should be less
than 1 X 10 a.u. Therefore we expect to get agreement
between the a result for the correlation energy deduced
from Drake and our calculation of the correlation energy.

The correlation energy is in our calculation obtained
by solving the pair equation by summation in Eq. (20)
over the discrete spectrum and then using Eq. (17). The
range of the lattices used in the calculations presented is

min

—8.0e
max7

3.0

Z ', Z=2

which was found to give suSciently small boundary
effects. To achieve high numerical accuracy several lat-

tice spacings were used and the results extrapolated to
zero spacing. The correlation energy was assumed to
have the same dependence on the lattice spacing as the
nonrelativistic case

E(h)=E(0)+a, h +ash +a3h +O(h ) .

We have used four different lattices with 85, 91, 101, and
121 points, respectively. Using a single lattice with, say,
91 points, the error is about one part in 10 for the I= 10
limit. Using two lattices, the h -dependent error can be
removed, which should be sufhcient for heavier systems
with many electrons. The use of four lattices is only
justified for two-electron systems for which the pair equa-
tion represents an exact result.

TABLE II. Partial-wave contributions to the relativistic second-order Coulomb correlation energy
of He. The correlation energy is evaluated relative to Eo+E, = —2.75011497 a.u. using hydrogenlike
orbitals. Energies in atomic units.

—0, 125 356 11

This work

—0.125 356 11

Johnson and Saperstein'

—0.125 356 11

10

10

I=O

1
—2

2
—3

3
—4

4
—5

5
—6

6
—7

7
—8

8
—9

9
—10

10
—11

—0.008 828 32
—0.017 664 09
—0.001 561 08
—0.002 343 58
—0.000 461 23
—0.000 615 71
—0.000 180 12
—0.000 225 50
—0.000 083 86
—0.000 100 82
—0.000 044 05
—0.000051 51
—0.000 025 27
—0.000 028 96
—0.000 015 50
—0.000 017 49
—0.000 01002
—0.000 011 17
—0.000 006 76
—0.000 007 46

—0.026 492 41

—0.003 904 65

—0.001 076 94

—0.000 405 62

—0.000 184 68

—0.000 095 56

—0.000 054 23

—0.000 032 99

—0.000 021 19

—0.000 014 22

—0.157 638 60

—0.026 492 41

—0.003 904 65

—0.001 076 94

—0.000 405 62

—0.000 184 67

—0.000 095 56

—0.000 054 22

—0.000 032 98

—0.000 021 19

—0.000 014 24

—0.157 638 59

'From Ref. 22.



RELATIVISTIC ALL-ORDER PAIR FUNCTIONS FROM A. . . 5555

A. Second-order results

The second-order correlation energy is obtained from
the first-order pair function through Eqs. (17) and (21).
The first-order pair equation decouples into independent
radial equations for the different partial waves. In Table
II the contributions from the different partial waves to
the correlation energy are given. Comparison with re-
sults by Johnson and Sapirstein show excellent agree-
ment, indicating that the accuracy of both calculations is
about one part in 10 for the partial-wave limits. The
same accuracy is expected for the more interesting all-
order partial-wave limits presented in Sec. IV B.

B. All-order results

For the all-order results, when solving the pair equa-
tion to self-consistency, we have to truncate the partial-
wave expansion at some point. %'e have chosen to in-
clude all partial waves with l less than or equal to some
value which relates directly to nonrelativistic I limits.
The all-order l-limit results EI are presented in Table III.
Our s-limit result is in excellent agreement with results
from Lindroth et aI. and Blundell et al. and our p and
d limits with the less accurately calculated p and d limits
of Blundell et al. Unfortunately, the more extended table
of l-limit results of Blundell et al. are defined differently
from ours, preventing a comparison with our relativistic
results and the corresponding nonrelativistic ones. In-
cluding partial waves up to I=10 gives the total correla-
tion energy accurate to two parts in 10 (see Table III).
Due to the slow I convergence it would be too tedious to
increase the accuracy substantially by calculating explic-
itly higher I limits. The tail contribution from high par-

+O(l ),
with the coeScients

(26)

D4= —0.074225 7, D5 = —0.030989 1,
D6 =+0.013 .

(27)

Trying to use a similar expansion, making a fit to the AEI
given in Table III, leads to a tail contribution from I ) 10
to 1890X10 a.u. This would give a total correlation
energy in error compared to the result derived from
Drake (Table I) by 26X10 a.u. This error is about a
factor of 10 too large compared to what would be expect-
ed with the nonrelativistic accuracy.

To investigate the reason for the unexpected discrepan-
cy above we have evaluated the true relativistic effects in
the partial-wave contributions by subtracting the nonre-
lativistic (nonrel) results from Ref. 8. These are given in
Table III and show a stable trend going to higher l limits.
Assuming the following asymptotic expansion of these
relativistic effects

gErel gEnonrel gDrel(~ + ]
)
—k

1 1 k

+ gDrel (( + i
)
—{k+1)+k+1 (28)

tial waves thus has to be extrapolated. This extrapolation
is the main limitation of the accuracy for two-electron
systems.

Nonrelativistically the aH-order partial-wave contribu-
tion, AEI =EI—EI &, has the well-known asymptotic ex-
pansion

AE =D (I+ ') +—D (I+—') +D (l+ —')

TABLE III. Partial-wave contributions and limits of the relativistic all-order Coulomb correlation
energy of He. The correlation energy is evaluated relative to Eo+E& = —2.75011497 a.u. using hydro-
genlike orbitals. In the last two columns, the differences to nonrelativistic (nonrel) results from Ref. 8
are given. Energies in atomic units (10' a.u. ).

0
1

2
3
4
5
6
7
8
9

10

gE rel

—129 049 58
—214 858 0

—224 993
—553 90
—197 32
—8698
—4409
—2466
—1485
—947
—631

—1866'

E rel
1

—129 049 58
—150 535 37
—152 785 30
—153 339 20
—153 536 52
—153 632 50
—153 667 59
—153 692 25
—153 707 10
—153 716 56
—153 722 88

gE rel gE nonrel
1 JY'

—2080.9
168.4
68 ~ 5
33.2
19.3
12.8
8.9
6.5
5.1

3.8
3.4

36

E rel Enonrel

—2080.9
—1912.4
—1844.0
—1810.8
—1791.4
—1778.6
—1769.7
—1763.3
—1758.1
—1754.4
—1751.0

1=0
Drake'

—153 741 54

—153 741 52

—1715

—1714

'Adding the relativistic corrections from Eq. (29) to the nonrelativistic tail from Ref. 8.
Fram Eq. {29).

'Deduced from Drake, Ref. 13 (see Table I).
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we can deduce the leading term by making a log-log plot
(Fig. 2) towards I +1/2. The slope of the line in Fig. 2
gives the exponent k =2.12. Assuming integer exponents
we conclude that k =2 (examining the second-order re-
sults also yields a k=2 term). This gives an extremely
slow 3 convergence compared to the nonrelativistic ex-
pansion given by Eq. (26) for which k=4. The fact that
the points in Fig. 2 are so well fitted by a straight line in-
dicates that the contribution from the remaining terms in

Eq. (28), which includes effects from relativistic correc-
tions AD4" and D5" to the nonrelativistic coefficients
given in Eq. (27), is negligible. The coefficient b,Dz' can
be determined by a least-squares fit giving
AD"' =4.0X 10 =0.075a . This gives the tail contri-
bution from the relativistic corrections

(g~rel g~nonrel) y 4 pX lp
—

6(~ + i
)
—2

1=ii 1=1

=36X 10 a. u. (29)

7,2

7.

6.8.

6.6 ~

6.4.

6.2 ~

c
5.8 ~

5.6
1.6

I

1.7 1.8 1.9 2

in(1 + —,')
r

2. 1 2.2 2.3 2,4

FIG. 2. Log-log plot of the relativistic corrections to the
partial-wave increments of the Coulomb correlation energy of
helium |,'from Table III).

Adding this contribution to the 1=10 limit of the relativ-
istic correction from Table III we get the total relativistic
correction to the Coulomb correlation energy to
—1715X10 a.u. , in very good agreement with the re-
sult deduced from the calculation by Drake in Table I.
The nonrelativistic tail contribution from l ) 10 is
—1902 X 10 a.u. , and adding the relativistic correc-
tion gives the tail to —1866X 10 a.u. , as given in Table
III. This gives the total Coulomb correlation energy to
—153 741 154 X 10 a.u. and the total energy to
—2.903 356 51 a.u.

It would be very difficult to determine the (t + 1/2)
dependent contribution using the total partial-wave con-
tribution EF&"' given in Table III, since it is overpowered

by the (l + 1/2) contribution [Eq. (26)]. This leads to a
serious problem if high accuracy is needed, e.g., for test-
ing QED in two-electron systems. Either one has to in-

clude very high partial waves so that the (I + 1/2) term
is not negligible compared to the (l +1/2) term, in the
relativistic analog of Eq. (26), or perform both a non rel-
ativistic and a relativistic calculation, as done in this
work. Another approach to solve the problem might be
to include the correct cusp behavior in the ansatz for the

wave function.
Nonrelativistically the leading terms in the I expansion,

Eq. (26), follow from the electron-electron correlation
cusp condition, and promising attempts to include the
correct cusp behavior in the ansatz for the wave function
have been made. The cusp behavior for relativistic
wave functions has been discussed by Kutzelnigg, who
finds the wave function to be more singular at r, =r2 in
this case. This might be an explanation of the slow I con-
vergence for the relativistic corrections.

V. CONCLUSIONS

A method to solve the relativistic pair equation has
been described. The method which is an extension of the
corresponding nonrelativistic one, is based on summa-
tion over a finite spectrum obtained from a discretized
one-particle Dirac Hamiltonian. How the discretization
can be done, using finite-difference formulas, without the
loss of Herrniticity has been demonstrated. By defining
the large and small radial components of the spectrum
orbitals on lattices shifted relative to each other, spurious
states have been avoided. The Hermiticity of the eigen-
value problem generating the spectrum assures that the
spectrum orbitals form a complete orthogonal basis, us-

ing a simple scalar product, on the radial lattice used.
Such a spectrum is very suitable for use in perturbation
theory when studying many-electron systems.

As in the nonrelativistic case it is possible to imple-
ment the method so that the number of operations need-
ed to solve for a radial pair function is proportional to
X, with X being the number of radial lattice points for
each radial component of the spectrum orbitals. Using
the no-virtual-pair approximation, the number of opera-
tions needed increases only by a factor of 3 compared to
solving for a radial pair function nonrelativistically.

The new method was applied for calculating the energy
of the ground state of helium, using the Dirac-Coulomb
Hamiltonian in the no-virtual-pair approximation. An
accuracy of a few parts in 10 was achieved. The most
difficult problem achieving such an accuracy was to ex-
trapolate the contribution from high partial waves. The
relativisitc corrections were found to converge very slow-

ly, showing an (1+1/2) dependence. This will be a
serious problem if very high accuracy is wanted, as for
two-electron systems, and well worth looking into more
carefully.

A great advantage of the new method is that the
positive- and negative-energy spectra are known explicit-
ly and no explicit energy projection operators are needed.
This makes the method more Aexible than the previous
one used by Lindroth et al. relying on solving
di6'erential equations.
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Formulas of 0 (h ) used for the diff'erentiation and interpolation,

y'(x)= [ —9y(x —
—,'h)+125y(x —

—,'h) —2250y(x —
—,'h)+2250y(x+ —,'h) —125y(x+ —', h)+9y(x+ —,'h)]+O(h ),

1

y (x ) =—„' [3y (x —
—,
' h )

—25y ( x —
—,
' h ) + 150y (x —

—,
' h ) + 150y (x + —,

' h )
—25y (x + —,

' h ) + 3y (x + —,
' h ) ]+0 ( h ) .

The submatrices in Eq. (6) are given by

(A 1)

(A2)

ZA. . = ——,
II

Z i =2n —1

J =2 =12 N
J

(A3)

c
19206

2250
')r rpr)
125

T47' )

9

Qr, r,

2250

Qr, r,
2250

T4 7'3

125

Qr6r3
9

Ts 7'3

125

T2rs
2250

r4r&
2250

Qr6rs
125

TBT5

T2T7
125

Qr4r,
2250

'tr r6r7
2250

grsr7

r4T9
125

Te 7"9
2250

rsr9

9

6 rllr
125

«Br»

E=
256

150
7'2 7'

l

25

r4r,
3

150

Qr, r,
150

T4T3
25

Qr6rs
3

7B73

25

+roars
150

V r4rs
150

Ters
25

7's T5

T2T7
25

Qr4r7
150

Ter7
150

')r r8 r7

7479
25

7'e T9
150

')r r8 rg

25

rsr&i

(A4)

(AS)

Note that the eigenvalue problem of Eq. (6) is symmetric, although the submatrices D and E are unsymmetric.
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