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Exact potential-phase relation for the ground state of the C atom
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Exact density-phase relations have been derived for a three-level independent-particle problem.
The density can explicitly be written in terms of the phase functions 8 and cp and their derivatives.
The Euler equation of the density-functional theory has been derived for the ground state of the C
atom. The one-body potential V can be obtained from the phase functions 6 and y. The differential
form of the virial theorem of March and Young [Nucl. Phys 12,. 237 (1959)] has been generalized
for particles moving in a common local potential V and having different azimuthal quantum num-

bers.

I. INTRODUCTION

To obtain the exact functionals of density in the
density-functional theory' is, without doubt, of funda-
mental importance. Several approximations have already
been used but the exact explicit functionals are still un-
known. The first simple approximation to the Euler
equation of the density-functional theory was provided by
the Thomas-Fermi theory well before the birth of the
modern density-functional theory. The exchange-
correlation potential of the Kohn-Sham equation was first
approximated by Slater then Gaspar, Kohn and Sham
by a local-density n ' -type potential ~

The existence of the potential of the Kohn-Sham equa-
tions as functional of the electron density is guaranteed
by the density-functional theory. March and Nalewajski
derived an explicit relation between the potential and the
density in the Be atom making use of the density-matrix
variational method set up by Dawson and March.

A more direct potential relation has recently been
presented for the two-level problem. It has turned out
that the potential can be explicitly expressed by the phase
function 0 and its derivatives.

Now, the three-level problem is treated. The density p
can explicitly be expressed in terms of the phase func-
tions 6 and y and their derivatives. To derive the Euler
equation the diff'erential form of the virial theorem of
March and Young has been generalized. The one-body
potential can be written as a function of the phase func-
tions 8 and g and their derivatives.

II. EXACT DENSITY-PHASE RELATIONS
FOR A THREE-LEVEL INDEPENDENT-PARTICLE

PROBLEM

Let us consider a three-level independent-particle prob-
lem for an external potential V(r). The ground state of
the C atom is an example for this problem. The ground-
state density

n(r ) =2[R
& (r)+R 2(r)+R 3(r)] (2.1)

is considered to be spherically symmetric. Provided we
apply the usual normalization condition

f R 4wr dr=1 n =1 2, 3
0

(2.2)

the density n (r) integrates to 6, the number of electrons
in the ground state of C. With a transformation

rR„(r) :P„(r), n =1,2, 3
(2.3)

and applying the density p(x) defined by

2p(x)=4~x n(x) (2.4)

one obtains
3

p( x ) =47t g (b, ( x ) . (2.5)

Applying the transformation of Dawson and March we
have

$,(x)=(1/&2)p'~ (x)sin8(x)cosy(x),

P~(x) =(1/&2)p' (x)sin6(x)sing(x),

(b, (x)=(1/&2)p'r (x)cos8(x) .

(2.6)

P„"+2[v„—V(x)]$„=0, n =1,2 (2.7)

where c] and c2 are the eigenvalues of the 1s and 2s elec-
trons. For the wave function P3 we have

l(l + 1)
(2.8)

where c3 is the eigenvalue of the 2p electron and I = l.
Eliminating the potential V from Eqs. (2.7) and (2.8) we
get

The wave functions P& and P& satisfy the one-body
Schrodinger equation
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and

p", p3 p—,p3'=2(E3 —E, —1/x )p)$3 .

(2.9a)

(2.9b)

t = —
—,'p" +— + —,'p(6') + —,'p(sin 8)(g')

1+ pcos 8
X

(3.2)

Applying the transformation (2.6) one obtains the equa-
tions

using Eqs. (2.6). Another expression for t is

g"+(I '/I )g' —2/sin(2y)=0,

I

8"+~8' —sin(28) —,'(y') + e3 —E, —
p X

(2.10a) t =p —
,'F —,'F—'+——,'(8') + —,'(q&') sin 8+ cos 8

X

where

(3.3}

+2gsin y =0, (2.10b) (3.4)

where

I =psin 6 .

From Eq. (2.10a) the density is given by

(2. 1 1)

The differential form of the virial theorem derived by
March and Young is generalized for particles moving in
a common local potential V(x) and having different az-
imuthal quantum numbers II, . It is shown in the Appen-
dix that

where

~sin 2y

(2.12}

(2.13)

t

t ' = —
—,
' p"' —

—,
'
p V'+ —,

' g lk ( 1k + 1 }
X X

Pk 4'k 4'k

(3.5)

(3.6)

g=(e( —&2)/2 .

Equation (2.10b) leads to the expression

p=(1/6')e

(2.14)

(2.15)

In the three-level case:

( ')'
t' = —

—,
'p'" —

—,'p V'+2
X

p2

X
(3.7)

where

g= J dx, s3 —E, — 2
+ —,'(y') +2gsin y sin(M)

X 000

Thus the expressions (2.12) and (2.15) provide the func-
tions p explicitly in terms of the phase functions 6 and cp

and their derivatives. It is interesting to note that it is
the density p that can be eliminated by using the phase
functions. The price we have to pay for this is that the
density p is a function of 8' or y', too. It is worth men-
tioning that the density can be given by a similar formula
in the two-level case. On the other hand, Eqs. (2.10) can
be used to determine the phase functions 8 and y if p'/p
is known.

—100.00-

-20GOO-

III. EXACT EXPLICIT POTENTIAL RELATION

Now, we want to derive the density-potential relation
which is the basic aim of the density-functional theory,
for this simple three-level problem. The kinetic energy
density

(3.1)

-300.00
GOO 200

x(a.u)

4.00 600

can be expressed as FICx. 1. Hartree-Fock potential for C.
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Combining Eqs. (3.2), (3.3), (3.7), and (2.10) we have

V= 'F—+ ~F' ——'(8') ——'(8') sin 8
8 4 2 2

VH„(x) of Eqs. (3.8).
Ions having the same ground-state electron

configuration can be similarly treated.

+(cos 8) 2g— 1

X

where

rl = —,
'

( e 3
—E, ) .

—2gsin @sin 8+8, (3.8)

(3.9)
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In this way one arrives at an exact, explicit relation for
V. However, we get the potential-phase relation instead
of the potential-density relation. It is one of the most im-
portant conclusions that explicit relations can be more
conveniently and elegantly given using the phase func-
tions 8 and y instead of p. It is worth emphasizing that
Eq. (3.8) is the Euler equation of the density-functional
theory.

IV. DISCUSSION

Equations (2.10) and (3.8) are the main results of the
paper. If p'/p is known for a three-level ground-state
system the phase functions 8 and cp can be obtained by
solving Eqs. (2.10). The potential V(x) can be deter-
mined using Eqs. (3.8).

Figure 1 shows the Hartree-Fock potential VH„(x) for
the ground state of C. Here, instead of solving the (2.10)
nonlinear coupled equations, the Hartree-Fock solutions
using Eqs. (2.6) have been used to obtain the potential
VH„(x) of Eqs. (3.8).

APPENDIX

4(lk+1)+ P +V/ =e.P2 d2 2 2 k k k k (Al)

can be rewritten as

Here we discuss the differential form of the virial
theorem for particles moving in a common spherically
symmetric potential V( r ).

The differential form of the virial theorem for particles
moving in a one-dimensional common local potential has
been derived by March and Young. Now a generaliza-
tion of this theorem for particles in a common spherically
symmetric potential V(r) is presented. The procedure
used by March and Young is followed.

The Schrodinger equations of particles in a potential
V( r)

d /
(r') d / (r) l l/ (1/,. + 1)

/t//, (r) yk(r') — =2 V(»') —V(»)+ 1

(»')' r 2
(tk(r')y(r) . (A2)

With the notation

p(r', »)=g P~(»')Qk(r)
k

(A3)

t

leads to the equation

0 p
ag a&

=2l V(k+'rl) V(k '/1) lp

and

pk(»' «)=05»')0k(»» (A4)
+g l„(l/, +1) 1 1

((+n)'
Eq. (A2) can be written as

Bp Bp =2[ V(r') —V(r)]pB(r') Br

+g l„(l„+1) 1

(»')'
The energy E is given by

8 p(r', r)
Br

1
Pk .

r
(AS)

and

p(g, g)=p(g)+ g q"a,, (g)
j=1

p/;(4 n)=p/;(k)+ X n"l ~, (k»
j =1

where

Expanding p and pk about the point g =0
(A8)

(A9)

(A10)

p/, (r »)+ ,'g l/, (l/, +1)f —' dr+ fp(r, r) V(r)dr .
k r

(A6)
and

p(k)=p(k o) (A 1 1)

Following Naqvi's' procedure the transformation

,'(r'+r), g= —,
'(r' —r), — (A7)

(A12)

By substituting the expressions (A9) —(A12) into (A8) it is
easy to see that
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daq dV lq(1k+1)
P(k) ~X 3 Pk(k) .

applying Eq. (A13). By differentiation we get
(A13)

Using (A6), (A9), and (A10) the kinetic energy T can be
given by

I

t'= —
—,
'p'" —

—,'pV'+ —,'g lk(ll, +1)
k

Pk

X
(A16)

P I Qx

The kinetic energy density is given by

t = —
—,'p" —

—,
' fpV'dx

(A14)
which is the generalized form of the diA'erential virial
theorem of March and Young. For particles having zero
angular momentum the original form of March and
Young is obtained

+ —,'g lk(1k+1) +I dx
X X

(A15) t —
8P 2PV (A17)
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