Exact potential-phase relation for the ground state of the C atom

A. Nagy

Institute of Theoretical Physics, Kossuth Lajos University, Debrecen 4010, Hungary

N. H. March

Department of Theoretical Chemistry, University of Oxford, 5 South Parks Road, Oxford, OXI 3UB, England (Received 3 January 1989)

Exact density-phase relations have been derived for a three-level independent-particle problem. The density can explicitly be written in terms of the phase functions ϑ and φ and their derivatives. The Euler equation of the density-functional theory has been derived for the ground state of the C atom. The one-body potential V can be obtained from the phase functions ϑ and φ . The differential form of the virial theorem of March and Young [Nucl. Phys. 12, 237 (1959)] has been generalized for particles moving in a common local potential V and having different azimuthal quantum numbers.

I. INTRODUCTION

To obtain the exact functionals of density in the density-functional theory¹ is, without doubt, of fundamental importance. Several approximations have already been used but the exact explicit functionals are still unknown. The first simple approximation to the Euler equation of the density-functional theory was provided by the Thomas-Fermi theory well before the birth of the modern density-functional theory. The exchangecorrelation potential of the Kohn-Sham equation was first approximated by Slater² then Gáspár,³ Kohn and Sham⁴ by a local-density $n^{1/3}$ -type potential.

The existence of the potential of the Kohn-Sham equations as functional of the electron density is guaranteed by the density-functional theory. March and Nalewajski⁵ derived an explicit relation between the potential and the density in the Be atom making use of the density-matrix variational method set up by Dawson and March.

A more direct potential relation has recently been presented for the two-level problem.⁷ It has turned out that the potential can be explicitly expressed by the phase function θ and its derivatives.

Now, the three-level problem is treated. The density ρ can explicitly be expressed in terms of the phase functions ϑ and φ and their derivatives. To derive the Euler equation the differential form of the virial theorem of March and Young $⁸$ has been generalized. The one-body</sup> potential can be written as a function of the phase functions ϑ and φ and their derivatives.

II. EXACT DENSITY-PHASE RELATIONS FOR A THREE-LEVEL INDEPENDENT-PARTICLE PROBLEM

Let us consider a three-level independent-particle problem for an external potential $V(r)$. The ground state of the C atom is an example for this problem. The groundstate density

$$
n(r) = 2[R_1^2(r) + R_2^2(r) + R_3^2(r)] \tag{2.1}
$$

is considered to be spherically symmetric. Provided we apply the usual normalization condition

$$
\int_0^\infty R_n^2 4\pi r^2 dr = 1, \quad n = 1, 2, 3 \tag{2.2}
$$

the density $n(r)$ integrates to 6, the number of electrons in the ground state of C. With a transformation

$$
rR_n(r) \longrightarrow \phi_n(r), \quad n = 1, 2, 3
$$
\n
$$
r \longrightarrow x \tag{2.3}
$$

and applying the density $\rho(x)$ defined by

$$
2\rho(x) = 4\pi x^2 n(x)
$$
 (2.4)

one obtains

$$
\rho(x) = 4\pi \sum_{i=1}^{3} \phi_i^2(x) \tag{2.5}
$$

Applying the transformation of Dawson and March⁶ we have

$$
\phi_1(x) = (1/\sqrt{2})\rho^{1/2}(x)\sin\vartheta(x)\cos\varphi(x) ,
$$

\n
$$
\phi_2(x) = (1/\sqrt{2})\rho^{1/2}(x)\sin\vartheta(x)\sin\varphi(x) ,
$$

\n
$$
\phi_3(x) = (1/\sqrt{2})\rho^{1/2}(x)\cos\vartheta(x) .
$$
\n(2.6)

The wave functions ϕ_1 and ϕ_2 satisfy the one-body Schrödinger equation

$$
\phi_n'' + 2[\epsilon_n - V(x)]\phi_n = 0, \quad n = 1, 2 \tag{2.7}
$$

where ε_1 and ε_2 are the eigenvalues of the 1s and 2s electrons. For the wave function ϕ_3 we have

$$
\phi_3'' + 2\left[\varepsilon_3 - V - \frac{l(l+1)}{2x^2}\right]\phi_3 = 0 , \qquad (2.8)
$$

where ε_3 is the eigenvalue of the 2p electron and $l = 1$. Eliminating the potential V from Eqs. (2.7) and (2.8) we get

40 554 1989 The American Physical Society

$$
\phi_1^{\prime\prime}\phi_2 - \phi_1\phi_2^{\prime\prime} = 2(\epsilon_2 - \epsilon_1)\phi_1\phi_2 \tag{2.9a}
$$

and

$$
\phi_1^{\prime\prime}\phi_3 - \phi_1\phi_3^{\prime\prime} = 2(\epsilon_3 - \epsilon_1 - 1/x^2)\phi_1\phi_3.
$$
 (2.9b)

Applying the transformation (2.6) one obtains the equations

$$
\varphi'' + (\Gamma'/\Gamma)\varphi' - 2\xi \sin(2\varphi) = 0 , \qquad (2.10a)
$$

$$
\vartheta'' + \frac{\rho'}{\rho} \vartheta' - \sin(2\vartheta) \left[\frac{1}{2} (\varphi')^2 + \left[\varepsilon_3 - \varepsilon_1 - \frac{1}{x^2} \right] \right] \quad \text{where} \quad + 2\xi \sin^2 \varphi \left] = 0 \quad , \quad (3.3)
$$
\n
$$
(3.3)
$$
\n
$$
F = \rho' / \rho \quad . \quad (3.4)
$$

where

$$
\Gamma = \rho \sin^2 \theta \tag{2.11}
$$

From Eq. (2.10a) the density is given by

$$
\rho = \frac{1}{\varphi' \sin^2 \vartheta} e^{2\xi h} \tag{2.12}
$$

where

$$
h = \int^{\vartheta} \frac{\sin(2\varphi)}{\varphi'} dx
$$
 (2.13)

and

$$
\xi = (\varepsilon_1 - \varepsilon_2)/2 \tag{2.14}
$$

Equation (2.10b) leads to the expression

$$
\rho = (1/\vartheta')e^g \tag{2.15}
$$

where

$$
g = \int dx \frac{1}{\vartheta'} \left[\varepsilon_3 - \varepsilon_1 - \frac{1}{x^2} + \frac{1}{2} (\varphi')^2 + 2\xi \sin^2 \varphi \right] \sin(2\vartheta) \tag{000}
$$

Thus the expressions (2.12) and (2.15) provide the functions ρ explicitly in terms of the phase functions ϑ and φ and their derivatives. It is interesting to note that it is the density ρ that can be eliminated by using the phase functions. The price we have to pay for this is that the density ρ is a function of ϑ' or φ' , too. It is worth mentioning that the density can be given by a similar formula in the two-level case. On the other hand, Eqs. (2.10) can be used to determine the phase functions ϑ and φ if ρ'/ρ is known.

III. EXACT EXPLICIT POTENTIAL RELATION

Now, we want to derive the density-potential relation which is the basic aim of the density-functional theory, for this simple three-level problem. The kinetic energy density

$$
t = -\phi_1 \phi_1^{\prime\prime} - \phi_2 \phi_2^{\prime\prime} - \phi_3 \phi_3^{\prime\prime} + (2/x^2)\phi_3^2 \tag{3.1}
$$

$$
t = -\frac{1}{4}\rho^{\prime\prime} + \frac{1}{8}\frac{(\rho^{\prime})^2}{\rho} + \frac{1}{2}\rho(\vartheta^{\prime})^2 + \frac{1}{2}\rho(\sin^2\vartheta)(\varphi^{\prime})^2 + \frac{1}{x^2}\rho\cos^2\vartheta
$$
 (3.2)

using Eqs. (2.6) . Another expression for t is

2.10a)
$$
t = \rho \left[-\frac{1}{8}F^2 - \frac{1}{4}F' + \frac{1}{2}(\vartheta')^2 + \frac{1}{2}(\varphi')^2 \sin^2 \vartheta + \frac{1}{x^2} \cos^2 \vartheta \right],
$$
(3.3)

where

$$
F = \rho' / \rho \tag{3.4}
$$

The differential form of the virial theorem derived by March and Young⁸ is generalized for particles moving in a common local potential $V(x)$ and having different azimuthal quantum numbers l_k . It is shown in the Appendix that

$$
t' = -\frac{1}{8}\rho''' - \frac{1}{2}\rho V' + \frac{1}{2}\sum_{k} l_k(l_k + 1) \left(\frac{\rho'_k}{x^2} - \frac{\rho_k}{x^3}\right), \qquad (3.5)
$$

where

$$
\rho_k = \phi_k^* \phi_k \tag{3.6}
$$

In the three-level case:

$$
t' = -\frac{1}{8}\rho''' - \frac{1}{2}\rho V' + 2\left[\frac{(\phi_3^2)'}{x^2} - \frac{\phi_3^2}{x^3}\right].
$$
 (3.7)

can be expressed as **FIG.** 1. Hartree-Fock potential for C.

Combining Eqs. (3.2), (3.3), (3.7), and (2.10) we have

$$
V = \frac{1}{8}F^2 + \frac{1}{4}F' - \frac{1}{2}(\vartheta')^2 - \frac{1}{2}(\vartheta')^2 \sin^2 \vartheta
$$

+ $(\cos^2 \vartheta) \left[2\eta - \frac{1}{x^2}\right] - 2\xi \sin^2 \varphi \sin^2 \vartheta + \varepsilon_1$, (3.8)

where

$$
\eta = \frac{1}{2} (\varepsilon_3 - \varepsilon_1) \tag{3.9}
$$

In this way one arrives at an exact, explicit relation for V. However, we get the potential-phase relation instead of the potential-density relation. It is one of the most important conclusions that explicit relations can be more conveniently and elegantly given using the phase functions ϑ and φ instead of ρ . It is worth emphasizing that Eq. (3.8) is the Euler equation of the density-functional theory.

IV. DISCUSSION

Equations (2.10) and (3.8) are the main results of the paper. If ρ'/ρ is known for a three-level ground-state system the phase functions ϑ and φ can be obtained by solving Eqs. (2.10). The potential $V(x)$ can be determined using Eqs. (3.8).

Figure 1 shows the Hartree-Fock potential $V_{HF}(x)$ for the ground state of C. Here, instead of solving the (2.10) nonlinear coupled equations, the Hartree-Fock⁹ solutions using Eqs. (2.6) have been used to obtain the potential $V_{\text{HF}}(x)$ of Eqs. (3.8).

 $V_{\text{HF}}(x)$ of Eqs. (3.8).

Ions having the same ground-state electron configuration can be similarly treated.

ACKNOWLEDGMENTS

The authors wish to acknowledge the International Center for Theoretical Physics for the support covering their stay in Trieste that made possible this collaboration.

APPENDIX

Here we discuss the differential form of the virial theorem for particles moving in a common spherically symmetric potential $V(r)$.

The differential form of the virial theorem for particles moving in a one-dimensional common local potential has been derived by March and Young.⁸ Now a generalization of this theorem for particles in a common spherically symmetric potential $V(r)$ is presented. The procedure used by March and Young is followed.

The Schrödinger equations of particles in a potential $V(r)$

$$
-\frac{1}{2}\frac{d^2\phi_k}{dr^2} + \frac{l_k(l_k+1)}{2r^2}\phi_k + V\phi_k = \varepsilon_k \phi_k
$$
 (A1)

can be rewritten as

$$
\frac{d^2\phi_k^*(r')}{(dr')^2}\phi_k(r) - \phi_k^*(r')\frac{d^2\phi_k(r)}{dr^2} = 2\left[V(r') - V(r) + \frac{l_k(l_k+1)}{2}\left[\frac{1}{(r')^2} - \frac{1}{r^2}\right]\right]\phi_k^*(r')\phi(r) .
$$
\n(A2)

With the notation

$$
\rho(r',r) = \sum_{k} \phi_k^*(r') \phi_k(r) \tag{A3}
$$

and

$$
\rho_k(r',r) = \phi_k^*(r')\phi_k(r) , \qquad (A4)
$$

Eq. (A2) can be written as

$$
\frac{\partial^2 \rho}{\partial (r')^2} - \frac{\partial^2 \rho}{\partial r^2} = 2[V(r') - V(r)]\rho
$$

$$
+ \sum_{k} l_k (l_k + 1) \left[\frac{1}{(r')^2} - \frac{1}{r^2} \right] \rho_k . \quad (A5)
$$

The energy E is given by

$$
E = -\frac{1}{2} \int \left[\frac{\partial^2 \rho(r', r)}{\partial r^2} \right]_{r'=r} dr
$$

+ $\frac{1}{2} \sum_{k} l_k (l_k + 1) \int \frac{\rho_k(r, r)}{r^2} dr + \int \rho(r, r) V(r) dr$.

(A6)

Following Naqvi's¹⁰ procedure the transformation

$$
\xi = \frac{1}{2}(r' + r), \quad \eta = \frac{1}{2}(r' - r) , \tag{A7}
$$

leads to the equation

$$
\frac{\partial^2 \rho}{\partial \xi \partial \eta} = 2[V(\xi + \eta) - V(\xi - \eta)]\rho
$$
\n
$$
\rho_k(r', r) = \phi_k^*(r')\phi_k(r),
$$
\n(A4)\n
$$
\frac{\partial^2 \rho}{\partial \xi \partial \eta} = 2[V(\xi + \eta) - V(\xi - \eta)]\rho
$$
\n
$$
+ \sum_k l_k (l_k + 1) \left[\frac{1}{(\xi + \eta)^2} - \frac{1}{(\xi - \eta)^2} \right] \rho_k.
$$
\n(A8)

Expanding ρ and ρ_k about the point $\eta = 0$

$$
\rho(\xi, \eta) = \rho(\xi) + \sum_{j=1}^{\infty} \eta^{2j} a_{2j}(\xi)
$$
 (A9)

and

$$
\rho_k(\xi, \eta) = \rho_k(\xi) + \sum_{j=1}^{\infty} \eta^{2j} b_{2j}^k(\xi) , \qquad (A10)
$$

where

$$
\rho(\xi) = \rho(\xi, 0) \tag{A11}
$$

and

$$
\rho_k(\xi) = \rho_k(\xi, 0) \tag{A12}
$$

By substituting the expressions $(A9)$ – $(A12)$ into $(A8)$ it is easy to see that

$$
\frac{da_2}{d\xi} = 2\frac{dV}{d\xi}\rho(\xi) - 2\sum_k \frac{l_k(l_k+1)}{\xi^3}\rho_k(\xi) .
$$
 (A13)

Using $(A6)$, $(A9)$, and $(A10)$ the kinetic energy T can be given by

$$
T = -\frac{1}{4} \int \left[\frac{1}{2} \rho'' + a_2 - 2 \sum_k \frac{l_k(l_k + 1)}{x^2} \rho_k \right] dx \quad . \tag{A14}
$$

The kinetic energy density is given by

$$
t = -\frac{1}{8}\rho'' - \frac{1}{2}\int \rho V' dx
$$

+ $\frac{1}{2}\sum_{k} l_{k}(l_{k} + 1) \left[\frac{\rho_{k}}{x^{2}} + \int \frac{\rho_{k}}{x^{3}} dx \right],$ (A15)

applying Eq. (A13). By differentiation we get

$$
t' = -\frac{1}{8}\rho''' - \frac{1}{2}\rho V' + \frac{1}{2}\sum_{k} l_k(l_k + 1) \left(\frac{\rho'_k}{x^2} - \frac{\rho_k}{x^3}\right), \quad (A16)
$$

which is the generalized form of the differential virial theorem of March and Young.⁸ For particles having zero angular momentum the original form of March and Young is obtained

A15)
$$
t' = -\frac{1}{8}\rho''' - \frac{1}{2}\rho V' \tag{A17}
$$

- ¹See, e.g., J. Callaway and N. H. March, Solid State Phys. 38, 136 (1984).
- ²J. C. Slater, Phys. Rev. 81, 385 (1951).
- ³R. Gáspár, Acta Phys. Hung. 3, 263 (1954).
- 4W. Kohn and L. I. Sham, Phys. Rev. 104A, 1133 (1965).
- 5N. H. March and R. F. Nalewajski, Phys. Rev. A 35, 525 (1987).
- ⁶K. A. Dawson and N. H. March, J. Chem. Phys. 81, 5850 (1984).
- ⁷Á. Nagy and N. H. March, Phys. Rev. A 39, 5512 (1989).
- 8N. H. March and W. H. Young, Nucl. Phys. 12, 237 {1959).
- ⁹E. Clementi, IBM J. Res. Dev. 9, 2 (1965).
- ¹⁰M. A. Naqvi, Nucl. Phys. **10**, 256 (1959).