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Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators
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We calculate the spontaneous-emission spectrum and the spectrum of weakly driven fluorescence
for a two-level atom coupled to a resonant-cavity mode. For strong atom-cavity coupling the spec-
tra split into two peaks that can have subnatural linewidths. If the cavity linewidth is negligible, the
spontaneous-emission spectrum has half the radiative linewidth of the atom; the spectrum of weakly
driven fluorescence shows an additional 36% squeezing-induced narrowing. These effects can be
observed using coupled-field and collective-polarization oscillators excited in a cavity containing N
two-level atoms.

The spontaneous-emission rate for an atom in free
space can change when the atom radiates inside an elec-
tromagnetic cavity. The emission rate is reduced if the
cavity subtends a large solid angle at the atom and has no
resonant modes into which the atom can emit. It is in-
creased when the atom couples strongly to a resonant
mode of the cavity. These effects are explained by per-
turbation theory; the altered emission rate is obtained
from Fermi's golden rule using a density of states
modified to account for the cavity boundary conditions.
However, when the coupling between the atom and the
cavity mode is so strong that a photon emitted into the
cavity is likely to be reabsorbed before it escapes, pertur-
bation theory cannot be used. Previous authors have
studied atomic decay under these conditions assuming
that spontaneous emission to modes other than the
privileged cavity mode is negligible. Haroche and Ray-
mond show that an initially excited atom undergoes
single-quantum Rabi oscillations which decay at a rate
determined by the cavity Q. Sanchez-Mondragon et al.
derive a double-peaked "spontaneous-emission" spectrum
by convolving the single-quantum Rabi oscillation in a
lossless cavity against an exponential detector response
function. This is not, however, a spontaneous-emission
spectrum in the usual sense of irreversible decay into a
reservoir of vacuum modes; in particular, linewidths are
assigned by the detector response function and are not ra-
diative in origin.

In this paper we consider the interaction between a
two-level atom and a resonant cavity mode that subtends
a small solid angle at the atom so that the spontaneous-
emission rate y into free-space is not negligible compared
to the photon decay rate 2~ from the cavity. We derive
the spontaneous emission spectrum and spectrum of
weakly driven fluorescence measured by observing the
light emitted (scattered) by the atom into free space. Our
derivation places no restriction on the coupling strength
g between the atom and the cavity mode. For
K))g ))y/2, we recover the increased linewidth associ-
ated with cavity-enhanced spontaneous emission. In the
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strong-coupling limit, g ))~, y /2, the spontaneous-
emission spectrum and the spectrum of weakly driven
fluorescence are doublets, similar to those obtained by
Sanchez-Mondragon et al. However, our spectra have
meaningful radiative linewidths. For ~((y/2 they have
linewidths equal to one-half and one-third the free-space
radiative linewidth of the atom, respectively.

The master equation describing the resonant interac-
tion between a two-level atom and a single cavity mode,
including both atomic and cavity loss, is given by

p=( 1/i A)[8,p]+(y/2)(28 pa+ —&+& p —p&+ & )

+ tc(2&p& —& &p —p& a ), (1)

where A'=i fig(& & —&+d) and p is the reduced densi-

ty operator in the interaction picture; & and & are
creation and annihilation operators for the cavity mode,
and 8, &+, and &, are Pauli pseudospin operators for
the atom. Equation (1) describes a composite atom-
cavity-mode system that radiates via two distinct chan-
nels: by the coupling of the atom to free-space modes
(the term proportional to y/2), and by loss through the
cavity mirrors (the term proportional to lc). We will cal-
culate spectra for the light emitted by the atom into free
space.

To describe spontaneous emission for arbitrary values
of g, tc, and y/2, we solve Eq. (1) in the three-state basis
)+)(0), [

—)[1),(

—)(0), where (+) and
)

—) are the
upper and lower states of the atom and ~1) and ~0) are
the one-photon and zero-photon Fock states of the field.
In this basis p has eight independent matrix elements.
The equations of motion for these matrix elements can be
written as two sets of coupled equations for operator ex-
pectation values,
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The spontaneous-emission spectrum measured by an ideal
detection system (with negligible bandwidth) is given by

2nS(co) = f dt C, (t, t)
0

X f "dt f dt'e ' ' ' '
C, (t, t'),

0 0
(4)
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where C, (t, t')=&8+(t)8 (t')& and the term in square
brackets normalizes the integral of S(co) to unity. The
double time integral on the right-hand side of Eq. (4) is
proportional to the probability for the detector —tuned
to the frequency co—to record a photon in an infinite ob-
servation time beginning at t =0.

According to the quantum regression theorem the
correlation functions C, (t, t') and C, (t, t') =

& 8+(t)a(t') &

obey the same equations as &8 & and &8 &. Thus, for
t'~ t,

C, =gC, —~C„C,= —gC, —(y/2)C, ,

where the dot denotes di6'erentiation with respect to
t'. The initial conditions C, (t, t) =

& (8+& )(t) & and
C, (t, t)= &(8+8 )(t) & needed to solve Eqs. (5) are given
by the solution to Eqs. (3). We assume that the atom-
cavity-mode system is prepared in the state ~+ &~0&

(more generally it might be prepared in an arbitrary
single-quantum state). Equations (3) are then solved with
&(8 t8)(0) &

= &(8'8 )(0) & =0 d &(8 o )(0) & =1,
and from Eqs. (4) and (5) we obtain the spontaneous-
emission spectrum

S(~) 1 ~(~+y/2)+g
2 (x. +y/2)( I~y/2 +g )
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where A+ = —
—,'(~+y/2)+[(~ —y/2) —g ]'

For ~ &&g && y/2, Eq. (6) gives

y+2g /x

—,'(y+2g /~) +(co—coo)
(7a)

which shows the increased linewidth associated with
cavity-enhanced spontaneous emission. We are interest-
ed in the strong-coupling limit, g &)K, y/2. In this limit,

—,'(~+y/2)
2mS(co }=

—,'(~+y/2) +(co—coo —g)

—,'(~+ y/2)

—,'(a+y/2) +(co—coo+g)
(7b)

The spontaneous-emission spectrum is a doublet (Fig. 1)

FIG. 1. (a) The spontaneous-emission spectrum 2~S(co) for
a &&y/2 and 2g/@=5. The inset compares the spectral side-
bands in free-space resonance fluorescence (Ref. 6), —- —-, the
spontaneous-emission spectrum 2~S (co ), ———, and the
fluorescent spectrum 2~T(co), . The vertical dashed lines
show the full free-space radiative width y.

with the averaged linewidth (half-width) —,
' (z+ y /2 ).

This linewidth is less than the free-space radiative width
y/2 whenever ~(y/2. When ~((y/2 the linewidth is
one-half the free-space radiative width.

Before we discuss the origin of the subnatural
linewidth we show that the same averaged linewidth ap-
pears in the spectrum of weakly driven fluorescence. We
may study intracavity resonance fluorescence in two dis-
tinct configurations —with either the atom or the cavity
mode driven by a coherent field. We consider the second
alternative; to describe the coherent driving of the cavity
mode we add the term i AD(a —a ) to the Hamiltonian in
Eq. (1), where 6 is the (real) amplitude of the driving
field. Then, if g «K, y/2, the driven cavity fills with the
coherent state ~6/x &. For n =(8/v) &&1 the variation
of the Rabi frequency across the Poisson photon-number
distribution for this state is 2(n+n ' )' g —2(n
—n '~ )'~ g =2g. The theory of free-space resonance
fluorescence assumes that this variation is negligible.
This theory is a weak-coupling theory —strictl~, it takes
the limit g/y~O, n =(6/a) ~~, with g+n/y con-
stant. For intr acavity resonance fluorescence in the
strong-coupling limit, the variation of the Rabi frequency
across the photon-number distribution of the field is not
negligible and we can expect to see substantial departures
from the results of the standard weak-coupling theory.

A calculation of fluorescent spectra for arbitrary exci-
tation strengths only seems feasible numerically. Howev-
er, we can calculate spectra for weakly driven fluores-
cence analytically. This calculation is still considerably
more complicated than the calculation of the
spontaneous-emission spectrum, since we must include
more basis states than the three used to derive Eq. (6).
We have calculated spectra for arbitrary values of g, K

and y/2. Here we only present results for the strong-
coupling limit where linewidth averagiog is seen. For
g »K, y/2, the inelastic part of the fluorescent spectrum
is given by
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+

[—,'(ir+y/2) +(co—coo+g) ]
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On comparing Eq. (8) with Eq. (7b) a notable new feature
is present; the peaks in the fluorescent spectrum are
squared Lorentzians, which show an additional 36% nar-
rowing relative to the Lorentzians in Eq. (7b). For
a. « y/2, this narrowing, together with linewidth averag-
ing, results in spectral peaks that have approximately
one-third the free-space radiative width (Fig. 1). The
square appears because the fluorescence is squeezed.
More precisely, scattering from the atomic dipole con-
tributes two Lorentzian doublets that are added together
to obtain the full inelastic spectrum —one doublet is con-
tributed by the scattering from each of the two quadra-
ture phase amplitudes of the induced atomic dipole. The
quantum fluctuations in phase with the mean induced
atomic dipole are squeezed; therefore the Lorentzian dou-
blet they contribute has negative weight. The resulting
subtraction of Lorentzians in the full spectrum gives rise
to the squares in Eq. (8). A similar effect occurs for
weakly driven fluorescence in free space, but without line
splitting and linewidth averaging.

Now let us discuss the origin of the linewidth average
that appears in Eqs. (7b) and (8). We offer two compli-
mentary views of the underlying physics. The first is pro-
vided by an alternative derivation of Eq. (7b) using the
coupled system eigenstates [eigenstates of H'=A'aio(o,
+a "a )+H]

ll & =(I/~/Z)(l+ & 0& —iI —
& I

I &),

Iu & =(I/&2)(l+ &10&+il —&I») .

(9a)

(9b)

The eigenvalues iri(coo —g) and irt(coo+g) associated with
these states identify the central frequencies of the
Lorentzians in Eq. (7b). If we adopt the three-state basis
~l ), ~u ), ~

—) ~0), the atomic dipole operator takes
the form & =( I/i/2)(l +u ), and the cavity-
mode annihilation operator takes the form
a =( —i/v'2)(l —u ), where 1 = —) ~0)(l~ and
u =

~

—) ~0)(u~. In the strong-coupling limit Eq. (1)
can then be written as

p= —,'(ir+y/2)(21 pl+ —1+1 p
—pl+1 )

+ —,'(x.+y/2)(2u pu+ —u+ u p pu+ u ), —(10)

where p=exp( —iHt/iri)p exp(iHt/iii), and 1+ and u+ are
the Hermitian conjugates of 1 and u, respectively; we
have dropped the cross terms l+ u and u+ l which os-
cillate as exp(2igt) and exp( —2igt) The initial stat. e
~+ ) ~0) is a superposition of the eigenstates ~l ) and ~u ),
and Eq (10) descri. bes an independent decay at the rate
~+y/2 from each of these states. Thus, for the initial
state

~
+ ) ~

0 ), Eq. (10) leads immediately to the
spontaneous-emission spectrum given by Eq. (7b).

Note that the state
~

—) ~0) reached by the spontane-
ous transitions from ~1 ) and

~
u ) is not split by the atom-

cavity-mode coupling. For this reason the process de-
scribed here differs from the spontaneous-emission cas-
cade down the ladder of dressed states used to explain the
strong-field resonance fluorescence spectrum for an atom
in free space. Rabi sidebands in free-space resonance
fluorescence do not have subnatural linewidths. We ob-
tain subnatural linewidths because the doublets in Eqs.
(7b) and (8) result from single quan-tum Rabi splitting.
We will return to the comparison with free-space reso-
nance fluorescence shortly.

A second explanation of linewidth averaging follows
from the coupled equations 2(a) and 2(b). Formally, these
equations describe the decay of coupled harmonic-
oscillator amplitudes. If we prepare the atom-cavity-
mode system in the superposition state c~

—) ~0)
+(ao/c)

l

—
& I »+ (P, /c) + & lo) (where c, ao, and Po are

real constants), Eqs. (2a) and (2b) describe the decay of
the mean-field and polarization amplitudes. In the
strong-coupling limit the mean "energy" E = ( 8 )
+ ( & ) oscillates between the polarization and the field
as it decays. For ~=0 and initial conditions
(a ) =a,=o, (a ) =f3„

E =Poexp[ —(y /2)t][1 —(y/4g)sin(2gt)] .

E decays at the averaged rate —,
' (2ir+ y ) =y/2. The

reason for the average is revealed by the decay rate
E/E =—(y/2)[1+cos(2gt)]. This oscillates between a

maximum value of y and a minimum value of 0 (=2i~).
When —E /E =y the energy resides entirely in the
damped polarization oscillator, and when —E/E =0 the
energy resides entirely in the undamped field osci&lator.
Thus, the decay rate is averaged as the energy oscillates
between the polarization and the field.

With the replacements ( & )~ ( J ) /v'N and
g ~V N g, Eqs. (2) describe the decay of coupled-field and
collective-polarization amplitudes in a cavity containing
N two-level atoms. ' The subnatural linewidths we find
for a single atom should therefore also occur in a system
of N atoms. Indeed, using Ref. 9 we have calculated the
inelastic spectrum for the light transmit ted by a
coherently driven cavity containing N two-level atoms.
In the limit of weak excitation and strong coupling this
spectrum has the same form as Eq. (8) (with &N g in the
place of g). The strong-coupling requirement, &Ng
))~,y/2, for N atoms, is less restrictive than for a single
atom. It can be met in the optical domain (together with
a. «y/2) using a high finesse cavity ( —10 ) and a few
hundred atoms. Under these conditions we have recently
observed subnatural linewidth averaging. "

Linewidth averaging for coupled oscillator amplitudes
is a common phenomenon; mathematically, it follows
from the eigenvalues k+ appearing in Eq. (6) whose form
is generic to any 2X2 real antisymmetric matrix. How-
ever, we know of no other situation in which this averag-
ing leads to subnatural radiative linewidths. In particu-
lar, although linewidth averaging occurs in the strong-
driving-field limit of free-space resonance fluorescence, in
this context it does not lead to subnatural linewidths.
(Stroud's one-photon approximation gives a spectrum
with subnatural linewidths but the peak widths and
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heights obtained in the one-photon approximation are in-
correct. )

To emphasize the difference between the linewidths we
obtain and those in free-space resonance fluorescence, we
recover the standard theory of free-space resonance
fluorescence from our model in the weak-coupling, high
excitation limit (g/y~O, n~~, g)/n /y constant). In
this limit we may trace over the quantum state of the field
and write Bloch equations for an atom driven by a classi-
cal field amplitude. Let &„=(&„)„+s,where (&„)„,
v=x, y, z, are the steady-state Bloch vector components.
Then the central peak of the Mollow triplet is produced
by the fluctuations s . The Rabi sidebands are produced
by the fluctuations s, which satisfy coupled equations

(s ) =g+n (s, ) —(y/2)(s„),
&s, ) = 4g—+n &s„)—y(s, ) .

(12a)

(12b)

Equations (12a) and (12b) have the same form as Eqs. (2).
Formally they also describe coupled oscillator ampli-
tudes. But they describe an oscillation between the atom-
ic polarization and inversion, not between the polariza-
tion and the field. Indeed, the field does not even enter
the equations as a dynamical variable. This is because in
the weak-coupling, high excitation limit the oscillatory

exchange of a single quantum of energy with the field has
negligible effect on the atomic dynamics; therefore a con-
stant field amplitude can be used in the Bloch equations.
The width of the Rabi sidebands in free-space resonance
fluorescence is certainly determined by an averaging of
decay rakes. But the polarization decay rate y/2 is aver-
aged against the inversion decay rate y, rather than
against tc. This gives a linewidth —,'(y+y/2) =3y/4 (Fig.
1). There is no possibility for obtaining subnatural
linewidths, as there is in the strongly coupled system real-
ized using an optical cavity.

In conclusion, we have shown that the interaction of
an atom and a resonant cavity mode can produce sub-
natural linewidths by linewidth averaging. The same
linewidth averaging occurs when a collective atomic po-
larization couples to a resonant cavity mode. In this sys-
tem subnatural linewidths have recently been observed.
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