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Spectral distributions in a model N-electron Hamiltonian
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A study on the energy-level distribution of the Pariser-Parr-Pople Hamiltonian has been per-
formed. In particular, relations between the values of the electron interaction parameters, the sym-
metry of the core potential, and the form of the secular distribution of the energy-level density have
been investigated. The density is shown to be Gaussian in the physically significant range of the pa-
rarneter values. However, very strong deviations from the Gaussian behavior have been observed at
the limit of the very weak electron-core interaction. The secular density distribution functions have
been used to predict the Hamiltonian spectra in very good agreement with the results of the matrix
diagonalization. Spacings of the nearest-neighbor levels behave mainly in a Poisson-like form,
showing the existence of approximate hidden symmetries even in the case of highly nonsymmetric
core potentials.

I. INTRODUCTION

Two different, complementary approaches may be used
in order to describe the eigenvalue spectrum of an opera-
tor. The first approach is aimed at a detailed evaluation
of individual eigenvalues and has resulted in developing
many approximate methods, in most cases derived from
the variation principle or from the perturbation theory.
The second approach focuses on properties of the entire
spectrum rather than of the individual eigenvalues. The
set of eigenvalues is then treated as a statistical ensemble
and its properties are derived from a knowledge of the
moments of the spectral distribution. Though both ap-
proaches originated at approximately the same time,
more than half a century ago, most of the work on
many-electron operator spectra has been concerned with
specific eigenvalues, mainly with the lowest ones.
Perhaps the most important early contribution to the sta-
tistical properties of many-electron spectra has been by
Rosenzweig and Porter in 1960.' Work on this sub-
ject was rather scarce during the following two decades.
One should mention here formal developments by
Moszkowski, Layzer, Ginocchio, and empirical studies
by Parikh and by Cowan. The statistical spectroscopy
of the nuclei developed into a broad field at the same
time. The contributions by Ratcliff, French et al. , and
Nomura, though explicitly concerned with the nuclear
structure, contain many results valid for any N-particle
system. Further references can be found in the reviews
published by Brody et al. ' and by French and Kota. "

Due to the recent development of experimental tech-
niques an increasing amount of information about transi-
tions between closely packed energy levels both in atoms
and in molecules has become available. The applicability
of the statistical description to the interpretation of this
kind of result has been demonstrated in the case of atoms
by Bauche-Arnoult et al. ' and in the case of molecules
by Zimmerman et al. ' Studies on the atomic energy-
level distribution by Parikh, Cowan, and by the present

authors' have demonstrated that the secular density is
Gaussian-like. However, a more detailed analysis leads
to the conclusion that the hypotheses of a Gaussian dis-
tribution is not supported by the y test, unless all energy
levels under consideration correspond to the same total
angular-momentum quantum number. ' If the energy-
level density distribution function is passed by the. g test
as correctly describing the real spectrum, then rather ac-
curate predictions of the location of individual energy
levels can be made using just the distribution function. '
This property of the spectra is certainly worth a detailed
exploration. In general, obtaining several first moments
of spectral distributions directly from a Hamiltonian is a
rather easy task —explicit formulas expressing the mo-
ments in terms of the interaction parameters are available
for many cases. ' ' ' On the other hand, if the secular
distribution is Gaussian, then only the two first moments
are needed in order to define this distribution. As a
consequence, an analysis of the spectral density distribu-
tion function may prove to be the simplest way for ob-
taining an approximate spectrum of a many-electron sys-
tem.

In this contribution the relations between the form of
the spectral density distribution function and the physical
characteristics of the system under consideration will be
investigated. In order to simplify the formalism it is as-
sumed that the system of nuclei and electrons is described
by the Pariser-Parr-Pople Hamiltonian. Thus, it is as-
sumed that the electrons move in a potential field of a
molecular "core" formed by a hydrocarbon chain. The
spectrum of this Hamiltonian depends upon the geometry
of the chain, upon the values of the parameters determin-
ing the interaction with the core, and upon the number of
electrons and their spin states. It has been found that, ex-
cept for the case of a very weak core potential, the densi-
ty of levels is either Gaussian or nearly Gaussian. Then,
only the average energy and dispersion are needed to
determine the distribution function and, in consequence,
the approximate spectrum.
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II. THE MODEL
A. The Hilbert space

sg+1
f(S,sq)=

s&+1
(9)

It is assumed that the set of orbitals ( g, j;, forming the
basis in the orbital space is orthonormal.

The ¹lectron basis functions ~A, ;SM, l & in the sub-
space H& are constructed as spin-adapted antisym-
metrized products (SAAP's) of the orbitals. They are
orthonormal and, besides being antisymrnetric

P~A, ;SM, 1 & =s(P) ~A,;SM, l &,

fulfill the following eigenvalue equations:

S '~X;SM, 1 & =S(S+1)k;SM, 1 &,

S, ~X;SM, i & =M~X;SM, i &,

(3)

where P is a permutation operator of the electrons and
E(P) =+1 is its parity, A, is an abbreviation for a set of or-
bital indices used to construct a given SAAP and I distin-
guishes independent eigenfunctions of S and S, belong-
ing to the same values of S and M. More explicitly, a
SAAP may be expressed in the form' '

The Hamiltonian of the present study is defined in a
finite-dimensional, antisymmetric and spin-adapted sub-
space H~ of an N-particle Hilbert space taken as the N-
fold tensorial product of a one-electron space spanned by
a set of 2K orthonormal orbitals and composed of a two-
dimensional spin space and a K-dimensional orbital
space. The spin adaptation means that the space is
spanned by eigenvectors of the total spin operators S
and S, corresponding to a given pair of quantum num-
bers S and M, respectively. The subspace H& is often re-
ferred to as the full configuration-interaction (CI)
space. ' ' The dimension of this space is given by the
Weyl-Paldus dimension formula'

K+1 K+1
—'N —S 'N+S+—1
2 , 2

B. Hamiltonian

The N-electron spin-independent Hamiltonian which
contains one- and two-electron terms [f,(1) and fz(1,2),
respectively] and is written in the coordinate representa-
tion as

8= g f, (i)+ g f~(i, j) (10)

The integrals (k~l) and (ij jkl) describe interactions in
the system and are defined as

(12)

and

(ij ki)=(q;(1)I &y„(2)Ih2(1,2)Iy, (2) & Iq, (1)& .

The operators

(13)

E~(= g lq~(i) &(y((i)l

are referred to as shift operators, ' unitary group gen-
erators, ' or replacement operators. '

The model described so far does not contain any ap-
proxirnations except for the assumption that the Hilbert
space is finite dimensional and that the Hamiltonian is
spin independent. In order to simplify the further con-
siderations it is assumed that the form of fz(1,2) and the
orbitals are chosen in such a way that

may be represented in the model space Hz as' '
K K

H= g (k l)E~(+ —,
' g (ij lkl )(EqEg( —5J~E(() . (11)

IA. ;SM, l & =g„A(~A, &~SM, l &),

where
(ij ~kl)=(ii~kk)5, 5q( . (15)

,
QE(P)P

is the antisymmetrization operator, gz is the normaliza-
tion constant, ~SM, l & is a pure-spin function being an
eigenfunction of S and S, and ~A, & is a spin-independent
orbital function represented in the coordinate space as a
product of N orbitals. In the orbital function s& orbitals
appear once (singles, or singly occupied orbitals) and dz
twice (doubles, or doubly occupied orbitals). ' ' The
numbers of singles and doubles in A, are connected by the
obvious relation

s&+2d& =N .

It may be shown that

i=1,2, . . . , f(S,sz),
where

This assumption is known as the zero-differential-overlap
(ZDO) approximation. It has been shown to be fulfilled
with reasonable accuracy for the Coulomb interaction
potential if the orbitals are chosen as orthonormal 2p~
orbitals localized at the carbon atoms of an unsaturated
hydrocarbon molecule. With this interpretation of the
orbitals, a model is obtained known as the Pariser-Parr-
Pople (PPP) theory of unsaturated hydrocarbons. The
orbital indices refer here to the individua1 carbon atoms
forming the molecule. The PPP Hamiltonian has proved
very successful in describing properties of planar organic
systems with conjugated double bonds. In this model
only the delocalized m electrons are considered explicitly
moving in a potential field generated by the nuclei„ the
( ls) core of the carbon atoms and the network of o.

bonds. Thus it assumes o-m separability. The PPP ap-
proach is a reasonable compromise between a realistic
description and simplicity. Therefore, it is frequently
used in various kinds of model studies. ' '
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The PPP Hamiltonian may be obtained by substituting
Eq. (15) into the general expression (11) and by assuming
that the interaction integrals are chosen to describe the
m-electron system. Thus,

( A, 'SM
~ I ~BPPP ~

A &SM, I ) =HAA

y[Pkk nk +r kk nk(nk 1 ) l 2]
k

~PPP Q PklEkl + g Y kl+kk( +II ~kl )
k, l k, l

(16)
+ ,' X-rklnkn!

k, l
kWl

(17)

where yki and pki are, respectively, the so-called
Coulomb and resonance integrals. Their values are
empirical parameters chosen to reproduce experimental
properties (mainly the electronic spectra) of reference
molecules. The value of the empirical parameter corre-
sponding to centers k and I is assumed to depend only on
the kind of atoms located at these centers and on the in-
teratomic distance. Many empirical formulas for the pa-
rameters are available in the literature.

C. Matrix elements

It can be shown' that

Ekk ) A. ;SM, I ) = nk ~
A, ;SM, I ),

HAA IV(~0 70~2)+ g nknl Ykl
k, l

(19)

The off-diagonal matrix elements of Bppp are either pro-
portional to a resonance integral (if the corresponding
configurations differ by one orbital) or vanish (if the
configurations differ by two or more orbitals). The num-
ber of orbitals by which the configurations A. and p dier
is equal to

However, in a hydrocarbon molecule with equal bond
lengths between carbon atoms, all ykk integrals are the
same and all pkk integrals are the same

Y kk YO Pkk PO

and the diagonal matrix elements become

where nk =0,1,2 is the occupation number of the orbital

yk in the configuration A, . Then, the diagonal elements of
the PPP Hamiltonian [Eq. (16)] are

K
rk„= —,

' g n, nl'~ —.

Then,

(2O)

P (A;SM, I ~E, ~p, ;SM, m ), if rk„=nz nz =nq—" nq =1—
(1'SM IiB ppipp'SM m ) = (21)

&x;s M, I~a„~ I; SM, m)

=@2 " (SM, I ~PNSM, m ),
where

—1, if n +n =n "+n"=3
E=

1, otherwise

(22)

Substituting the explicit form of the SAAP's, as given by
Eq. (5), it follows after some algebra' ' ' that

The Coulomb and resonance integrals have been deter-
mined as follows. A basic set of integrals has been chosen
as to give the best least-squares fit of the theoretical and
experimental spectra of benzene. All experimentally
known (four singlet and four triplet) electronic bands of
benzene have been used in the fit. The theoretical ener-
gies have been found as exact solutions (full CI) of the
PPP model.

The values of the integrals in the case of the benzene
molecule are equal to

and where P is the lineup permutation which, acting on
the orbital indices of X, puts them into the maximum
coincidence with the orbitals of p. The matrix

U(P}, =(SM, I ~P~SM, m ) (24)

is a nonreducible representation matrix of the Xf-element
permutation group S&. Several eScient algorithms of
evaluating its elements are available. ' '

and

y&& =10.8400 eV,

712 7.6038 eV

f]3 6.03 1 1 eV

ye=5. 2982 eV,

(25}

D. Eigenvalues and moments

The method of constructing the Hamiltonian matrix
described above [Eqs. (19)—(24)] is a special case of a gen-
eral approach referred to as SGA (symmetric group ap-
proach). ' Recently a configuration-interaction program
based on SGA has been developed. ' This program is
used to generate and to diagonalize the Hamiltonian ma-
trix.

pi2= —2. 6163 eV .

The carbon atoms in the benzene ring are numbered
clockwise from 1 to 6 (thus y &&

=yz3 =y34= y4s =y 56

=@6„y,~=yz5=y36, etc.). The difFerences between the
energy levels (i.e., the excitation energies) do not depend
upon P» and the nearest-neighbor approximation, i.e.,
PI3=PI4=0, was assumed in determining the integral
values (25).
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In all calculations reported in this paper the yk& in-
tegrals are calculated for interatomic distances Rk& small-
er than R,~ (the largest distance between two carbon
atoms in benzene) by linear interpolation between the
benzene values (25). For distances larger than R,4 a
Coulomb-like behavior of the integrals is assumed, i.e.,

Ykl 21 14/Pkl (26)

where pk& =Rk~/R &z.

For the resonance integrals the empirical formula is
used,

—2. 65p
pki 37.03e (27)

The qth moment of the spectral density distribution is
defined as

E =Tr[H(N, K,S ) ]/D(N, K, S ) (29)

is the average energy. If [E(N, K,S)],, i =1,2, . . . ,

D(N, K, S) are the eigenvalues of H(N, K, S) then

M = g (E, E)~/D, — (30)

where, for simplicity, the arguments X,E,S have been
omitted. A comparison of the numbers given by Eqs. (28)
and (30) may be considered as a test of correctness of the
program.

III. STATISTICAL DESCRIPTION
OF THE HAMILTONIAN SPECTRA

The density p(E) of the discrete spectrum
E„E2, . . . , ED is represented by the discrete normalized
frequency function

[M(N, K,S )]~ =Tr[ [H(N, K,S ) E]~) /—D(N, K,S ),
(28)

where H(N, K,S ) is a matrix representation of Appp in

Hz and where

are the same. Since eigenvalues of ¹ lectron Hamiltoni-
ans in finite-dimensional spaces tend to be distributed in a
Gaussian-like fashion, ' ' we adopt the Gaussian func-
tion as a starting point and proceed to modify it to take
into account the higher moments of the distribution. It is
convenient to construct the continuous frequency func-
tion p(E) in terms of the dimensionless variable

x =(E E)—/o, (36)

where o =M& is the width (dispersion) of the spectrum.
The frequency function may then be expanded in terms of
Hermite polynomials

p(x)=(2') ' e " g c HJ(x),
J

(37)

where, in virtue of the orthogonality relationship for Her-
mite polynomials, the coe%cients are given by

c =—f H (x)p(x)dx . (38)J j( J

However, f x "p(x )dx may easily be expressed in

terms of M „M2, . . . , Mk. Then, c may also be ex-
pressed as a linear combination of Mk, k ~ j. The result-
ing equation is known as the Gram-Charlier expansion.
If the series (37) is terminated after p terms, then

f (E E) [p(E)——p(E)]dE =0 (39)

for q =0, 1, . . . ,p. In such a case the continuous func-
tion p is referred to as being the p-moment equivalent of
p

The y test is used as a measure of the quality of the p-
moment approximation to the frequency function. The
value of g is calculated in the following way. First, the
Hamiltonian spectrum is normalized to the distribution
with E=0 (subtracting E from all energy levels) and
cr = 1 (dividing E; Eby o ). Th—en the energy range is di-
vided into r intervals ( —oo, x

& ),(x&,xz ), . . . , (x„&,~ ) in
such a way that

FG(xk+, ) FG(xk ) =D/—r,
D

P(E)=D ' g 6(E E, ), — (31)
where FG(x) corresponds to the standard Gaussian fre-
quency function. If nk is the number of the Hamiltonian
eigenvalues within the (xk, xk+ &) interval and

f" p(E)dE=I, (32)

and the corresponding average energy E and the mo-
ments M are

E= f Ep(E)dE, (33)

M = f (E E)~p(E)dE . — (34)

The normalized distribution function F(E) is defined by
integrating the frequency function

F(E)= f p(E')dE' . (35)

If the distribution moments are known, the discrete fre-
quency function may be approximated by a continuous
frequency function p(E) chosen so that a given number of
the lowest moments calculated with both the functions

nk =F(xk+ i) F(xk ), —

where

F(x)=f p(x')dx',

then

(40)

(41)

(nk +k ) /+k
k=1

(42)

F(x, ) = (i —
—,
'

) /D (43)

The value of y is then compared with y„;, chosen to cor-
respond to the 5% probability level.

If F(x) is a continuous distribution function the corre-
sponding smoothed spectrum can be defined as the set of
values x,- which satisfy



40 SPECTRAL DISTRIBUTIONS IN A MODEL N-ELECTRON. . . 5511

for i =1,2, . . . , D. ' A comparison of the real energy
levels and those derived from the distribution function
according to Eq. (43) leads to notions of the secular eigen-
value density and of fluctuations. ' The secular density is
defined by a small number of moments. If it is described
correctly, the fluctuations are small, energy independent,
and unsensitive to increasing the value ofp.

Finally, the last quantity being studied is the spacing
between adjacent eigenvalues. As is known, "' the
spacings between eigenvalues belonging to the same sym-
metry species are distributed according to the Wigner
distribution law

W(d)= —d exp( —m.d /4),
2

(44)

x(d)=exp( —d) . (45)

where d =s /s, s is the spacing and s is the mean value of
s. The eigenvalues of different symmetries are not corre-
lated and, in consequence, a superposition of several sets
of different symmetry eigenvalues leads to an exponential
distribution of spacings

~kl +~kl (46)

where B varies from 0 to ~. In the case of B =0 the in-
terelectron repulsion is the only interaction in the system.
The role of the molecular core is reduced to creating the
boundary conditions for the electron charge distribution.
The case of B = 1 corresponds to the physical reality —an
interplay of one-body and two-body interactions. Finally,
in the case of very large B, the interelectron interaction is
negligible and effectively a system of noninteracting parti-
cles is moving in an external field.

In Fig. 3 deviations between the Gaussian and the ex-
act singlet spectra of the benzene (K =N=6) PPP Hamil-

between particles. ' ' However, numerical studies on
this subject are rather scarce. ' ' ' One of the aims of
this study is to investigate the dependence of the form of
the moment-generated spectra on the mutual relation be-
tween the interelectron interaction and the interaction of
the electrons with the external potential of the molecular
core. For this purpose we have recalibrated the reso-
nance integrals introducing

As has been demonstrated already by Rosenzweig and
Porter, ' these rules may be used to study approximate (or
hidden) symmetries. If, beyond the symmetry explicitly
taken into account (say the total spin S), there exists
another one (say the point-group symmetry of the molec-
ular core), then the spacing distribution in fixed-S se-
quences either remains exponential or (if the other sym-
metry is approximate only) is an intermediate between
the Wigner and the exponential form.

E(eV)

-130—

-140—

K=6- N=6
E (eV)

--1 15

IV. RESULTS AND DISCUSSION

In Fig. 1 the spectra derived from the Gaussian and
from the five-moment Gram-Charlier distribution func-
tion according to Eq. (43) are compared with the exact
spectra of the PPP Hamiltonians for two different hydro-
carbon chains. It is seen that the smoothed (moment-
generated) spectra reproduce rather well the exact ones,
especially in the central parts of the spectra. The
discrepancies in the area of the lowest and the highest ei-
genvalues are considerably reduced if the number of mo-
ments taken into account increases. This observation is
consistent with the earlier findings for atomic spectra. '

A similar behavior of the nuclear spectra *' indicates
that in a very large class of quantum systems spectra de-
rived from the low-moment distribution functions may be
used as reasonable approximations to the real spectra.
The same behavior of the spectra of the PPP Hamiltoni-
ans is illustrated in Fig. 2. The histogram of the Gauss-
ian and the five-moment Gram-Charlier expansion is
compared with the exact PPP frequency function for the
singlet energy levels of the Hamiltonian describing the
m.-electron system of hexadiene. The deviations of the
moment-generated spectra from the exact spectra, in the
five-moment case, hardly exceed 0.1 eV, a quantity much
smaller than the errors occurring in most advanced mod-
el calculations for this kind of quantum system.

It is rather well established that statistical properties of
spectra depend rather strongly on the kind of interactions

—-125

—-130

-170—

R M M R M5 Mp

FIG. 1. The real PPP model spectra (R) and the moment-
generated (M~) spectra derived from them using Eq. (43). The
distribution function, F(x;), is calculated in terms of p low-
order spectral moments using Eqs. (37) and (41). The first exam-
ple shows a complete 96-dimensional spectrum of the N =%=8
polyene in the S=3 spin state and the second example shows
the central part (95 levels) of a 175-dimensional spectrum of the
N=IC=6 chain forming an "open benzene ring" in the S =0
spin state.



5512 M. BANCEWICZ, GEERD H. F. DIERCKSEN, AND J. KARWOWSKI

tonian are displayed. It can be seen that the deviations
for B =0 are very large. In this case the spectrum is cer-
tainly non-Gaussian. Also for B=—,

' and for B=10, devi-
ations from the normal distribution are much larger than
for B=1. An even more distinctive illustration of the
same problem is given in Fig. 4. Plots of g /y„;, versus 8
are displayed for two rather different cases. The hy-
pothesis that the frequency function is either Gaussian or
low-moment Gram-Charlier is not true (y /y„, , ) 1) for
small values of B, when two-body interactions are dom-
inant. In the "physical" region, where B is close to 1, the
distribution is either Gaussian or nearly Gaussian. For
very large values of B the distribution again departs from
normality though the limit value of y /y„;, for 8~ oo is
much smaller than for B =0. In principle, the one- and
two-electron terms in many-electron Hamiltonians are in-
dependent of each other. In the cases studied so
far ' ' ' their mutual relation in real atoms and mole-

cules leads to nearly Gaussian frequency functions. It
would be interesting to check how universal this property
is and, in particular, to make a search for systems with
"non-Gaussian" spectra.

Another way of measuring the quality of the moment-
generated spectra is to calculate the standard deviation 5
between the spectrum derived from the distribution func-
tion and the exact spectrum. In Fig. 5 plots of 5 as a
function of the number of moments taken into account in
the Gram-Charlier expansion are shown. The plots cor-
respond to several different molecules, however, in all
cases no significant improvement of the moment-
generated spectra is found if more than four moments are
used in the expansion. Hence, the secular behavior of the
spectra under consideration may be described in terms of
not more than the first four moments of the correspond-
ing Hamiltonians. The dependence of the statistical
"smoothness" of the spectrum on the number of unoccu-
pied one-electron levels is shown in Fig. 6. The standard
deviations of the two-electron system spectra in different
potentials are plotted versus K (the number of carbon

0.6

0.5- K=6 N=6

z 0.4—0
I
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0.3-
LL

0.2-Z
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0.1

0.5-

0

-05
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D
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-0.5-
I

-2.0
I

1.0

NORMALIZED ENERGY

I

2.0
I

-2.0 -1.0
I I

0 10 2.0
FIG. 2. In the upper part the histogram of the exact PPP fre-

quency function p(x) obtained for the N =%=6, S =0 polyene
and the two- ( ) and five-moment (+—+—+) Gram-
Charlier expansions p(x), are displayed. In the lower part the
level-to-level deviations between the exact PPP spectrum and its
Gaussian (M2 ) and five-moment (M, ) versions are displayed.

NORMALIZED ENERGY

FIG. 3. Deviations between the exact PPP spectrum of the
benzene molecule Hamiltonian for S =0 and its Gaussian ver-
sions. The spectra have been obtained using recalibrated values
of the resonance integrals: P'k~ =BP„~ with 8=0, 2, 1,10.
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of the figure do not have any other symmetry properties,
while the two other potentials transform according to
Czt, (upper left) and Dzh (lower left) symmetry groups. In
the last two cases the singlet spectra are mixtures of ener-
gy levels corresponding to different irreducible represen-
tations of these groups.

ACKNOWLEDGMENTS

Partial support to M.B. and J.K. from the Institute for
Low Temperature and Structure Research, Polish
Academy of Sciences, Contract No. CPBP.01.12. is grate-
fully acknowledged.

'Permanent address: Instytut Fizyki, Politechnika Poznanska,
Piotrowo 3, Poznan, Poland.

~Permanent address: Instytut Fizyki, Uniwersytet MikoJaja Ko-
pernika, Grudziydzka 5, Torun, Poland.

N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960).
S. A. Moszkowski, Prog. Theor. Phys. (Kyoto) 28, 1 (1962).
D. Layzer, Phys. Rev. 132, 2125 (1963).
J. N. Ginocchio, Phys. Rev. C 8, 135 (1973).

5J. C. Parikh, J. Phys. B 11, 1881 (1978).
sR. D. Cowan, The Theory of Atomic Structure and Spectra

(University of California Press, Berkeley, 1981),Chap. 21.
7K. F. Ratcliff, Phys. Rev. C 3, 117 (1971).
J. B. French and K. F. Ratcliff, Phys. Rev. C 3, 94 (1971);F. S.

Chang, J. B. French, and T. H. Thio, Ann. Phys. (N.Y.) 66,
137 (1971);K. K. Mon and J. B.French, ibid. 95, 90 (1975).

M. Nomura, Frog. Theor. Phys. 51, 489 (1974); 65, 1305 (1981);
J. Math. Phys. 26, 732 (1985); 26, 738 (1985); 26, 965 (1985);
27, 536 (1986);28, 128 (1987).

' T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey,
and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).

' J. B. French and V. K. B. Kota, Annu. Rev. Nucl. Part. Sci.
32, 35 (1982).
C. Bauche-Arnoult, J. Bauche, and M. Klapish, Phys. Rev. A
20, 2424 (1979); 25, 2641 (1982); 31, 2248 (1985); M. Klapish,
J. Bauche, and C. Bauche-Arnoult, Phys. Scr. T3, 222 (1983).

' T. Zimmermann, H. Koppel, E. Hailer, H. D. Meyer, and L.
S. Cederbaum, Phys. Scr. 35, 125 (1987); T. Zimmermann, L.
S. Cederbaum, H. D. Meyer, and H. Koppel, J. Phys. Chem.
91, 4446 (1987);T. Zimmermann, H. Koppel, and L. S. Ceder-
baum, Phys. Rev. Lett. 61, 3 (1988).
M. Bancewicz and J. Karwowski, Acta. Phys. Pol. A65, 279
(1984); A69, 665 (1986).

' M. Bancewicz and J. Karwowski, Physica 14C, 241 (1987).
J. Karwowski and M. Bancewicz, J. Phys. A 20, 6309 (1987).
J. Paldus, in Theoretical Chemistry: Advances and Perspec-
tives, edited by H. Eyring and D. J. Henderson (Academic,
New York, 1976), p. 131.

'sW. Duch and J. Karwowski, Int. J. Quantum. Chem. 22, 783

(1982); Comput. Phys. Rep. 2, 93 (1985).
J. Paldus, J. Chem. Phys. 61, 5321 ()974).
K. Ruedenberg, Phys. Rev. Lett. 27, 1105 (1971).
J. Karwowski, Theor. Chim. Acta 29, 151 (1973).
M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimura, Table
ofMolecular Integrals (Maruzen, Tokyo 1955).
M. Moshinsky, Group Theory and the Many-Body Problem
(Gordon and Breach, New York, 1968).

z4W. Duch, Graphical Representation of Model Spaces, Vol. 42
of Lecture Notes in Chemistry (Springer, Berlin, 1986).

25R. G. Parr, The Quantum Theory of Molecular Electronic
Structure (Benjamin, New York, 1963).
P. O. Lodwin, J. Chem. Phys. 18, 365 (1950); R. McWeeny, in
Molecular Orbitals in Chemistry, Physics and Biology, edited
by P. O. Lowdin and B. Pullman (Academic, New York,
1964), p. 305.

2~J. Paldus and M. J. Hoyle, Int. J. Quantum Chem. 22, 1281
(1982); M. Takahashi and J. Paldus, J. Chem. Phys. 85, 1486
(1986).
J. Karwowski, J. Mol. Struct. 19, 143 (1973); Chem. Phys.
Lett. 18, 47 (1972); Instytut Fizyki, Uniwersytet MikoJaja
Kopernika Report, Torun, Poland, 1974 (unpublished).

K. Jug, Theor. Chem. Acta 14, 91 (1969).
W. Duch and J. Karwowski, Theor. Chim. Acta 51, 175
(1979).

W. Duch and J. Karwowski, Theor. Chim. Acta 71, 187
(1987).

W. Duch, J. Karwowski, and G. H. F. Diercksen (unpub-
lished)
J. Karwowski, Acta Phys. Pol. A42, 647 (1972).
G. H. F. Diercksen and J. Karwowski, Comput. Phys. Com-
mun. 47, 83 (1987).

35M. G. Kendall, The Advanced Theory of Statistics (Charles
Griffin, London, 1943), Vol. I.
S. Brandt, Statistical and Computational Methods in Data
A nalysis (North-Holland, Amsterdam, 1970)~

J. B. French and S. S. M. Wong, Phys. Lett. 33B, 449 (1970);
O. Bohigas and J. Flores, ibid. 34B, 261 (1971).


