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Iterative procedure for calculating Green's functions for systems of finite extent
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We present a method for e%ciently calculating the one-particle Green's function (OPCxF) for the
interaction of a particle with a static potential using an iterative procedure that avoids the necessity
for inversion of large matrices. The OPGF for a hierarchy of successively larger systems converg-
ing to the full system under study are thereby also obtained. We demonstrate the usefulness of the
method, applying it to determine the bound-state spectrum and density of states of one particle in-
teracting with mesoscopic size and extended two-dimensional systems. Applications to a variety of
physical systems are briefly discussed.

I. INTRODUCTION

The importance of the one-particle Green's function
(OPGF) for potential scattering is well known. Its cen-
tral role in condensed-matter physics has been em-
phasized in the book of Economu. ' Interpretation of ex-
perimental spectra is in many cases intimately tied to the
density of states N(E) which can be directly computed
from the Green's function. ' Expressions for calculat-
ing absorption spectra, Raman spectra, ' and many oth-
er physical quantities can be directly written in terms of
the OPGF. In fact, any physical quantity that can be ex-
pressed in terms of second-order perturbation theory can
be written as a matrix element of the OPGF.

In this paper we present an efficient algorithm for the
calculation of OPGF of finite and quasiextended systems.
As intermediate results we obtain the OPGF for a hierar-
chy of successively larger systems converging to the full
system under study. We apply our method to study the
bound-state spectrum and the density of states of a two-
dimensional disk and briefly discuss its application to
other physical systems of interest. We also suggest how
to use this algorithm for the evaluation of the Green's
function of a many-particle system.

The precise form of the OPGF depends crucially on
the boundary condition of the problem under study. The
choice of boundary condition is dictated by the physical
quantity to be studied. To illustrate this let us first con-
sider a one-particle system in a one-dimensional potential
V(x) (energy E, mass m, and wave number
k =&2mE /fi), and suppose that we want to evaluate the
density of states. The density of states of a one-
dimensional system governed by the Hamiltonian
H =Ho+ V(x) can be evaluated in terms of the OPGF
G (x,x ', E) with outgoing wave boundary conditions as
~x~~~. The well-known expression for N(E) in terms
of G(E) is given by N(E)=(2m) 'Im TrG(E). ' The
physical interpretation behind the requirement of outgo-
ing wave boundary conditions is that the outgoing waves

carry information regarding the spectrum of the system.
This is connected to the intimate connection between the
S matrix and the density of states, as expressed by
Levinson's theorem, and by the Dashen, Ma, and Bern-
stein relationship between the trace of the Green's func-
tion of a system and its S matrix.

We therefore consider the Green's function G(x, x';E)
with outgoing wave boundary conditions. As is well
known, the free OPGF Go(x, x';E) with outgoing wave
conditions has the configuration-space representation
Go(x, x', E)=e'"' " 'l2ik, and the full Green's function
G(x, x', E) can be obtained in terms of Go(x, x', E) by a
solution of the Lipmann-Schwinger equ3tion. Clearly,
numerical solution of this equation, when G(x, x', E) is
needed for long systems (e.g. , a disordered metallic wire),
requires inversion of large matrices. The iterative pro-
cedure suggested below is meant to avoid this problem.

If only the density of states is needed, the Dashen-Ma-
Bernstein method for calculating density of states is more
efficient than the Green's-function approach since it only
involves knowledge of the wave functions in the asymp-
totic region of coordinate space. In fact, we have shown
that, for one-dimensional systems, all one needs in order
to calculate the density of states is the phase of the
transmission amplitude. However, evaluating the S ma-
trix is often not much simpler than the evaluation of the
full Green's function, while the Green's function contains
much more information about the system.

In Sec. II we explain our method as applied to the
Green's function with outgoing boundary conditions in
two dimensions. Starting from the coupled system of
Lipmann-Schwinger integral equations for the Green's
function partial-wave components, we then introduce an
iterative method which avoids the necessity of inversion
of very large matrices. Numerical results for the bound-
state spectrum and density of states of a two-dimensional
extended system with periodic potential are presented
and discussed in Sec. III. Finally, in Sec. IV we briefly
discuss potential applications to various one-particle sys-
tems as well as an extension to the N-particle system.
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II. GREEN'S FUNCTION FOR ONE-PARTICLE
POTENTIAL SCA I I'ERING IN TWO DIMENSIONS

B2

Br

n —1/4 +k g„(r,r', k) =5(r r'—) .
r

(2.7)

We begin by considering the quantum mechanics of
one particle in a two-dimensional system which, for con-
venience, has geometrical symmetry. For definiteness,
consider a circular or rectangular sample having the po-
tential V(x,y) which is different from zero within a
domain D. We neglect electron-electron interactions and
assume zero temperature so that electron-phonon interac-
tions are also absent. Thus, we consider a single-particle
scattering problem in two dimensions where the scatter-
ing potential (which may have been obtained from an
energy-dependent optical potential ) can be extended over
many atomic units.

The boundary conditions to be imposed on the wave
function are of crucial importance. We formulate the
analog of the outgoing wave boundary conditions dis-
cussed in connection with the one-dimensional problem
for the two-dimensional case. Here the requirement of
outgoing circular waves is adopted. The use of polar
coordinates is superior to that of Cartesian coordinates
for treating outgoing circular wave boundary conditions,
even if V(x,y) has Cartesian symmetry. Thus, if m is the
effective mass of the particle and E is its energy, we define
k =&2mE /A, v(r, O)=(2m/fi )V(r cosO, r sinO) and
denote by k the wave vector corresponding to the initial
direction (which we take as the positive x direction) and
r =(r, O). The free Green's function

e ik/r —r'/

Go(r, r', k)=
2m'& k

I
r —r'

I

satisfies the equation

(6+k )Go(r, r', k)=5 (r —r') .

(2.1)

(2.2)

+ f Go(r, r";k)v (r")G (r",r', k )dr" . (2.3)
D

In order to solve Eq. (2.3), we perform the angular
momentum expansion of the free and full one-particle
Green's functions in terms of the angular functions e'"
(n =0, +1,+2, . . . , )

The full Green's function can be defined in terms of the
Lipmann-Schwinger integral equation

G(r, r';k) =Go(r, r', k)

The radial coefficients G „(r,r', k} in the expansion (2.5)
are the solutions of the coupled set of integral equations

G „(r,r', k)=5 „g„(r,r';k)

+g f g (r, r";k)v (r")
D

where

XG „(r",r', k)dr" (2.8)

i(m — )0(r)= e' ~' v(r cosO, r sinO)dO . (2.9)

N(k)=— 1
Imp f G„„(r,r; k)dr

mD „.D
(2.10}

Equation (2.8) includes an infinite number of coupled
equations. However, from classical considerations, angu-
lar momentum is related to the product kb where b is the
impact parameter. We therefore expect that the actual
number of partial waves that must be retained in numeri-
cal calculations can be limited to a cutoff number,
I. =kR, R being somewhat larger than the radius of the
system. This is born out in our numerical example dis-
cussed in Sec. III.

We now show how equations such as Eq. (2.8) can be
treated numerically even when the domain of integration
in coordinate space is very large. If the integral in Eq.
(2.8) is replaced by a sum over M mesh points, the matrix
that must be inverted is of dimension MN XMN where N
is the number of partial waves in the sum over P. We ex-
pect both N and M to be at least a few tens. Therefore,
determination of G from Eq. (2.8) requires the inversion
of the complex matrix 1 —gV of large dimension. Due to
the special (Lipmann-Schwinger) structure of the integral
equation for the Green's function, Eq. (2.8) can be solved
iteratively in, say, K iterations where in each iteration
one inverts a matrix whose dimension is MN/K. Let us
write Eq. (2.8) as an operator equation in matrix form
(dropping for the moment the k dependence),

In terms of the radial coefficients G „(r,r', k) the density
of states now reads as

Go(r, r', k)=QJ„(kr& )H„"'(kr& )e'"'e (2.4)
Cs =g+ gvCx . (2.11)

G(r, r', k)= QG „(r,r', k)e'1

rr m, n

(2.5}

We divide the range of integration [O,R] into K segments
at points O=ro & r, & r2 - & rK, & rK =R and write
the interaction matrix v as the sum,

Here J„(kr) and H„"'(kr) are the regular Bessel function
and the Hankel function of the first kind, respectively,
and r& =min(r, r'), r& =max(r, r'). It is convenient to
define the radial coefficient in the expansion of the free
one-particle Green's function as

K
v= gvk,

k=1

v if rk 1&r &rk
v 0 otherwise . (2.12)

With the notation Go=g let us inspect the following
iterative scheme:

g„(r,r';k)=&rr'J„(kr& )H„'"(kr& ),
which satisfies the differential equation

(2.6)
Gk —Gk, +Gk, v„G„(k—1,2, . . . , K) . (2.13)

Since Eq. (2.11) is a resolvent equation, it is evident from
Eq. (2.3) that Gk is the Green's function corresponding to
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+ „Gk—1 r r )Uk(1 )Gk( r, r')dr
/c —I

k —1 r k (2.14)

Since the domain of integration is K times smaller than
the original domain [O, R] for which M mesh points are
necessary, the integral in Eq. (2.14) can be replaced by a
sum over M/E mesh points, and hence, the dimension of
the matrix that must be inverted is NM/K. Once Eq.
(2.14) is solved, its solution can be substituted back into
the same equation in order to evaluate G (kr, r') this time
for all r E[0,R]. This second step does not require ma-
trix inversion, but only quadrature integration. Thus, we
circumvent the problem of large matrix inversion (al-
though we are unable to avoid the storage problem since
Gk for all r, r'H [O, R] is needed). Most of the computer

I

the interaction truncated at r =rI„and hence Cxz =Ca.
Our method is an Aufbau method wherein the Green's
functions for all size samples up to the full system size are
obtained simultaneously. To see how the iterative scheme
(2.13) avoids inversion of large matrices, we rewrite it as
an integral equation recalling that the integration domain
is limited to r C [rk „rk] in which vk(r) does not vanish.
Taking r' as a parameter, we first consider Gk(r, r') only
««g i ««I„
G„(r,r') =Gk, (r, r')

time is consumed in the quadrature integration, not ma-
trix inversion. In any case, this somewhat elementary
procedure tremendously expedites computation of the
Green's function. We now consider a specific example.

III. DENSITY OF STATES
OF A TWO-DIMENSIONAL SYSTEM

As an illustrative example for the above algorithm we
calculate the OPGF and evaluate the density of states of
a particle in a two-dimensional extended system. Physi-
cally we may think of conduction electrons in a metal (at
zero temperature) interacting with the frozen atoms with
electron-electron interaction neglected. Consider a two-
dimensional system of large but finite extent character-
ized by potential V(x, y) which is periodic in Cartesian
coordinates x,y within the sample domain, 0&r &Rp.
Outside the sample boundaries, V(x,y) = V, , where V, is
the potential barrier of height equal to the Fermi energy
plus work function. The work function potential barrier
is taken to be V, within domain Rp & r & R and is cutoff
at radius R, where the cutoff radius R is chosen to sirnu-
late the experimental resolution of the measurements of
the bound-state energy. Cutoff of the barrier allows ap-
plication of scattering methods to determine bound-state
properties. Thus, the conduction electrons move in the
potential

VD[cos(k„x)cos(k y)+1)= VD[cos(k r cos8)cos(k r sin8)+1], R &R0

V(x,y)= V(r, 8)= ~ V, RD &r &R

0, r &R.
(3.1)

We take V, ) Vp, and both Vp and V, positive. There are no stable bound states for this potential, however, in com-
plete analogy with the double barrier potential in one dimension (see the discussion in the Introduction) we expect
peaks in the density of states of the potential (3.1) to approximate the true bound states of the potential

V0[cos(k„x)cos(k y)+1]=VD[cos(k„r cos8)cos(k r sin8)+1], r &RD
V(x,y)=V(r, 8)= '

V ]y r Qo
(3.2)

Our aim is, therefore, to evaluate the OPGF related to
the potential of Eq. (3.1) using the algorithm developed in
Sec. II.

The approximate number of coupled equations (2.8)
can now be estimated using the classical relation between
momentum k, impact parameter b, and angular momen-
tum L, kb =L. Since we study the dependence of the
Careen's function on energy, the value of k is in the range
of typical values of kF in metals, i.e., a several A '. The
maximum value of the impact parameter is the radius R
of the system. Thus, the number of coupled integral
equations N is given approximately by the relation
N=2kR+ 1. In the special case of potential Eq. (3.1),
we reduce the number of equations by assuming k =k~
so that the x and y directions are identical and the system
has a 90' rotational symmetry. In this case the matrix
elements U ~ [Eq. (2.9)], vanish unless ~mp~ =4, so that
the number of equations is reduced by a factor of 4.

In order to test our program we evaluated the density
of states for a circular disk with Vp=0 and with a very
high circular barrier V, . The resonance energies for

V, = oo are the zeros of the Bessel functions J„(kRD), and

the calculated density of states with V, =8 eV, Rp=23
A, and R=25 A, has peaks at these energies. In Fig. 1,
the energy range contains no resonances.

We now consider a circular disk of radius R=25 A,
Vp=3 eV, V, =8 eV, Rp=23 A, k =k =1.25 A ' and
we calculate the density of states as a function of energy
E in the range 2.4 &E & V0 (below E =2.4 eV there is a
monotonic rise of the density of states without any not-
able structure). We find that the cutofF angular momen-
tum L can be fixed at 24, and

—Im f G„„(r,r;k)dr « —Im f G00(r, r;k)dr
D D

(for n ~ 24) . (3.3)
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In Table I we give the values of the two expressions
—Im[ f DG„„(r,r;k)dr] and —Im[ fDg„(r, rk)dr] for
n =0, 4, 8, 12, 16, 20, 24, and 24, for E=2.412 eV. From
the table we conclude that fixing L at 24 leads to an error
of a few percent. We also found that the contribution of
two sets of channels with no coupling between them (e.g. ,
the set of channels —24, —20, —16, —12, —8, . . . and
the set of channels —23, —19, —15, —11, —7, . . . ) is al-
most identical if L is large enough. Hence we evaluate
the contribution of a single set and multiply it by 4,
which leads to a substantial savings in computer time.

The spectrum of the one particle in the above potential
is shown in Fig. 1. The sharp peaks correspond to stable
bound states, and their finite width is a consequence of
the finiteness of the circular barrier, which allows tunnel-
ing outside the potential range. The broader peaks corre-
spond to resonances. It is important to point out here
that we have in fact calculated the OPGF in all
configuration space and, therefore, it can be used for the
calculation of other observables in addition to the density
of states. Ideally, we would like to study much larger
systems, since electrons within a disc of radius 25 A can-
not be considered as Bloch electrons. Only in the limit of
very large radius we may expect the Bloch momentum to
have its physical significance and argue that the precise
form of the boundaries is not important. Unfortunately,
with our present computing facilities we cannot reach
this limit. In order to test the effect of the system size we
consider a circular system of radius R =50 A, with all
other parameters (except, of course, the number of partial
waves) as before. The density of states of this larger sys-

TABLE I. Imaginary part of race of partial-wave n (first
column) Green's functions for the system with interaction
(second column) and the free one (third column). The system
consists of a single particle moving in the potential field given in

Eq. (4.1) with the parameters vo =3.0 eV, v, = 8.0 eV,
k =ky =1.250 A ', R=25.0 A, and RO=23. 0 A. The
eA'ective mass of the particle is taken as that of a free electron.

n=0
n=4
n=8
n =12
n =16
n =20
n =24

—Im f G„„(r,r;k)dr
D

0.7617E +00
0.6286E +00
0.4524E +00
0.2999E +00
0.1630E +00
0.423 1E —01
0.2349E —02

—Im f g„(r, r;k)dr
D

0.2526E +01
0.2506E +01
0.2239E +01
0.2088E +01
0.1660E +01
0.2184E +00
0.1786E —02

tern is plotted as function of energy in Fig. 2. The one-
particle spectrum of the larger system is richer and con-
tains both narrow and broad resonances. In both cases
the bound states do not lie at the bottom of the potential
well but appear at higher energies. A study of much
larger systems would require use of supercomputers.

It is useful to point out here that the choice of a circu-
lar shape is a matter of convenience. If the shape of the
system is more complex, the symmetry disappears and
the integration in Eq. (2.9) becomes more difficult to car-
ry out, but after the partial-wave matrix elements of the
interaction are computed at all relevant radii, the itera-
tive procedure is unchanged.
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FIG. 1. Density of states per unit wave number of the system with full interaction (squares) and with the corregated part of the po-
tential (circles). The system consists of a single particle moving in the potential field given in Eq. (4.1) with parameters Vo=3 eV,

0 0 0
VI = 8 eV, k = k~ = 1.250 A ', R =25 A, and Ro =23 A. The eA'ective mass of the particle is taken as that of a free electron.
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FIG. 2. Same as Fig. 1 but with R =50 A and Ro =48 A.

IV. APPLICATION TO SKVKRAL PHYSiCAL
SYSTEMS OF INTEREST

In this section we briefly point out a few other direc-
tions in which the ideas presented above can be used to
evaluate Green's functions of interest in condensed
matter physics. The list below is by no means complete.

A. Green's function of a three-dimensional system

In complete analogy with the one- and two-
dimensional systems we may think of a three-dimensional
system characterized by a potential V(x,y, z) which is
periodic in Cartesian coordinates up to a certain distance
from the surface boundaries.

The angular momentum quantum numbers are the or-
bital angular momentum l and its projection I on some
fixed axis. The radial matrix elements of the potential
V(x,y, z)= V(r, 0, $)= V(r, A) [analog of Eq. (2.9)) are
then

B. Green's function for quasi-one-dimensional systems

Systems in which particles propagate freely only in one
direction (say along the x axis) while in the other direc-
tions the wave function has standing wave boundary con-
ditions, are termed quasi-one-dimensional systems. Such
systems play a central role in the study of electrical con-
ductance. To calculate the dc conductance, it is sufhcient
to know the transmission and reflection matrix amp1i-
tudes and then use the we11-known relations between con-
ductance and transmission and reflection. ' However,
when the ac conductance is required, we need the full
Green's function to evaluate it using the Kubo formula. '

To this end we construct the free Green's function
which vanishes on the boundaries of the system and has
outgoing wave boundary conditions when ~x~ is outside
the interaction region. Let y denote the transverse coor-
dinates in which the motion is bounded to a finite region.
The standing-wave wave function P (y) belongs to the
energy eigenvalue c and the wave number k of the
propagating wave in the x direction is given by

VI ~ ( (r)= f Y'(' (Q)V(r, A)Y( (A, )dQ . (4.1) k =k' —c. (4.3)

The number of coupled equations are, approximately,

X = g (21+1)=
1=0 2

(4.2)

where k is the total energy. The free Green's function is
then given by

exp(ik ~x —x'~ )Go«yx'y')=X .
k 0 (y)lN (y')j*.

2~k

(4.4)
The value of the cutoff angu1ar momentum L is approxi-
mately kR where R is the radius of the system. It is evi-
dent that if we want R to be a few tens of angstroms and
k a few inverse angstroms, we wi11 have to use supercom-
puters to solve Eq. (2.14). Nevertheless, the algorithm
sketched above should be most efticient in evaluation of
Green's function for one particle in an extended three-
dimensional system.

The full Green's function 6 (x y, x 'y') which takes into
account the interaction U(x, y) of the electron with the
sample is given by the standard Lipmann-Schwinger
equation. Using the orthogonality of the standing-wave
wave functions we turn the Lipmann-Schwinger equation
into a set of coupled equations for the coeScients
G „(x,x') in the expansion
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G(xy, x'y')=gG „(x,x')P (y)[P (y')]', (4.5)

in terms of the matrix elements of the potential

v (x)= fdye (y)u(x, y)[p (y)]*

which reads as

exp(ik ~x —x'~ )
G „(xx')= . 5

l m

exp(ik ~x —x"
~ )f+ dx"

2ik

(4.6)

X gu (x")G~„(x",x') . (4.7)

The sum over the discrete indices should run to infinity.
However, a cutoff' at some value X large enough to in-
clude all the physical channels for which k is positive,
in addition to a few evanescent channels should be
sufficient. The dimension of G in Eq. (4.7) will then be
NM XNM where M is the number of integration points.
The recommended technique here is therefore to divide
the domain of x over which the interaction v(x, y) is
nonzero into small intervals and to use the iteration tech-
nique developed in Sec. II. Evaluation of Im(TrG) gives
the density of states having these boundary conditions.
This density of states is sensitive to the number of physi-
cal channels for which k is positive. Each time the en-

ergy passes through a zero of k a new channel opens
and the density of states is discontinuous at such points.
A trivial example is the density of states for free motion,
which is proportional to the sum g„~"['1/k„where Nzh„,
is the number of physical channels.

C. The quantum Hall eFect

u(x, y)= g v (x,y),
m =1

(4.8)

where each function v is localized around the point
(x,y ), the position of impurity number m. The
modifications of the density of states upon introducing
the interaction (4.8) are not yet fully understood.

Studies of the quantum Hali eff'ect (including the densi-
ty of states) have been limited to a single Landau level,
but there is a growing belief that despite the substantial
energy separation between adjacent Landau levels, the

One of the central quantities related to the integral
quantum Hall e8'ect is the density of states of an electron
in a two-dimensional disordered sample in the presence of
a strong perpendicular magnetic field. In the absence of
the disorder potential, the density of states is simply
given by the sum N(E) =+„5(E E„), where th—e sum
rums over the Landau energies E„=( n + —,

' )fico,

n =0, 1, . . . , and cu is the cyclotron frequency. The
disordered (impurity) potential is often taken as an
infinite sum of localized potentials

coupling between Landau levels is important. Some at-
ternpts to include a finite number of Landau levels in the
calculations of the density of states has been reported but
to our knowledge, no attempt has been made to include
all the Landau levels at the onset.

Since the sum of localized interactions in Eq. (4.8) is
infinite, an exact solution is, of course, out of the ques-
tion. Instead, an iterative procedure which takes into ac-
count successively more terms with an attempt to identify
the limit of an infinite number of terms is suggested
below. We introduce the magnetic field B through the
magnetic length L=&ficleB and consider the Hamil-
tonian Ho of an electron in a two-dimensional plane with
a perpendicular magnetic field in the Landau gauge
A„=By. As shown by Comtet, " the Green's function
Go=(k —Ho) ' can be evaluated analytically in
configuration space. Therefore we can consider the fol-
lowing iterative procedure, G + &

=G +G v + &
G +,

for m =0, 1,2, . . . , and use the fact that each impurity
potential is localized at the point (x,y ) and employ the
technique developed in Sec. II to evaluate
g +&(xy, x'y', k ) at any x' and y' but for x and y only in
the vicinity of (x +, ,y +,). This procedure obviates the
necessity for inversion of large matrices and at the same
time provides a natural iteration scheme since each
Green's function G is the exact Green's function for the
case in which there are only m terms in the expression for
the disordered potential (4.8).

D. Green's function of an N-particle system

Finally, we suggest how the method developed here
can be employed to evaluate Green's functions of N-
particle systems. We base our suggestion on the hyper-
spherical expansion approach to the many-body problem,
which has been used intensively in atomic and nuclear
physics. The Laplacian operator is written in terms of
one radial coordinate p (the hyper-radius) and a grand
angular momentum operator L (fI) where 0 is a set of
3N —1 angles which, together with the hyper-radius, are
sufficient for a complete kinematical specification of the
N-particle system. ' ' The angular eigenfunctions

Y(1)( Q) of L ( 0) (the hyperspherical harmonics)
are known, and hence, the partial-wave compo-
nents V(L)(L l(p) of the total interaction
V(r„rz, . . . , rz)= V(p, O) can be computed. The in-
teraction V(r„rz, . . . , rz) may include three- and many-
body interactions in addition to the sum over two-body
interactions. The procedure is completely analogous to
the one explained in Sec. IV A for the case of one particle
in a three-dimensional extended system.
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