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Ferroelectric nematic liquid-crystal phases of dipolar hard ellipsoids
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A search for ferroelectric nematic liquid crystals is carried out on the basis of a simple theoretical
model viewing the nonspherical polar molecules as hard e11ipsoids of revolution with an embedded
permanent dipole oriented along the symmetry axis. The density-dipole moment-aspect ratio phase
diagram of the dipolar hard ellipsoids has been determined with the aid of an approximate density-
functional theory that was shown recently to lead to good quantitative agreement with the comput-
er simulations of the isotropic-nematic transition of hard ellipsoids. For the dipolar hard ellipsoids,
two types of stable ferroelectric nematic phases are found for dipole moments and aspect ratios
exceeding some reasonable threshold values.

A stable ferroelectric fluid could have many practical
applications as an easily reorientable anisotropic fluid.
Most ferroelectric materials„however, are solids with the
exception of some layered (chiral smectic-C) liquid crys-
tals. As discussed recently, there appears to be no fun-
damental reason why fluids could not be ferroelectric.
The aim of the present investigation is to determine some
of the molecular properties which could favor ferroelec-
tricity. In order to obtain quantitative results we will use
here our recent density-functional theory of orientational
freezing as a natural extension of the more qualitative
mean-field theory used previously. To keep the calcula-
tions simple, a compromise will be made with respect to
the degree of realism of the molecular interactions. To
this end we have focused our attention on two molecular
properties which we consider essential for the possible
formation of ferroelectric fluids. The basic ingredient re-
sponsible for the appearance of anisotropic fluids is well
known to be the presence of anisotropic interactions be-
tween the molecules. Considerable evidence has been
gained recently that it is sufficient, in a first approxima-
tion, to consider only the anisotropic repulsive (steric) in-
teractions. We will thus model the nonspherical mole-
cules by hard ellipsoids (HE) analogous to the well-
known hard-sphere (HS) model of spherical molecules.
For simplicity we only consider ellipsoids of revolution so
that the molecular shape can be characterized by a single
parameter, the breadth-to-length or aspect ratio
k =o.~~/o. ~, with o.

~I

being the diameter along the cylindri-
cal symmetry axis and o.

z the diameter in any direction
perpendicular to this axis. Disk-shaped molecules corre-
spond then to oblate ellipsoids (0& k & 1) while cigar-
shaped molecules correspond to prolate ellipsoids
(1 & k & ~ ). Finally, the electric polarization of the mol-
ecules, required to possibly turn the anisotropic fluid into
a ferroelectric fluid, will be introduced by putting a per-
manent electric dipole of strength po at the center of each
ellipsoid, with the dipole oriented along the molecular
symmetry axis. The possible presence of higher-order
electrical multipoles or of dift'erent orientations of the di-
pole will thus be ignored here. This approximation will
be briefly referred to as the dipolar hard ellipsoid (DHE)

model analogous to the well-known dipolar hard sphere
(DHS) model of spherical polar molecules.

The orientational freezing of the DHE system will now
be studied with the aid of the approximate density-
functional theory introduced previously for the study of
the isotropic (I)—nematic (N) transition of HE. The re-
sults obtained there for the I-N transition were in good
quantitative agreement with the computer simulations of
Frenkel and Mulder. For the DHE system only two
minor modifications of the HE theory need to be intro-
duced. If we locate the DHE in space with the aid of the
position of its center r and the orientation of its symme-
try axis (with respect to the laboratory frame) with the
aid of a unit vector u along the axis, then the one-body
density, p(r, u), of a spatially uniform fluid (other phases
will not be considered here) can be written,
p(r, u)=ph (u), with p the average density and h(u) the
normalized angular distribution of the molecules. The
first modification stems from the fact that as a result of
the absence of a top-bottom symmetry for the DHE, the
general parametrization of h (u) in terms of Legendre
polynomials, h (u) =exp[ply~PI(u n)], has to admit
now both odd and even values of /. Here n is the director
of the uniaxial phases to which we restrict our investiga-
tion. In the simplest possible approximation we now
have to consider a two-order-parameter distribution:

exp[y, P, (m)+ y2P2(m)]
h (u)=

Z(y] y2)
1

Z(y„y~)= —,
' dm exp[y, P, (m)+y~P2(m)],

where m =u-n=cost9. Here y2 is the usual nematic or-
der parameter measuring the degree of alignment along
n while y] is the ferroelectric order parameter measuring
the total polarization in the direction of n. For the I
phase we have y, =y2=0, while y, =O and y2&0 corre-
sponds to a N phase and y, &0 and y2=0 or y2&0 to a
ferroelectric nematic (FN) phase. The value of these or-
der parameters are determined by minimizing the
Helmholtz free energy with respect to y, and yz. This
free-energy expression involves the unknown direct corre-
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lation function (DCF) of the DHE system for which we
will use the same factorization approximation as used
previously for the HE. The DCF of the DHE will thus
be written as the product of the excluded volume of two
ellipsoids of given orientation, X(u u ), times the DCF
of the "sphericalized" molecules, which are here DHS of
the same volume as the original DHE. This is a straight-
forward extension of Onsager's low-density approxima-
tion and its success for the I-1V transition can be under-
stood by observing that in integrated-out expressions,
such as the free energy, many of the details of the DCF
are irrelevant. For the excluded volume factor X(u u'),
we will again use the Berne-Pechukas approximation
while for the DCF of the DHS we will use the solution of
the mean-spherical approximation (MSA) as obtained by
Wertheim. It is well known that the MSA for DHS is
plagued with a considerable amount of thermodynamic
inconsistency but better approximations would require
considerably more numerical work. For the sake of sim-
plicity we have preferred approximations which lead to
analytical expressions. In the MSA the DCF of DHS
consists of three terms CDHS X C = HCS+C a+CD
each of which can be expressed in terms of the Percus-
Yevick (PY) DCF of HS, cpY(x;tl), with x = tr~/rro the
reduced distance and ri=(m/6)cr~ the packing fraction
of HS of diameter o.o and density p. The first term of

CDHs ts the Purely HS contribution, cHs=cpv(x;g), the
second is the dielectric term, ca =u u'c~(x;rI, )M), and the
third, cD, the dipolar term which does not contribute to
the approximate free-energy expression because the angu-
lar average of cD with respect to r vanishes. The dielec-
tric term can again be expressed in terms of the PY DCF
as cg(x ' 'g p ) = 2K[cpv (x 2K'g ) cpv (x Ktl ) ], where
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FICx. 1. Example of the angular distribution, h (cosO) vs 0/~,
for the three ordered phases of DHE [for the I phase, not shown
here, h (cos8) is a constant]. (a) The X phase with equal proba-
bility for parallel (0=0) and antiparallel (0=+m. ) alignment
(yl=0 and yz»1), (b) the FN1 phase with a larger probability
for parallel than for antiparallel alignment (yl&0 and y, »1),
(c) The FN2 phase with a strict parallel alignment (y, »1).
The distributions shown here correspond to k =10, @=0.60,
and g=0.23. Notice also that according to Eq. (1), h (cosO) is
normalized with respect to cos8.
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FIG. 2. p —g phase diagram of DHE for (a) k =5 and (b)
k =10. Here p is the reduced dipole strength (p, '=Pro/o', cr~~)

and g the packing fraction (g=(m/6)o. &o.~~p) of the DHE of as-
pect ratio k =o~~/o, The different regions correspond to the
isotropic (I), the nematic (N), and the two types of ferroelectric
nematic (FN1 and FN2) phases.
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is given in terms of g and p by the implicit
equation q (2Icg) —

q ( x—ri) = 8ilp, where q (il)
=(1+2') /(1 q—) while p=(Ppo/0'0)'~ is the reduced
dipole strength (13=1/kiiT). The reduced difference is
free energy per particle (P/p)Af between the ordered and
the disordered (y, =ye=0) phase can then be written

bf=—f dub(u)lnh(u)
P

I (ri;p)[H (y&, yz) —H (0,0)], (2)
a=HS, A

where

ilI ( rl; p, ) =p d rc;il, p
C70

(3)

H ()'i, l'p)= f du f du'h(u)(u u') X(u.u')flu'),

with n =0 (n =1) for the a=HS (a= b. ) term of-the
DHS DCF. In Eq. (3), i) = i)(i), k) is, moreover an
effective density somewhat smaller than g and deter-
mined in such a way that the HS DCF of the I phase
evaluated at the density g will mimic' the sphericalized
DCF of the ordered phase of density g. In order to fix g
we use again the rescaling of the contact distances
defined imPlicitly by cpv(1'il) =cpY(x (k);i)), with
x(k)=k when k (1 and x(k)=1/k when k ) 1. The
three terms in the right-hand side of Eq. (2) are seen then
to favor respectively the I, N, and FN phases. Minimiz-
ing now Eq. (2) with respect to yi and yz, for a given
value of k, p, and g, we find four different stable phases.
An example of the corresponding angular distributions is

shown in Fig. 1. The phase diagram in the p —g plane is
shown in Fig. 2 for k =5 and k =10. It is seen that
below a threshold value of p, (typically for p (0.35 when
k =10) only I le -transitions are observed. Above this
threshold we find free energy minima corresponding, be-
sides to the I and N phases, to two types of FN phases.
The latter consist of a FN1 phase with considerable anti-
ferroelectric order; but a small net polarization (see Fig.
1) and a FN2 phase with a strong ferroelectric order and
hence a large polarization (see Fig. 1). All transitions ap-
pear to be first-order except for the N-FNl transition
which is second order, at least within the present numeri-
cal accuracy. The FN1 phase appears only for the inter-
mediate p values. For values of p above the N-FN1-FN2
triple point value, the N-phase transforms directly into
the FN2 phase when increasing q, whereas above the
I-N-FN2 triple point value the N phase disappears as a
thermodynamically stable phase. When increasing the
molecular excentricity (i.e., increasing k) the FN phases
are pushed towards lower values of p and g. For in-
stance, the I-N-FN2 triple point which for k =5 corre-
sponds to @=1.38 and q=0. 33 is shifted to @=0.89 and
g=0. 19 for k =10 and to p=0. 80 and g=0. 13 for
k = 15, while the two triple points come also closer one to
another (see Fig. 2). The FN phases occur then well
below the densities for which the other phases not con-
sidered here (e.g. , the smectic or solid phases) are expect-
ed to become stable. To favor ferroelectricity one
should thus look for molecules' with a sufficiently high
dipole moment (p~ 0.3) and a sufficiently large excentri-
city (k )7).
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