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The interionic pair potential derived from the measured structure factor S {Q) of liquid Pb at 613
K using the modified hypernetted-chain approximation was tested in the molecular-dynamics simu-
lation and found to be inadequate. It is shown that the same simple model of the potential with
three parameters, having been optimized in an iterative procedure involving the large-scale
molecular-dynamics simulation, provides a very good fit to the original structure.

Recently, pair interionic potentials in a number of
liquid metals were derived from the measured structure
factors S(Q) using the inversion method proposed by
Dharma-wardana and co-workers. ' In this method, a
parametrized pair potential is optimized in an iterative
procedure which fits the S(Q), calculated within the
modified hypernetted-chain approximation (MHNCA),
to the measured structure factor. The MHNCA is admit-
tedly the most precise semianalytical integral equation
approximation, relating space correlation functions and
the pair potential in a dense classical fluid, of all those
available at the moment. However, the claimed precision
of the Dharma-wardana and Aers (DA) inversion was
critically discussed, and a stringent test of its results us-
ing a comprehensive simulation is still needed.

Based on the well-documented proposal of Rosenfeld
and Ashcroft, the MHNCA approximates the bridge
term B(r) in the formally exact equation obtained from
the diagrammatic analysis, relating pair potential V ( r )

and the structure,

g (r) —1 —c (r)=ln[g (r)]—V(r)/kts T+B (r), (1)

by that of a hard-sphere fiuid BHs(r, rl) with packing frac-
tion g. Direct correlation function c(r) is connected to
g (r) via the Ornstein-Zernike equation, in vector space,

c(Q) =[S(Q)—1]/S(Q),
where

pseudopotential theory. The pseudopotential param-
etrized by the well depth A0 and the cutoff radius R0 as
well as the simple local density approximation (LDA)
were employed. The third adjustable parameter was
effective electron mass m *. VD~ appears to be close to
another potential ( VMD ), derived by an independent
method involving MD (Ref. 8) from the same structure
data (Fig. 1). Nevertheless, the difference between the
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S(Q)=1+4np f dr r [g(r) —1]sin(Qr)/Q .
0

(3)

In order to avoid the numerically unreliable procedure of
the Fourier transformation (FT) of the measured S(Q),
the DA optimization procedure employs the MHNCA to
solve (1)—(3) for the trial potential, thus fitting the latter
to the experimental structure. The procedure treats g as
a free parameter, which can introduce a certain degree of
ambiguity in the relationship between the original struc-
ture and the derived potential. However, it was claimed
that the procedure derives all the parameters uniquely. '

The molecular-dynamics (MD) simulation being re-
ported here tries the pair interionic potential in liquid Pb
derived recently by the DA method from the S(Q) mea-
sured by neutrons at 613 K. ' The potential, denoted
here as VD~(r), was constructed on the basis of the local
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FIG. 1. (a) Pair interionic potentials in liquid Pb at 613 K:
solid line, VMD (Ref. 8); dashed line, VDA (Ref. 3); dot-dashed
line, the result of new fit of the measured structure data using
the RLW procedure (Ref. 9). (b) Dashed line, VMD

—V4, dot-
dashed line, U4 —V4, solid line, hV, .
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two results is still considerable enough to leave some
room for speculations regarding the DA accuracy. A
preliminary MD test of VDA (Ref. 3) has shown certain
disagreement between the simulated g (r) and the one ob-
tained by FT of the measured S(Q). Since the Q range
where the latter is available is limited, its FT is inherently
uncertain. Therefore a direct simulation of S(Q) is desir-
able to assess the accuracy of the DA inversion. We also
examine here to what extent the latter is hindered by the
constraint imposed on it by the simple potential model
used and whether a more sophisticated one or even in-

3elusion of many-body terms suggested are really needed.
We exploit here the same MD model, comprised of

16 384 particles, that was used to derive VMD. That8

study has demonstrated that in a simulation of such a
spatial scale one can obtain a very precise and reliable
S (Q) in the required Q domain by direct FT of the calcu-
lated g (r). The necessity to have the two functions strict-
ly numerically consistent for comprehensive analysis of
the accuracy of the inversion is apparent from Eqs.
(1)—(3). The trial simulation using VDA shows (Fig. 2)
that the structure is strongly affected by the difference be-
tween VDA and VMD. The calculated structure factor
considerably deviates from both the experimental S(Q)
and the one predicted by MHNCA. Its first peak is
much too low and there is a sizable phase shift in the sub-
sequent oscillations. The self-diffusion coe%cient and
g (r) we obtained agree within the limits of statistical ac-
curacy with those results from the smaller scale MD
simulations.

With the DA inversion of the liquid Pb structure hav-
ing been found inadequate, we now try to optimize VDA
within the framework of the same temptingly simple pa-
rametrization model. The optimization technique em-
ployed here is based on the idea by Reatto, Levesque, and
Weiss (RLW), who proposed to use the structure simu-
lated by MD iteratively to improve the bridge-function
approximation. If c (r) and g (r) represent the real struc-
ture that we are trying to reproduce by the fitting, the
RLW correction to the potential b V;(r) —= V, (r) —V, &(r)
at iteration i would be

b, V, (r)lk+T=g(r) —g, &(r) —c(r)+c; &(r)

—in[g (r) jg;,(r)], (4)

where g, , (r) and c, ,(r) are the results of the simula-
tion using V;,(r). Since the simulation using VMD
reproduces the measured S(Q) within limits of experi-
mental accuracy (Fig. 2), we considered the correspond-
ing g(r) and S(Q) as representing the real structure. In
order to obtain c;(r) RLW used an analytical extrapola-
tion of the calculated g (r) which introduce a certain de-
gree of arbitrariness in their scheme. This was unneces-
sary here due to the size of the system we used. As was
previously shown, in this case the truncation errors in-
volved in the direct calculation of S(Q) from the simulat-
ed g (r) by (3) are negligible.

Thus the iterative optimization procedure was organ-
ized in the following way: (i) A MD simulation is per-
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FIT+. 2. Structure factors in liquid Pb at 613 K, calculated in a MD simulation using dift'erent potentials, discussed in this report:
dots, VMD (Ref. 8); open triangles, VDA, crosses, V4. The experimental data (Refs. 6 and 7) are shown by open squares. Solid line:
the result for Vn„predicted by the MHNCA (Ref. 3).
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formed with the estimate potential V, i(r); (ii) the calcu-
lated structure functions are substituted into (4) to obtain
b, V, (r); (iii) a new parametrized potential V, (r) is fitted to
U;(r)= V;,(r)+b, V, (r) As a starting point we assumed
Vo= VD~. The convergence of the scheme happened to
be amazingly fast. After four iterations we arrived at the
potential V4 (Fig. 1) which perfectly agrees with the VMD
around the nearest-neighbor distance (3.37 A). In order
to analyze the origin of the difference between the two
potentials visible at large distances, VMD

—V4 is com-
pared with the V4 —U4 and the next estimated correction
b, V& in Fig. 1(b). The fact that the three curves agree
well indicates that the remaining discrepancies between
V4 and VMD beyond 4 A are mostly due to the con-
straints imposed by the model we used to parametrize the
potential. A more sophisticated local-field approximation
could presumably help to make the model flexible enough
to obtain a better fit. However, Fig. 2 demonstrates that
VMD and V4 produce practically indistinguishable S(Q)
when used in the same MD model. The calculated
diffusion coefficient comes out as 1.88 X 10 cm /s, as to
compare with 1.82X10 cm /s obtained in the case of
VMD(r). Therefore, in contrast to the conclusion made
in Ref. 3, the simple model of the potential we tried was
not found to hinder the convergence of the inversion pro-
cedure.

Once a potential has been tried in MD, its bridge func-
tion can be recovered from the simulated structure using
(1). The final bridge function corresponding to Y~, which
may be considered as the real one in this liquid, is com-
pared in Fig. 3 to that for VDA and BHs. In spite of the
large difference between the structures produced by VDA
and V4, there is much more similarity between the corre-
sponding bridge functions than between any of them and
BHs. This probably indicates that the hard-sphere bridge
function is not an appropriate approximation for the
liquid metals with long-range repulsive potentials.

We conclude with the following remarks. In spite of
the obvious success of the optimization scheme reported
here, there are two basic difficulties one may encounter
when trying to implement it to invert the measured struc-
ture of other liquid metals. First, a more flexible model
would presumably be needed to construct potentials with
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FIG. 3. Bridge functions: dashed line and dot-dashed line,

calculated from the results of the MD simulations with the po-
tentials VDA and V4, respectively; solid line, BHs obtained in
Ref. 3.

more pronounced long-range repulsion. These were as-
sumed in liquid polyvalent metals with specific structural
anomalies. ' Another problem is to find a physically
justifiable g(r), the FT of which would reproduce the
measured S(Q) with required precision within the Q
range where the latter is available. As one can see in Fig.
2, the DA inversion is able to rather successfully solve
this problem. Minor discrepancies at the very small wave
vectors could probably be corrected with the use of prop-
er weighting factors. Therefore the DA procedure, in
spite of its failure demonstrated by this study, may be
used as a starting point in the iterative inversion scheme
reported here.
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