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Simple expressions are derived for all multipole, finite-mass, and energy-dependent corrections to
the long-range effective potential due to two-Coulomb-photon exchange between Coulombic sys-
tems by using dispersion-theory methods. The effective potential is obtained as the Fourier trans-
form in the momentum transfer of the scattering amplitude, which is in turn obtained from its
discontinuity via a dispersion relation. The contribution to this potential from each intermediate
state can be expressed in closed form in terms of the Struve and Neuman functions.

In an earlier paper, ' all multipole, nonadiabatic, and
finite-nuclear-mass corrections to the long-range effective
potential due to two-Coulomb-photon exchange were
treated on an equal footing. Simple expressions were de-
rived for these corrections at threshold energy and also
first order in energy corrections for the scattering be-
tween a spinless point charged particle and a spinless
Coulombic complex and between two spinless Coulombic
complexes. The results were expressed, respectively, in
terms of single-center and London-analog two-center
atomic multipole spectral sums.

The effective potential is obtained as the Fourier trans-
form of the scattering amplitude in the momentum
transfer Q with respect to the distance vector R between
the mass centers of the scattering systems. In calcula-
tions where, due to a change in the order of integrations,
the Fourier transform in Q is carried out before the cal-
culation of the scattering amplitude is completed, the
effective potential may contain momentum-dependent
terms ' which violate Hermiticity. This happens because
the scattering amplitude is expressed as a function of Q,
p.Q, and p where p is the relative momentum of the
scattering systems. Overall energy conservation demands
that p =(p+Q) . Thus the scattering amplitude can
only be a function of two independent scalars p and Q
and the effective potential should be a function of R and

p . Hence, momentum-dependent terms in the effective
potential are mathematical artifacts. A procedure to
undo such artifacts and to reobtain the correct effective
potential has been given and successfully applied in the
analysis of long-range forces between Coulombic sys-
tems. ' Nevertheless, this procedure requires the inver-
sion of a system of equations and the complexity in-
creases drastically with the order of p corrections. It is
for this reason that only corrections up to first order in p
were obtained in closed form in the earlier work. '

In the present Brief Report the corrections are ob-
tained for all orders in p in closed form through the use
of a dispersion-theory approach where the energy-
conserving scattering amplitude T(p, Q2) is obtained via
a dispersion relation in the square of the momentum
transfer t = —Q:

where

1p(p', t ) = —[T(p, t+ie) —T(p, t —ie)]
2l

is the spectral function in the t channel. The effective po-
tential, defined as the Fourier transform of T in Q, can
then be obtained as a Laplace transform in &t on revers-
ing the order of integration:
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Thus, the computation of V reduces to a computation of
P.

Here I would like to use the same notations as in the
earlier analysis. ' To make the present paper self-
contained, I restate these here collectively as Eq. (4). Let
r, , r2, r3, and r4 be the coordinate vectors of particles 1, 2,
3, and 4, with masses m, , m z, m 3, and m4 and charges
Z, e, Z2e, Z3e, and Z4e, such that particles 1 and 2 form
a spinless complex A and particles 3 and 4 form another
spinless complex B. I define the following:

2 I

T( 2g2) 1 f PP ~rt

0 t' —t
S=:g y, r, , (41)
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and where

p=mzm&/I . (4m)

V' Z)Z e
(4o)

Then, in terms the Jacobi coordinates x, y, R, and S, the
total Hamiltonian is cyclic in S and the kinetic energy of
the center of mass of the entire system is a conserved
quantity and can be dropped. The Hamiltonian can thus
be expressed in the form

V' ZZe
(4p)

(4q)

H=hoa+hOa+7 +H (4n) and

H—:el = Z] Z3 Z2Z4 Z2Z3 Z]Z4+ + —+
l
R + /3y

—ax
l l
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LB
L

X[Z3p +Z~(/3 —1) "]
(4u)

The quantities in the square brackets in Eq. (4u) act as
multipole modification factors. Let l0 ~ ) and l0& ) be the
initial zero angular momentum states of the complexes 3
and B and E„and E„be the energy eigenvalues of the

B

states ln„) and lnii ). I define

=2p(E„—Eo +E„—Eo ) (4v)

and the two-center correlated multipole matrix element

8„"„=—2pe [Z&( —a) "+Zz(1—a) ]

X[Z P +Z (P—1) ]

XI&0, lx "PL ln, ) I'l&oiily 'Pl. Ins) I',

(4w)

where PL is the Legendre polynomial.
At this point, it is convenient to decompose the spec-

tral function p in Eq. (2) into its multipole and atomic in-
termediate state contributions:

p(p, r ) =
LA, LB'& A 'nB

LA LBp„'„'(p', ) .

The evaluation of the dipole-dipole part (Lz =LE =1)
has been carried out in detail by Feinberg and Sucher.
As we are dealing with the nondegenerate and low-energy

L +L—2vre t.4 B( 2

(2L& )t(2L& )lg
A 'B t0

r(r+r, )

]/2

where 8„"„andb,„„aredefined in Eqs. (4w) and (4v),
B B

and t0 is given by

Q2
nA nB

t0
p2

situation here, the calculation leading to Eq. (20b) «Ref.
6 applies. The essence of the factors that determine the t
discontinuity of the scattering amplitude T remains the
same, being determined by identical denominators which
owe their origins strictly to kinematics. One may regard
the parametric vector k in Eq. (4u) as the "momentum"
of the virtual Coulomb photon. Our earlier analysis' in-
dicates that terms proportional to powers of the square of
this virtual momentum which arise in the calculation of
the atomic excitation dynamics due to the interaction

LA LB
/i, in Eq. (4u) lead only to a 5 function or derivatives
of 5-function-type short-ranged terms. In the spirit of a
dispersion calculation, this is equivalent to saying that
such terms do not contribute to the t discontinuity of T
around t =-0, and is the reason for neglecting the second
term of Eq. (13) of Ref. 6 in the computation of the spec-
tral function p. Using this property and the same pro-
cedure that I have used recently' to handle the multipo-
lar transition dynamics, one can proceed to handle the ki-
nematics in a manner completely analogous to that used

LA LB
in Ref. 6 to obtain p„„.Since the calculational tech-

A B

niques are already reported in the literature' ' I simply
state the results here:
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The corresponding effective potential can be obtained as
the Laplace transform in Eq. (3.2). After a change of
variable from t to y, one obtains

2g LA
LB

L~ 8 2 A B

(2L „)!(2Le)!Rb, „
2

—]/7

0 tp

(8)

Below the excitation threshold, i.e., for p (5„„,Eq.
B

(8) can be integrated in closed form to give

V A B( 2R)

and nz. %ith a little algebraic manipulation, one can
write

1+ y
"

1
M (2M+2J)!

to M = 2 ' + '(M+J) JlMl

2M+ 2J 2J

M+2J
nAnB

(9)

When one uses Eq. (9) in Eq. (8) and retains the same
dummy indices M and J, one obtains

V.„".;=X VMJ '(&~ &a)p".
MJ

The effective potential is given by the sum over inter-
mediate state contributions and one can suitably define

—e2B 'Bt~L L
nAnB 0

2(2L „)!(2L~)!Rb,„

X [&,(QtoR ) —N, ( ptoR )],

LALB LA LB
VMJ (R) = rf VMJ (nA nB )

On putting all this together, one has the final result:

where &, is the Struve function and N, is the Neuman
function. I remind the reader that tp is a function of n ~

V(p, R )=
LA, LB,M, J

8(R )
2J

(12)

(2M+2J)![2(L„+Le+M+J)]!R
V A s(R) ( 1)M+le2D a s

(2L„)!(2L~)!(M+J)!J!M!2 '

where

(13)

nA, nB

(14)

is the two-center London-analog correlated multipole spectral sum introduced in Ref. 1. For J=0 and 1, Eq. (13)
reduces to Eqs. (3.28) and (3.29) of Ref. 1. This serves as a very important check on the validity of the mathematical
procedure developed earlier to remove the non-Hermitian momentum-dependent terms in the effective potential. In
addition, Eqs. (12) and (13) give low-energy corrections to all orders in p .

If 8 is a point charged particle of charge Zee, all one has to do to obtain the effective potential is to set Ltl =0,
Lz =L, and replace Dz by Z~ A where the single-center atomic sum is defined by

f(0(XLPL fn )(2
Az=—2pe [Z, a +Z2(a —1) ] g

n
gA'

The atom-point charge potential is found to be

V(p, R)= g VMJp
L, M, J

where

(2M +2J )![2L+M+ J)]!R
(2L )!(M+J )!J!M!22' + Jl

(16)

(17)

Again, for J=0 and 1, Eq. (17) reduces to Eqs.
(2.34)—(2.37) of Ref. 1. For the potential arising from
only one atomic intermediate state fn ), the effective po-
tential can be written in terms of the Struve and Neuman
functions as

e2C Lt
o mz~2— .

2(2L )!R6„

X[&,((to)' R ) —N, ((to)'J R )], (18)
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where

C„—=2pe [Z,a +Zz(a —1) ] 1&Olx I'L, In &I' (19)

and

I 1l

p
2

(20)

In terms of the per intermediate state contribution to
the eff'ective potential [Eqs. (8') and (18)], the pseudostate
method probably is a reliable and easy to use method to
calculate the total eff'ective potential. This hasproven to
be quite successful in the computation of VMJ [Eq.
(13)] for a pair of hydrogenic atoms for J=O, and low
values of M. ' Our analysis has shown that the method
should work reliably for all values of L „,L~, M, and J.

Hence it is quite reasonable to conjecture that this
method works well with Eqs. (8') and (18), as the repre-
sentation of the per state effective potential in terms of
the special Bessel functions is just equivalent to a summa-
tion over the M and J indices. Expressing the effective
potential as a sum over intermediate states including the
continuum appears formidable. But the pseudostate
method reduces it to a finite number of terms.
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