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Conductance of a plane containing random cuts
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In this paper we make the first careful comparison between a computer simulation and an experi-
mental measurement of the conductance of a two-dimensional continuum random conducting medi-
um. In the experiment horizontal and vertical slits are cut in a conducting sheet. The centers of the
slits are randomly positioned, and the conductance is measured all the way to percolation. The
measurements are consistent with the expected critical exponent for the conductance of t =1.3.
The experimental results are compared with computer simulations of ants that are parachuted to
random starting points and then dift'use with a Brownian motion. From the behavior at large times,
the dift'usion constant can be found and hence the conductance, using the Einstein relation. The
agreement with experiment is good except near the critical point. We conclude that the analog ex-
periment is superior to the digital computations in this continuum system. This is the reverse of the
situation in discrete lattice systems.

I. INTRODUCTION

In the past decade there has been a great deal of atten-
tion given to the study of the conductance of random
metal-insulator systems. Much of the work has involved
computer simulations on discrete lattice systems. With
the advent of efficient algorithms and large computers,
such simulations can now be regarded as providing nu-
merical solutions to any desired accuracy. Of particular
interest has been the conductivity exponent t which is
universal in two dimensions (2D) and given by
t =1.30+0.01.' Analog experiments have also been per-
formed on 2D lattice systems and the results are in good
agreement with computer simulations. However, much
larger systems can now be handled by computer simula-
tion and this is the preferred method. Analog experi-
ments are also restricted to very simple geometries.

The situation is very different in continuum systems.
The analog experiments are of about the same difficulty
and quality as in discrete lattice systems. However, the
digital simulations are very much more complex. The
obvious way to proceed is via a finite-element algorithm
that discretizes the system onto a finite mesh, making it
formally similar to a lattice system. However, the draw-
back is that a prohibitively large number of points is re-
quired to reasonably describe even a simple inclusion,
such as a circle. Thus for a given number of inclusions,
orders of magnitude more points are needed than for the
same number of inclusions in a lattice problem. Such cal-
culations are still largely beyond the range of present day
computers. Having said this, we should note that analog
experiments can't be done in 3D and are restricted to
simple geometries in 2D.

Recently a very simple alternative approach has been
used by Schwartz and Banavar. This involves an evalua-

tion of the diffusion constant and hence the conductance
via the Einstein relation. The diffusion constant is found
by randomly parachuting ants onto a conducting medium
containing insulating holes. If an ant lands on the medi-
um, it is allowed to diffuse and at long times the diffusion
constant is extracted using (r ) =4Dt, where the average
is taken over many difFusing ants. We were interested to
see just how good this technique could be in a tightly
controlled situation. In particular, we wondered if this
computer simulation for a continuum system could be su-
perior to the corresponding analog experiment.

The layout of the paper is as follows. In Sec. II, we de-
scribe the experimental setup and the measurements. In
Sec. III, we look at the initial slope of the conductance,
which can be calculated exactly. In Sec. IV, we discuss
the value of the critical density of cuts at percolation and
in Sec. V we show that the measured conductivity ex-
ponent is consistent with t =1.3. In Sec. VI, we intro-
duce two interpolation formulas, which give a good
overall description of the conductance. In Sec. VII, we
describe the diffusion algorithm and compare these re-
sults with the experiment. Finally we make some con-
cluding remarks in Sec. VIII.

II. EXPERIMENTAL SETUP

Using a simple experimental technique described previ-
ously, we have measured the dc electrical conductance
of a 2D continuum percolation system. Using a
computer-controlled digital x-y plotter, we cut a random
pattern of horizontal and vertical slits in a sheet of
aluminized Mylar. As the pattern is cut, a digital Ohm
meter continuously monitors the resistance of the sheet,
and the computer records the resistance as a function of
the number of slits cut. The curve of conductance versus
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the number of slits is obtained in the time it takes for the
plotter to draw a percolating pattern (about 8 h for a pat-
tern of 15 000 slits).

The samples are aluminized Mylar sheets consisting of
0.005-in. -thick Mylar plastic covered v ith a 500-A film of
aluminum. The sheet resistance of the film is about 1.9
0, / and varies by less than 1% over a 23 X 23-cm sam-
ple. The sample resistance rises from 2A for an un-
scratched sheet to a few hundred ohms for patterns near
the percolation threshold.

The slits are cut with a hot metallic finger, consisting
of a small steel ball bearing embedded in the tip of an
aluminum rod which contains a heating element. This
hot tip is held by the pen holder of the plotter, and when
it touches the sheet it sears the plastic, breaking the
aluminum film on top. Proper adjustment of the current
in the heating element results in reliable drawing of
smooth continuous lines of uniform width. No buildup
of material was ever observed on the ball-bearing tip, nor
did it show evidence of wear throughout the experiment.
We took great pains to ensure that the slits were continu-
ous cuts, without any skipping or chatter. Drawing of
"daisy-chain" patterns of slits allowed us to check
thousands of slits for continuity and showed failure rates
of less than 1 cut in 10000. Further experimental details
are given elsewhere.

In Fig. 1 we show photographs of samples illustrating
the pattern of cuts produced. The direction of external
current flow is horizontal in both photographs. The pho-
to on the left shows the results of a trial with horizontal
cuts only. The photo on the right shows a random pat-
tern of horizontal and vertical cuts. The sample is a
square sheet with an edge length of 23.1 cm and the slit
length is roughly 1/50 of that, producing, loosely speak-
ing, a 50 X 50 continuum system. It is convenient to
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FIG. 2. Normalized conductance o. averaged over the four
trials. The last data point corresponds to percolation as deter-
mined by the average over the four trials. Also shown are the
results for o. and o. obtained with horizontal and vertical slits
only for single trials.

define the 23X23-cm square as being a unit square, so
that all lengths are measured in terms of this length scale.
Actual lengths can be found by multiplying by 23 cm.
The program that generates the pattern locates new cuts
on a continuum with the centers randomly placed on the
sample square with no underlying lattice structure. Slits
are cut either horizontally or vertically with a probability
of —,'. The cuts are thus freely interpenetrating. The un-

derlying digital resolution of the plotter is 1 part in 5000
and is insignificant; it is less than the mechanical jitter in
the placement of the pen.

We ran four trials of the horizontal-vertical patterns
as well a trial with horizontal slits only and a trial with
vertical slits only. Here and throughout this paper, hor-

FIG. 1. Photo on the left shows a sample with only horizontal cuts. There are 35000 cuts, which is far past the dilute limit of
course. The photo on the right shows a random pattern of horizontal and vertical cuts at the percolation threshold. Each cut is ap-
proximately 4.S mm long. Both photos show small pieces on the full samples.
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izontal is the direction of external current flow. As ex-
plained in Sec. III, the trial with horizontal slits provides
a measure of the effective aspect ratio of the slits, and the
trial with vertical slits gives a check on the length of the
slits.

Figure 2 shows the average conductance of the four tri-
als as well as the results of the horizontal only and verti-
cal only trials. Results of the four runs were quite con-
sistent. The critical number of slits for percolation was
n, =14 710+380, with an uncertainty of one standard de-
viation for the four trials. The standard deviation of the
mean is 380/&4= 190.

III. INITIAL SLOPE

Comparison of these results with theory is complicated
by the fact that the slits cut by the plotter are neither
infinitesimally thin needles nor ellipses, rather, they are
long, narrow bars. If, however, we assume that the slits
are ellipses with high aspect ratio (a lb ))1), where a is
the semimajor axis and b is the semiminor axis, then we
can determine from the initial slopes of the conductance
curves for the horizontal and vertical cases, shown in Fig.
2, both the length L of the slits and their aspect ratio
a /b.

After these ellipses have been cut, the area fraction p of
the conducting material remaining is given by

p = exp( —~abn ),
where n is the area density of the insulating inclusions. '

This formula is best understood as a power-series expan-
sion

p = 1 —(wabn )+ —,'(vrabn )
—

—,'(nabn ) + (2)

o =1—(1—p)v a+b
b

(3)

For small n, Eq. (2) gives 1 —p =~abn Using this an. d
L =2a for the lengths of the cuts, Eqs. (3) become

b bo. =1——'nL m — 1+—=1—S n
a a

(4)

and

o. =1——'nL w 1+— =1—S n .
b

4 a

Here terms beyond ~abn can be neglected when the den-
sity n is so low that overlaps between ellipses are rare.
The term in (7rabn ) corrects for the overlap of two el-

lipses, and the higher-order terms correct for the com-
mon area occupied by many ellipses.

The change in the conductance due to a single ellipse is
a standard textbook problem. If there are a few, widely
separated parallel ellipses, the normalized conductances
o. and o. for horizontal and vertical ellipses are given
b 6

o =1—(1 —p)
a+b

a

Our measurements of the initial slopes yield

S = ( 7.7+0.3 ) X 10 S "=( 3.3+0. 1 ) X 10

From these measured slopes, Eqs. (4) yield

1/L =49.3+0.7 a/b =42.9+2. 1 . (6)

Note that because the unit square is actually
23. 1X23. 1 cm the size of the slits is L =2a =4.69 mm
and the width 2b =0.109 mm.

To get an independent measure of the length L and the
width u of the slits, the dimensions of several of the cuts
were measured with a traveling microscope. The slits
were found to have length 4.63+0. 15 mm and width
0.089+0.008 rnm. The uncertainties here represent vari-
ations from slit to slit rather than measurement errors.
The sample edge length was found to be 23.08+0.03 cm.
These quantities can be expressed as

where, in the limit a/b ((1,
8 2b

n L =—1—I
7T a

This expression gives a good fit to the data in Fig. 2 at
small n and will be used later in Sec. VI.

IV. CRITICAL DENSITY

We now return to consider the measured critical slit
number and its comparison with theoretical estimates.
As stated above, the mean and standard deviation for our
four trials was n, =14710+380. We may crudely esti-
mate the expected spread in measured n, 's due to finite
sample size as follows. We roughly estimate the correla-
tion length by g(n)=L[n, l(n, n)] ~', wh—ere L is the
slit length. Setting the correlation length equal to the
sample size, g= 1, we have b, n =n, L ~ . Taking
n, =14700 and 1/L =50 yields An =780. The measured
spread in n, is comparable to this crude estimate.

We define a dimensionless critical slit density by

p, =n, L . Using the experimental values

n, = 14 710+190 and 1/L =49.9+1.6, we have

1/L =49.9+1.6, L /m =52+4,
which are close to the values obtained electrically in (6).
This measured value of 1/L agrees with the value deter-
mined from the initial slope. The measured length/width
ratio of the slits is roughly consistent with the a/b ratio
inferred from the initial slope, although detailed compar-
ison is difficult, since, as stated earlier, the slits are bar-
shaped not elliptical. For the purposes of comparison
with formulas for the conductance of random ellipse sys-
tems, we believe that the a/b value inferred from the
electrical measurements is the more accurate and we will
use this value later in analyzing the data.

The initial slope for the horizontal and vertical ellipse
case can be found by averaging o and cr in Eq. (4) to
give

2
1 bo. = 1 ——nL ~ 1+— =1—n/nI,
8 a
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p, =(1+4y)/(19+4y), where y =b/a+a/b . (9)

Inserting (9) into (1), we find that the critical concentra-
tion in the limit b la « 1 is

18 5bp=nL = 1—
C C 20

p, =5.9+0.4. The dominant source of error here is the
uncertainty in 1/L.

Using numerical simulation, Xia and Thorpe have es-
timated the critical concentrations for random ellipse sys-
tems. They find that their computer simulations are well
fit by the formula 0. 1

O

0

0
0.01

This expression yields, for the needle case (with b la =0),
p, =18/+=5. 73 and, for the ellipse case (with
a/b =42.9), the value is depressed to p, =5.40. The
measured value of p, =5.9+0.4 is somewhat higher than
these predictions, but we emphasize that the expression
(10) is not exact and was derived from numerical work on
randomly oriented ellipses. Xia and Thorpe also studied
the case of horizontal and vertical ellipses, but 1ess exten-
sively. They concluded that p„and hence p„was the
same for the random orientations as for the horizontal-
vertical case to within their numerical accuracy.

V. CRITICAL EXPONENT

0.001
0.01 0.1

FIG. 3. Critical exponent t for the conductance is obtained
from a log-log plot of the conductance versus fill fraction pa-
rameter (f, f )/f„whe—re f is defined in the text. The vertical
dashed lines indicate the region over which power-law behavior
is observed. A11 four trials are shown individually, rather than
averaged as in Fig. 2.

Sufficiently close to the percolation threshold, the con-
ductance of a random metal-insulator composite is ex-
pected to show power-law behavior, o -(f, f )', where-
f is the insulator fraction and t is the conductivity ex-
ponent. In 20, t =1.30 in both lattice and continuum
systems. '

Considerable caution must be exercised when attempt-
ing to extract a value for the conductivity exponent t
from data on a small system such as ours. In Fig. 3 we
have plotted the conductance curves of all four trials to
display the scatter in the data. We have plotted conduc-
tance, not as a function of the number of slits n, but rath-
er versus the fill fraction parameter (f, f )If„where f-
is the e6'ective fill fraction of the slits defined as

(f, f ) If, =0.1—. This power-law window corresponds
to 9570&n &13 390 or 0.09&(n, n)/n—, &0.35. A non-
linear least-squares fit over this window yields
t =1.30+0.03, where the uncertainty rejects statistica1
uncertainty only and takes no account of possib1e sys-
tematic errors in our fitting procedure. We emphasize
that the value for t obtained by this kind of power-law fit
is quite sensitive to the assumed form of the power law.
For instance, a fit of our data to G —(n, —n )' (using n as
the composition parameter rather than f) yields t =1.9.
We conclude that our data are consistent with a conduc-
tance exponent of t =1.30 but the close agreement is for-
tuitous.

f(n)=1 —exp( nA) . —

Here 3 is an appropriate area of inhuence of a single slit,
which we take to be the excluded area as defined by Bal-
berg. ' The excluded area of our slits of length L =1/50
is A =L /2=2X10 . The excluded area of an in-
clusion is the area within which the center of a second in-
clusion cannot be, if overlap is to be avoided. This is
then averaged over all orientations; two in our case. The
critical fill fraction f, =f(n, ) is taken to be the mean of
our four trials, f(n, =14710)=0.95. We have fit our
data to a power law o -(f, f )' over the fill fractio—n
range between the two dashed vertical lines in Fig. 3.
The vertical line on the left marks the composition at
which the correlation length is half the sample size, /= —,',
where, as before, we estimate the correlation length with
the expression g=L[n, /(n, n)'] ~ . The—vertical line
on the right marks the composition at which

VI. INTERPOLATION FORMULAS

no.= 1—
t

n (tnl n, )—
2tn

which we refer to as formula A. A second form can be
written

We can compare the experimental data with two ap-
proximate interpolation formulas for rr =o (n). These in-
terpolation formulas are smooth, monotonic functions of
n which incorporate all known information about the
form of the function. The initial slope is known exactly,
via nr in (8); the percolation concentration n, is known
approximately in (10); and the conductivity exponent
t =1.30 is known from numerical studies and is believed
to be universal in 2D. The first formula was given by Xia
and Thorpe:
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t)

o 0.6

0.4

what closer to formula A. If, instead of using Eq. (10) for
n„we use the experimentally determined value of
n, = 14710 (thereby forcing a fIt at n, ), then the data lie
even closer to formula A.

VII. DIFFUSION COMPUTATIONS

The probability P(r, t ) of a random walker (ant) being
at position r at time t is governed by the diffusion equa-
tion

10 000 15 000
DV'P(r, t ) = dP(r, r

—)/dr (12)

Number of slits n

FIG. 4. Two interpolation formulas ( 3) and (B) are shown
in the needle limits and for aspect ratios a/b =43. The circles
indicate the percolation point for needles and ellipses.

in a medium characterized by a position-independent
diffusion constant D. If the ant is initially at the origin,
then the solution to (12) is given by

P(r, t ) =(vrDt ) 'exp[ r /(4—Dt )],
from which we can calculate the second moment

n1— / 1+-

which we refer to as formula B. These two expressions
are not unique, of course, nor is there any a priori reason
to prefer one over the other.

The values of n, and nI depend on the aspect ratio a /b
in Eqs. (8) and (10). In Fig. 4, we show the sensitivity of
the conductance to a /b by plotting formulas 2 and B for
the needle case (a/b = ~ ) and for the case a/b =43,
which corresponds to our experiment. We use L =1/50
from which Eq. (10) gives n, = 14 320 (needles) and
n, =13490(a/b =43). Note that the experimentally
determined n, =14 710+380 when averaged over the four
samples.

In Fig. 5, we compare the experimental data with the
two formulas, again using Eqs. (8) and (10) for nI and n,
with a/b =43 and L =1/50. Both interpolation formu-
las have the same slope, given by nI in Eq. (8), at small n,
which agrees well with the experimental results. Indeed,
for small n, o. =(o +cr )/2, as can be seen from Fig. 2.
The data lie generally between the two curves but some-

(14)

cr =- n „e D /( k~ T ), (15)

where n, is the number of carriers with charge e per unit
area, and T is the temperature. We envisage the diffusing
ants to be independent, so that the density n„ is not im-
portant and can be eliminated if we write

In order to apply these results to an inhomogeneous sys-
tem, the diffusion process must take place over
sufticiently long times that the behavior can be described
by an effective diffusion constant. During this time the
ant traverses lengths greater than the correlation length.
Thus (14) is only expected to hold at long times. A more
detailed critique of this method will be given in a subse-
quent publication. ' In the present work, we use a prag-
matic approach and let the ant diffuse for long enough
times that linear behavior is obtained. This method has
been successfully exploited on lattices, '-' but is just recent-
ly being applied to the continuum case. The conductance
o. is obtained from the diffusion constant D via the Ein-
stein relation

D/Do (16)

lac

0.6
D

0 4
C:0

0.2

5000 10000 15000

Number of slits n

FICs. 5. Experimental data from Fig. 2 is shown plotted
against the two interpolation formulas ( A) and (B) with the as-
pect ratio a /b =43 and L = 1/50.

where the subscript zero refers to the case where no nee-
dles are present and the conductance of the sheet without
cuts is unity. The actual value of the charge e of the
diffusing carriers and the temperature T is irrelevant
when we use (16), as we will do in what follows.

The simulation was performed in the following way.
We first randomly place n needles in a square box. Then
we parachute an ant at random into this box. In the case
of needle inclusions it is impossible for the ant position to
overlap a needle since the needles have no width. We
then attempt to move the ant a fixed distance in one of
four directions up, down, left, or right. Next we must de-
cide if this move crosses a needle. If it does, then ihe
move is rejected and time is incremented; otherwise, it is
accepted. This procedure is known as the "blind ant"
boundary algorithm. ' Since the needles are aligned ei-
ther parallel or perpendicular to the steps taken by the
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ant, we need only check those needles that are perpendic-
ular to the last step. This cuts the CPU time for the
simulation almost in half. To determine if an ant has
moved through a needle, we use the following simple test.
If the ant is moving up or down and the needle lies left to
right, then the condition for crossing the needle is that
the y coordinate of the ant minus the y coordinate of the
needle changes sign as the ant moves and the x coordi-
nate of the ant is between the x coordinates of the end
points of the needle. A similar computation is done when
the ant moves left or right. The needle end point coordi-
nates, as well as needle type (parallel or perpendicular to
the horizontal axis), are stored, so that these quantities do
not have to be computed for each test. We then comput-
ed r versus the time, and fitted to a straight line as
shown in Fig. 6. The conductance cr is extracted from
this straight line using

((r/s) ) =rrNT, (17)

20

where NT is the number of time steps and s is the step
size chosen to be L/40. The slope of the fitted line gives
o =D /Dp. For short times, the data include ants that
are trapped in closed regions which would not contribute
to the conductance. Thus we want the slope in the limit
of long time. We choose to use only the data for the last
75% of each walk and find that within the statistical un-
certainties of the simulation we do not see any deviation
from linearity. Figure 6 shows an example of the data
with some initial curvature and linear behavior after that.

The system size was always 251. X25L, which was
large enough that no ants would wrap around the system
more than once. The system was broken up into small
cells of size L/2 X L/2 so that if the ant was in one cell,
only the rather small number of needles in that cell and
the appropriate neighboring cells needed to be checked.
For n/n, varying from 0.1 to 1.1 the mean number of
needles in each cell varied from about 0.14 to 1.6. Here
we take n, L = 18/w to be given by Eq. (10) with
b/a =0. Periodic boundary conditions were used. Al-

most all of our results are based on averages over 1000
ants, each with a new needle configuration. Each ant at-
tempted NT=160000 steps, so that if there were no nee-
dles we would expect ((r!L) ) to be 100. In our simula-
tions the ants will move a much smaller distance due to
the needle inclusions and thus it is unlikely that an ant
will move a distance in any direction greater than 25L,
which is the maximum distance before wrapping around
the system. With the above conditions, the acceptance
rate for moves decreased very little, reaching 0.925 at
n/n, =1.1. This suggests that our step size is certainly
small enough to accurately sample the local geometry
"s'een" by the ant. The results of the simulation are
shown in Fig. 7. They compare well with both the inter-
polation formulas and the experimental results, except
near the critical density and at very low densities. At
very low densities the inclusions are very far apart and
thus the ants need to move much further to accurately
sample this geometry, or the averages need to be taken
over more ants. At the high densities the ants do not
move very far, but it takes a long time before they
effectively sample their local geometry. Thus at these
high densities, we cannot sample the medium- and large-
scale structures of the needle configurations without let-
ting the ants move for a much longer time. There is some
evidence by running the simulation at n /n, =0.8 twice as
long, that the slope of (r ) decreases slightly. This is to
be expected because results for the diffusion constant and
hence conductance are only reliable if the diffusion time
is so long that the ant samples length scales greater than
the correlation length. In our simulation, the
correlation length g =L [n, I(n, n)] ~ exceeds —the
diffusion distance at n ln, =0.7. At that concentration,
the ant diffuses a distance of about 51.. In Fig. 7 we have
indicated the condition g) 5L at n /n, =0.7 beyond
which we expect the results to become unreliable. For
n/n, =0.1, the computations took about 18 h on a Sun
375 work station and about 54 h for n/n, =1. Much
longer diffusion times would be needed to explore the
critical region. The needle system is harder to deal with
than other systems (such as disks), since near the critical

1.0-

10
0.8

t)

0.6

0.4

0
0 80

time(1000 steps)

120 160 0.2

FIG. 6. Showing ((r IL )') versus time t for n In, =0.6 aver-
aged over 1000 diffusing ants. here the step size s=L/40 and L
is the length of the needle. Time is measured in units of 1000
steps. Thus the slope of the fitted line is the diffusion constant
relative to the no needle system. Here the line was fitted to the
data from time 40 to 160.

0.2 0 4 1.0

FICx. 7. Conductance cr obtained from the diffusing ant algo-
rithm is compared to the two interpolation formulas (2) and
(B) in the needle limit.
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density, the density of needles is much greater than that
of disks (thus increasing the mean CPU time per attempt-
ed step); yet there is still room to move around locally.
Our conclusion is that for n /n, & O. 8 we have not
reached the asymptotic limit for ( r ).

VIII. CONCLUSIONS

We have examined the conductances of sheets contain-
ing random cuts all the way up to the percolation concen-
tration. Rather accurate results have been obtained in an
analog experiment and these have been compared to re-
sults obtained from a digital simulation of an ant
diffusing in the random medium. We were somewhat
surprised to find that the results of the analog experiment
were superior. This is in marked contrast to the similar
situation in random lattice systems. Nevertheless, we re-
gard the diffusing ant algorithm as clearly superior to
finite-element methods. Looking ahead, it is unlikely that

analog methods will improve much. In contrast, as
better detailed algorithms and more computer power be-
come available, we anticipate that the diffusing ant algo-
rithm will eventually become the method of choice for
the evaluation of transport coefficients in random contin-
uum systems.
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