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Alternative way to locate the transition temperatures of polymeric models with loops
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We investigate a new criterion that can be used to locate the transition temperatures of walk
models and apply the criterion to locate the transition temperatures of trails and silhouettes on a
square, a triangular, a simple cubic, and a face-centered-cubic lattice. As the temperature is varied,
it is observed that the odd moments or the reduced moments of the persistence lengths undergo a
drastic change in a narrow temperature range. The criterion exploits this interesting observation
and identifies the drastic change with a collapse of the walk configurations from the swollen phase
to the compact phase. The transition temperatures obtained from this criterion for trails on the
square, triangular, simple cubic, and face-centered-cubic lattice are, respectively, 1.1, 0.4, 0.6, and
0.3; and for the silhouettes they are, respectively, 1.9, 1.2, 1.4, and 0.9. The results for trails on the
square and simple cubic lattices are very close to those of existing computer-simulation results of
much longer chains (-250).

I. INTRODUCTION

In two previous papers' (henceforth referred to as pa-
pers I and II), we study the persistency properties of two
polymeric models with loops —trails ' and silhou-
ettes' ' ' —on two-dimensional (2D) and three-
dimensional (3D) lattices. Trails are walks which are al-
lowed to intersect, but are not allowed to overlap their
own path; silhouettes, on the other hand, are just the sha-
dows of trails. By introducing a tunable fugacity factor

Icl /kBf=e "=e, where e is the energy associated with
an intersection, the number of intersections can be con-
trolled and the behavior of the averaged persistence
lengths as a function of the temperature can be studied.
Interpreting in terms of the fugacity factor, the usual
self-avoiding walks' (SAW's) correspond to the class of
trails at 0= —~, and the usua1 Malakis trails is the class
of trails at 0=0. ' '' In the extreme case of 0=+ ~,
there is a preponderance for walk configurations with the
maximal number of intersections, so that the usual ran-
dom walks' (RW's), in which overlaps are allowed, are
closely mimicked but are never fully modeled. These
four walk models and their respective constraints are il-
lustrated in Fig. l.

To date, the only rigorous analysis of trails deals with
trails on hexagonal lattice (coordination number q=3). '

But on a hexagonal lattice, trails and SAW's are almost
equivalent. " ' In the former, self-intersections are not
possible except at the origin, or the configuration must
terminate at an already visited site. Figure 1 illustrates
such an example: bound 6 self-intersects at the origin 0;
if bond 11 has ended at site a, the trail configuration must
terminate for bond overlaps are forbidden. On lattices
with higher coordination numbers, trails can also self-
intersect at an already visited site. This introduces richer
features into the model, and can lead to quite different
thermodynamical behaviors. It is thus seen that numeri-
cal studies of the trail model on lattices with q & 3 are
still desirable.

We shall also study silhouettes. Silhouettes, as first in-
troduced by one of the authors, have been shown to be in

a distinct universality class from that of trails. "" This it-
self furnishes a motivation for studying the silhouette
model. It should be recalled that on a hexagonal lattice,
the self-interactions are only of two types: a self-
interaction at the origin or a terminating self-
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FIG. 1. The four types of walks on regular lattices: random
walks {RW), trails, silhouettes, and self-avoiding walks (SAW),
and their respective constraints. In each walk, a possible
configuration is given on each of the two lattices: hexagonal
and square. By comparing the configurations, it is easy to see
that on the hexagonal lattice, trails and silhouettes are identical,
and are equivalent to SAW, except that trails and silhouettes
can self-intersect at the origin or terminate at an already visited
site.
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intersection. Because of this restriction, trails and
silhouettes are identical on this lattice. On lattices with

q & 3, the self-intersections can be of a crossing type or of
an osculating type; an example of each is given in Fig. 2.
This leads to a multiplicity of trails for each silhouette in
lattices with q &3. This also introduces more features
and differentiates the trail model from the silhouette
model.

By the very definition, trails (which are directional)
may describe polymers in which the order of the building
bonds are important, e.g. , copolymers. On the other
hand, silhouettes, (which are nondirectional) may de-
scribe polymers in which the order of the building bonds
are unimportant, e.g. , homopolymers. ' As the tern-
perature is increased via the tunable fugacity factor—

I,cI r'I ~ T
(f=e ), the trail and silhouette walk configur-
ations undergo a transition from a swo11en phase to a col-
lapsed phase (at their respective transition temperatures).
In the terminology of a polymer in a solvent, this transi-
tion corresponds to the fact that as the solvent worsens,
the monomer-monomer attractions become more
effective and at the transition temperature, the attrac-
tions cancel the excluded volume repulsions so that the
polymer as a whole collapses.

Papers I and II provide extensive systematic studies of
the important concept of persistence lengths on square
(q=4), triangular (q=6), simple cubic (q=6), and face-
centered-cubic (q= 12) lattices. The papers also present
for the first time persistence lengths organized according
to the number of intersections and the path lengths of the
configurations. The observation of a sudden collapse in
the averaged odd moments of the persistence lengths, as
the temperature is varied, is further reported in these pa-
pers. The current paper is prompted by this interesting
observation.

In this paper we intend to explore this sudden collapse
and, in particular, we shall investigate the possibility of a
new criterion to locate the transition temperatures of the

trail model and the silhouette model. This temperature
may be identified with or viewed as the temperature at
which a polymeric chain undergoes a dramatic phase
transition to the collapsed phase. Many biological, chem-
ical, and physical systems capitalize on this sudden
change in volume, ' for example, the collapse transi-
tion of DNA. Hence an accurate determination of this
temperature is of practical importance. The usual ap-
proaches to locate the transition temperature make use of
the concepts of the radii of gyration, the end-to-end dis-
tances, and the specific heats of the system in ques-
tion. ' In this paper we intend to show how this im-
portant temperature can also be located using the aver-
aged odd moments of the persistence lengths or the aver-
aged odd reduced moments of the persistence lengths,
which was first introduced in Refs. 20, 24, and 25 and
was extended by Redner, Privman, and Considine.

A particularly interesting conclusion to emerge from
studying walks on lattices is the concept of universality
and convergence. Certain physical properties of walks de-
pend only on the dimensionality of the space in which the
lattice is embedded, and not on the lattice structure.
Such properties are termed universal properties. Other-
wise, the properties are nonuniversal. If in a given
dimensionality, two walks have the same universal prop-
erties, they are said to belong to the same universality
class. Otherwise, they are in distinct universality classes.
In view of the fact that computer enumerations are just
techniques used to study properties of polymers in sol-
vents, it is thus also legitimate to ask the question that in
a given dimensionality, which lattice (e.g. , loose-packed
versus close-packed) will converge faster to give reliable
results. We thus investigate the criterion to locate the
transition temperatures on square (D =2 and loose-
packed), triangular (D=2 and close-packed), simple cubic
(D=3 and loose-packed), and face-centered-cubic lattice
(D=3 and close-packed). This will serve to test the
universality and convergence properties on these lattices.

In Sec. II we shall recall some of the definitions of the
thermodynamical functions, paving the way for Sec. III,
in which it is shown, both analytically and numerically,
how the transition temperature can be located via the
averaged persistence lengths. Section IV gives the
analysis of the 2D data and the corresponding analysis of
the 3D data is given in Sec. V. Section VI contains the
conclusion and discussion of the present findings.

II. THERMODYNAMIC FUNCTIONS

(b)

If C(1,I,r) is the total number of trails (silhouettes) of
chain length l with I intersections and end-to-end dis-
tance r, the partition function ZI(O) on the lattice is then
defined as' '

FIG. 2. (a) The two types of self-intersections in trails: a
crossing self-intersection (top) and an osculating self-
intersections (bottom); (b) the silhouette of the two trails in (a).
As a consequence of the difference in the types of self-
intersection, a silhouette can have a multiplicity of topologically
nontri vial trails.

Z((O)= g C(1,I, r)e

If the persistence length is induced by fixing the first step
along a fixed direction, ' ' ' which we shall denote
generically by x, the averaged odd moments of the per-
sistence lengths are then, by definition, ' '
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We shall concentrate only on the averaged odd moments
because they provide a natural way to quantify any asym-
metry in the displacement distribution induced by the ini-
tial perturbation. It has been shown, both numerically
and heuristically, that' ' '

Ao(8)f(l) if k =0
X2k+1

~,(8)1~""I(1) if k=1,2, . . . ,
(3)

ln(I) if D =2

const if D =3,f 1 ='

where ln( )=—log, ( ) is the natural logarithm of the argu-
ment, p (=2.0) is a parameter, v(8) is the correlation ex-
ponent, and Ak(8) are the amplitudes. Any possible
temperature dependence has been explicitly written out.

From the functional form of (X&"+'(0)), it is useful
to introduce the averaged odd reduced moments of the
persistence lengths. These are defined as' ' '

a
ln (8)+pk v(8)lnl .ae (5b)

Equation (5) is easily simplified if we recall that in the
infinite l limit, v(8) varies with the 0 like

~sAw 'f 8&8»
v(8)=, v if 8=-8

v rf O&O

x10"
1.50 I

)
I I l

This is shown pictorially in Fig. 4. v&A~. is the self-

avoiding walk correlation exponent, v, is the correlation

(X2k %1(0))
(M2k +1(0))

(X,(0))

IPk v(O)

Ao(0)
(4)

The latter expression has the advantage that it is f (l) in-
dependent. This is especially important in cases where
the chain lengths studied are relatively short, and the
function f (I) is a weak function of I, e.g. , f(/)-inl or /"',

0(m ((1, the presence of which is very dificult to
detect.
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III. LOCATION OF TRANSITION TEMPERATURE

In this section we shall show how the transition tem-
perature can be located from the averaged odd moments
of the persistence lengths or the averaged odd reduced
moments. Figure 3 illustrates some representative plots
of (X&"(0) ) versus 0 from trails and silhouettes on a tri-
angular lattice. Similar behaviors are also observed on
the other three lattices. The sudden collapse of the aver-
aged moments of the persistence lengths is very indicative
of the possible existence of points of inAection. This sug-
gests a derivation of Eq. (3) with respect to the inverse
temperature 0 to locate these points of inAection.

A. Analytical treatment

We shall first show how to obtain these points of
infiection from the rigorous expressions for (X, " '(0) )
or (Mi +'(0) ). A derivation with respect to 8 yields

0.75—
1-

0.50—

0.25—

000 a

-4

FIG. 3. (a) The averaged 11th moment of the persistence
length of trails on a triangular lattice (X,"(0)), plotted against
the inverse temperature 0; and (b) the corresponding plot for
silhouettes on a triangular lattice. There is a drastic change in

the value of (X,"(0)}within a narrow range of 0. The units of
lengths are in units of the lattice spacings, i.e., the ordinates are
scaled dimensionless quantities (since the lattice spacing is set to
unity). The units of the abscissas are in units of the intersection
energy, i.e., the abscissas are scaled dimensionless temperatures
(since the intersection energy is also set to unity).
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Equations (9) and (10) can be equated to their respective
analytical analogs of Eq. (8).

IV. ANALYSIS OF 2D NUMERICAL DATA

FICx. 4. Schematic plot to show how the correlation exponent
v(O) varies with O. For finite chain length I, the transition at
0, is quite smooth. As I increases, the transition at 0, becomes
steeper until in the I = ~ limit, it becomes a step function. v is
a dimensionless parameter and 0 is the scaled dimensionless
temperature.

pk [ ( vsp w v& )5(8 Ot )]lnl ~ (8)

and a similar expression for the derivation of
(MI '(8)&. 5(8—0, ) is the usual Dirac 5 function.
Consequently, the derivatives vanish except at the transi-
tion temperature 0, .

B. Treatment of numerical data

To see how the analogs of Eq. (8) can be obtained for
the numerical data, we have to go back to the de6ning
equation, Eq. (2). A derivation with respect to 8 leads to

(X2k+1(0)
&

QO~

=(x'"+'(e)I(e) &
—&x'"+'(0) &&I(e) & . (9)

Similarly, the averaged reduced moment and its deriva-
tive are, respectively,

gx "+'(l,I, r)C(I, I, r)e
(M2k+1(0) & g x(I,I, r)C(l, I, r )e

(1Oa)

and

exponent at the transition point, and v, is the correlation
exponent in the collapse region. Thus, mathematically,
v(8) can be expressed in terms of the Heaviside step
function H(8 —0, ) as

v(8)=vsww (vsww v~)H(8 8 )

)f O~O
H'0 0'= o f8&8, .

L

Thus

1 2k+I
(X 2k1+0

& Qe

The total number of trails (silhouettes), and their per-
sistence lengths on the 20 square and triangular lattices
have been given elsewhere ' ' ' we shall not reproduce
them here. Since our numerical data are obtained from
exact enumerations and the chain lengths are relatively
short, the data will not be sufficiently accurate to detect
the presence of the ln 1 dependence of (XI "+'(8)&. We
will thus analyze the 20 data using both the moments
(XI"+'(0)& and the reduced moments (M&"+'(0)&,
but with emphasis on the reduced moments.

A. Square lattice

Figure 5 depicts plots of —(B/Be)(M~ (0) & and—(8/BS)(M& (0) & against 0 from trails and silhouettes
on a square lattice for 13~1&20. The 6gures clearly
bear out the fact that there is a sharp maximum for each
1, and that as 1 increases, the peaks sharpen, showing that
as 1~~, the peaks will tend to a 5 function, as predicted
in Eq. (8). Two interesting features are quite apparent:
(a) the value of 8 at which the maximum occurs, 8,„,
tends toward a lower value as l increases; (b) as k in-
creases, O,„also tends to a lower value. In Fig. 6a, 0,„
are plotted as a function of 1/I for trails and silhouettes.
For a fixed k, it is seen that as 1 increases, 0,„tends to a
lower value in a regular trend and tends to an asymptotic
limit. Figures 7(a) and 7(b) are similar plots using k=2
including the data from all four lattices. For the square
lattice trails, 8,„ tends to the value —1.1 in the 1~~
limit. The corresponding value for silhouettes isS,„-1.9. In Figs. 8(a) and 8(b), Sm,„are plotted
against k. The shift toward a lower value in O,„as k in-
creases is very apparent, and for a constant k, the rate of
shift diminishes as 1 increases. This rate is expected to
vanish in the 1= ~ limit.

Even though the square lattice is loosely packed, odd-
even oscillations are not observed in Figs. 6 and 7, unlike
the determination of the transition temperature from the
specific heats. ' The transition temperature obtained
from the reduced moments of the persistence lengths is—1.0 for trails, —1.8 for silhouettes. These values are
lower than those obtained from the specific heats in exact
enumeration (8-1.5 and -2.5, respectively). ' In fact,
the transition temperature for trails determined from the
reduced moments comes very close to that obtained by
the scanning method, " ' where walks of 1~220 are
used. This provides support for our current results.
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FICx. 5. (a) A representative plot of —(8/f30)(M&"+'(0)) with k=2 and 1=13—20 for trails on a square lattice; {b) the corre-
sponding plot, but for k=4; (c) the corresponding plot of (a) for silhouettes; and (d) the corresponding plot of (b) for silhouettes. In
each case, the plots show sharp maxima. As k increases for a fixed I, the values of 8 at the maxima 0,„, tend toward lower O. As I
increases for a constant k, O,„also show a regular shifting trend to lower values. The ordinates are scaled dimensionless quantities
and the abscissas are the scaled temperatures.

B. Triangular lattice

Similar behaviors in —(8/BS)(MI"+'(8)) as those
observed in the square lattice (Fig. 5) are also observed in
the triangular lattice. The O,„are plotted versus I /1 in

Fig. 6(b). From Figs. 7(a) and 7(b), the transition temper-
atures for trails and silhouettes are, respectively, 0-0.4
and —1.2. Again these values are respectively lower than
—1.2 and —1.67, the transition temperatures for trails
and silhouettes obtained via the specific heats. '

Figures 8(c) and 8(d) present the plots of O,„versus k
for trails and silhouettes. Along the trajectory of con-
stant k, the rate of shift of O,„decreases and is expected
to go to zero in the large-I limit also.

It is also seen that though the triangular lattice is
closely packed, the 0 „in specific heats show a slight
odd-even oscillation (though less severe than in a square
lattice). '' In the case of the O,„obtained from the re-
duced moments of persistence lengths, these oscillations
are clearly absent.

the reduced moments). The O,„are found to be on the
average 0.3 (58-0.3) lower than those obtained from the
reduced moments. This is not surprising. As has been
noted in paper I, when the moments are used, a slightly
higher v(O) is obtained. From Fig. 4, we see that as v(O)
is increased, 0 decreases, and this may explain the ob-
served lower 0 values. Furthermore, as l increases, the
slope in Fig. 4 becomes steeper, accounting for the dimin-
ishing rate of shift in Fig. 8.

The observation of the regular decreasing trend in

O,„and the clustering of O,„as k increases may also
be similarly explained. Our chain lengths are relatively
short (1~20 on the square lattice and 1~ 13 on the tri-
angular lattice), so chain stifFness may tend to increase
the persistence lengths [Eqs. (3) and (4)], which in turn
show up as an increased v(O), and consequently lowering0,„. As k increases, this effect is amplified. Since 0, is
approached from 0 & e„we see that the clustering effect
is a direct consequence of the "uphill climb" as 0 ap-
proaches 0, .

C. Analysis using moments

The 2D data from the square lattice and the triangular
lattice are also analyzed using the moments (rather than

V. ANALYSIS OF 3D NUMERICAL DATA

The total number of trails (silhouettes), and their per-
sistence lengths on the 3D simple cubic lattice and the
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3D face-centered-cubic lattice have also been given else-
where. ' ' ' We shall not reproduce them again.

Since in 3D (X& "+'(0)) scale with f(l)=const [Eq.
(3)], we shall analyze the moments of persistence lengths
(X&"+'(8)), with less emphasis on the reduced mo-
ments (MI "+'(8)).

A. Simple cubic lattice

Plots of —(8/B8)(XI"+'(0)) versus 8 show similar
behaviors as those observed in Fig. 5: Aat tails and sharp
maxima, with a regular shift toward lower 0 as l in-
creases. O,„are extracted from these plots and are plot-
ted in Figs. 6(c) and 7. The transition temperature (0,„
extrapolated to 1/1=0 in Fig. 6) is -0.6 for trails and—1.4 for silhouettes. These values should be contrasted
with those obtained from the specific heats (-1.6 and—2.6, respectively). ' Preliminary results obtained
from the scanning method for trails of chain length
I 250 show that 0.5~0 ~0.6. This preliminary re-
sult is very close to what we obtained using the new ap-
proach.

Figures 9(a) and 9(b) are plots of O,„as a function of
k. Trends like those observed in 2D are also seen here
and we shall not elaborate further. As in 2D, odd-even
oscillations are not seen in the moments of persistence
lengths analysis, even though the simple cubic lattice is
loosely packed.

B. Face-centered-cubic lattice
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FIG. 6. {a) Plots of O,„vs 1/1 at various k values for trails
and silhouettes on a square lattice; {b) the corresponding plots
for trails and silhouettes on a triangular lattice; (c} the corre-
sponding plots for trails and silhouettes on a simple cubic lat-
tice; and {d) the corresponding plots for trails and silhouettes on
a face-centered-cubic lattice. In each case, the upper set is for
silhouettes and the lower set is for trails. 0 is the scaled dimen-
sionless temperature and the abscissas are in units of inverse lat-
tice spacings, which is set to unity.

FIG. 7. {a) Plots similar to that in Fig. 6, but for a particular
value of k=2, and for trails on all the four 1attices for easy com-
parison; and (b) the corresponding plots, but for silhouettes on
all four lattices. It is interesting to note that the transition tem-
peratures (O,„at 1/l=O} in descending order are square, sim-
ple cubic, face-centered-cubic, and triangular. See text for a
plausible explanation. The units on either axes are the same as
those in Fig. 6.
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ma as predicted in Eq. (8), and similar to those in Fig. 5.
Plots of O,„against 1/1 are given in Figs. 6(d) and 7.
The transition temperatures, as extrapolated from these
plots (Fig. 6), are -0 3 and -0 9 for trails and
silhouettes, respectively. These are lower than those pre-
dicted from the specific heats in exact enumerations
(-1.2 and -2.3 for trails and silhouettes, respectively).

Other plots [Figs. 9(c) and 9(d)] show behaviors very
similar to those observed on other lattices.

Though our chains are relatively short (I » 10), the re-
sults are quite stable and the plots are quite smooth. This
is expected of most close-packed lattices, of which a
face-centered-cubic lattice is one.

C. Analysis using reduced moments

The 30 data are also analyzed using the reduced mo-
ments. The corresponding O,„are found to be only
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FICs. 8. (a) Plots of e,„vs k for trails on a square lattice; (b)
similar plot for silhouettes on a square lattice; (c) similar plots
for trails on a triangular lat tice; and (d) similar plots for
silhouettes on a triangular lattice. The ordinates are the scaled
dimensionless temperatures and the abscissas are dimensionless
parameters.

FIG. 9. Plot similar to those in Fig. 8, but for (a) trails and

(b) silhouettes on a simple cubic lattice; and for (c) trails and (d)
silhouettes on a face-centered-cubic lattice. The units on either
axes are the same as those in Fig. 8.
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slightly higher (58-0.1) than those extracted from the
moments. This may be taken as an evidence for the fact
that f(I)=const, in agreement with the prediction of Eq.
(3) 26, 27

Though the 58 in 3D is much smaller than the 50 in
2D, the observed shifting trends in O,„as a function of 1

or k are equally prominent in 3D. A plausible explana-
tion is the stiffness effects, as explained in 2D. But one
thing is apparent in Figs. 7(a) and 7(b). In both 2D and
3D, the trails and the silhouettes on the more closely
packed lattices (triangular lattice and face-centered-cubic
lattice) always have a lower transition point. This is in-
tuitively correct, for on these more closely packed lat-
tices, the configurations have more flexibility and they
can collapse at a higher temperature (or lower 8). This
fact is further substantiated by the fact that lattices with
smaller included angles ' between adjacent bonds have
lower transition temperatures. Qn closer scrutiny of
Figs. 7(a) and 7(b), it is revealed that the transition tem-
peratures, in descending order, are square, simple cubic,
face-centered-cubic, and triangular. On a square lattice,
the included angle is 90', on a simple cubic lattice, the in-

, cluded angle is also 90', on a face-centered-cubic lattice,
the included angles are 60 and 90, whereas on a triangu-
lar lattice, the included angle is 60. The observed order
is thus explained. Higher dimensionality will also allow
for more flexibility. This is reflected in the square-lattice
and the cubic-lattice case (same included angles); but in
the case of the triangular lattice and the face-centered-
cubic lattice, the higher dimensionality effect in the face-
centered-cubic lattice compensates for the smaller includ-
ed angle effect in the triangular lattice. Thus trails and
silhouettes on these lattices have transition temperatures
close to each other.

VI. CONCLUSION AND DISCUSSIONS

In the present paper we study the behavior of
(Xi "+'(0)) or (M& "+')(8)), as a function of the in-
verse temperature 8, where the former are the moments,
and the latter are the reduced moments of the persistence
lengths. We concentrate, in particular, on trails and
silhouettes on a square, a triangular. , a simple cubic and a
face-centered-cubic lattice.

We start by showing analytically that there exist points
of inflection in the moments of the persistence lengths,
which correspond to the transition temperatures (for
a fixed chain length l) of the walk configurations as
they co11apse from the swollen phase to the compact
phase. Plots of —(8/B8)(X,'"+'(0) ) or —(0/
38)(M&"+'(8)) of the numerical data exhibit sharp
peaks, indicating the existence of the analytically predict-
ed points of inflection. The analytical results are then in-
corporated with the numerical results to determine the
transition temperatures of trails and silhouettes on the
four lattices. The values of the transition temperatures
obtained from this approach are always lower than those
obtained from the specific heats in exact enumerations.
Since it is known that specific heats in exact enumera-
tions tend to give a higher O for the transition tempera-
tures, our lower values are not unjustified. In fact, our

TABLE I. Transition temperatures on di6'erent lattices for
the three walk models.

Walk model

Trails
Silhouettes
SA SAW's

Square

1.086'
1.9
0.658'

Q~

Triangular

0.4
1.2
0.4'

Cubic

0 6b

1.4
0.27'

fcc

0.3
0.9
0.2'

'Reference 13.
Reference 30.

'Reference 32.
Reference 33.

'Reference 34.
'References 28 and 35.

transition temperatures for trails on the square lattice
and the simple cubic lattices are very close to those ob-
tained earlier for much longer chains
(t —220-250) — .M

An interesting observation is that as k (the order of
moments) increases, the transition temperature tends to a
lower value, even though this is not predicted in the
analytical expression [Eq. (8)]. A plausible explanation
for this observation is that since our chains are relatively
short, chain stiffness may still be strong. This effect tends
to increase the persistence lengths. This will push up the
value of v(8), which in turn causes a lower value of 8. If
we recall that this stiffness is amplified for higher mo-
ments, we see that the lowering trend is explained.

On all four lattices, 0, for trails are always lower than
those for silhouettes. These are in agreement with earlier
results. ' This is explained from the fact that as the
temperature is lowered, configurations with loops
predominate, and since there is a multiplicity of trails for
each silhouette, configurations with loops are more heavi-
ly weighted in trails than in silhouettes. Thus energeti-
cally, it is more favorable for trails to collapse at a lower
0 (or higher temperature).

For comparison purposes, we have also tabulated in
Table I the transition temperatures of trails, silhouettes,
and self-attracting SAW's (SA SAW's) on the four lat-
tices. One very clear conclusion that can be extracted
from the table is that 0, for SA SAW's are always lower
than those of the corresponding trails (and thus those of
the corresponding silhouettes). This is very easily ex-
plained. In SA SAW's, an energy c. is associated with
each nonbonded nearest neighbor. In trails (silhouettes),
an energy c is associated with an intersection. Since
nearest neighbors are more abundant, it is not surprising
that SA SAW's collapse at a higher temperature (lower
0). This explanation is further corroborated by the ob-
servation 0,(trails)/0, (SA SAW's) increases as q in-
creases.

In conclusion, we have provided a new criterion for lo-
cating the transition temperatures of polymeric models
with loops. Our transition temperatures obtained using
this criterion for the four lattices, though not determined
to very high accuracy, come very close to existing
computer-simulation results. " ' The results, howev-
er, do reflect that close-packed lattices always converge
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faster. The limitation on the accuracy is due to short
chains we can generate using exact enumerations. The
crux of the enumeration is in the classification of
silhouettes, which renders enumerations to very high or-
ders impractical. To date, and to the best of our
knowledge, exact enumeration is the only way to classify
this type of walk (silhouettes). ' ' ' Longer chains (trails
and silhouettes) will definitely improve the accuracy of
the determination of the transition temperatures. In re-
trospect, the transition temperatures (0, ) obtained by
this new approach are a1ways lower than their respective
specific-heat counter parts. This may be explained as fol-
lows: the specific heat, [or in the jargon of statistics,
the dispersion of It(8)] is defined as h&{8)
=B(I{(8))l(t)8) =[(It (8) ) —(It(8) ) ]. ' " The
plot of (It(8) versus 8 has a positive slope, in contrast
to the plot of (X, " '(0) ) versus 8 (Fig. 3), which has a

negative slope. Because of' this, the transition tempera-
tures are approached as an "uphill" (specific heat) or
"downhill" (persistence length), and thus in the former,
the transition temperatures tend to be a little higher, and
in the latter, they tend to be a little lower. In the large
chain length limit, this difI'erence is expected to vanish.
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