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Phase-space singularities in atomistic planar diffusive flow

W. G. Hoover and 8. Moran
Department ofApplied Science, Uniuersity of California at Dauis L-iuermore and Laturence Liuer more 1Vational Laboratory,

Liuermore, California 94550
(Received 26 June 1989)

Morriss [Phys. Rev. A 39, 4811 (1989)]recently pubhshed a stimulating study of a nonequilibrium
Lorentz gas. He measured a multifractal "spectrum of singularities" f (a) describing the "coarse-
grained" phase space-representation of a time-reversible, two-body, space- and time-periodic shear
flow. The measured function f (a) is the "Hausdorff'dimension" of attractor singularities whose lo-
cal bin integrals vary as the ath power of the bin length. Morriss found a spectrum of singularities

f (a) very different from those familiar to nonlinear dynamical systems theory. Here we consider a
closely related, but simpler, two-body time-reversible atomistic system. It is also a Lorentz-gas
problem, a nonequilibrium diffusive flow, periodic in space but stationary in time. This system ap-
pears to be both mixing and ergodic, even far from equilibrium. We use the Chhabra-Jensen tech-
nique to show that the phase-space singularity spectrum f(a) for this nonequilibrium flow more
closely resembles those of dynamical systems theory.

I. INTRODUCTION

NIolecular-dynamics simulation of nonequilibrium
steady-state flows with reversible equations of motion be-
gan about 15 years ago. ' Diffusive, viscous, and conduct-
ing flows were all simulated. Transport coeScients were
generated for gases, liquids, and solids using a variety of
equilibrium (fluctuation) and nonequilibrium (driven)
methods. Both kinds of results were in good agreement
with experimental data and the usefulness of the comput-
er experiments was thereby established.

More recently, atomistic computer-simulation work
has focused on connecting microscopic dynamical rever-
sibility with macroscopic second-law-of-thermodynamics
irreversibility in time-averaged steady states. This con-
nection has been made possible through the development
of time-reversible equations of motion which describe the
interaction of microscopic dynamical degrees of freedom
with macroscopic heat reservoirs. '

The mechanism underlying second-law irreversibility
lies in the Lyapunov instability of the equations of
motion. ' Stationary nonequilibrium flows develop by
generating "multifractal" strange-attractor objects in
phase space. ' ' These objects have zero "volume"
relative to the corresponding equilibrium states, and their
phase-space "dimensionality" varies with the deviation
from equilibrium. The volume collapse is rapid, on the
time scale of the collision rate. The phase-space objects
we study are always represented by computer-generated
time series of phase-space points. The number of these
points is limited by computer size and speed. Typical
series contain a million to a billion points. Discrete time
series can be analyzed directly, ' but the coarse-grained
phase-space objects analyzed by mathematicians are gen-
erally more abstract' static structures, consisting of un-
countably many points. This difference in the data's
structure can lead to misunderstanding and confusion.
Because the definitions of multifractal dimensionahty
I D I are intricate we have collected operational

definitions, appropriate to the time series we analyze
here, in the Appendix. The time required to generate
multifractal information is relatively long, on the time
scale of Poincare recurrence.

The simplest and most fundamental static measure of
fractal phase-space dimensionality is the information"
dimension D, . This dimension weights all points equally
and corresponds to the visuaI information in a phase-
space picture. Kaplan and Yorke conjectured that D, is
linked to the time-averaged spectrum of dynamic
Lyapunov exponents. The nature of the Lyapunov ex-
ponents, which describe the divergence and convergence
of phase-space flows, has been clarified by measuring
their spectrum for a variety of nonequilibrium systems.
The local time Uarration of these exponents reflects the lo-
cal (phase) space variation of fractal dimension. Because
visualization of phase-space multifractal geometry
remains diScult, we believe it is important to character-
ize the simplest possible systems. These simplest systems
include Lorentz-gas two-body shear and diffusive flows,
as well as three-body heat-conducting flows.

In a very recent and extremely stimulating paper Mor-
riss' studied the multifractal spectrum of singularities
f (a) for a simple nonequilibrium two-body shear flow.
This Lorentz-gas flow problem was introduced in 1983.'
The two-body shear-flow problem' is equivalent to a
one-body problem: finding the motion of a point mass
moving in a constantly shearing lattice of scatterers.
(The periodic geometry of the problem is indicated in
Fig. 1.) Because the shear flow is periodic in time, induc-
ing a time-periodic flow, a stationary state is never
reached. Morriss found time-averaged velocity distribu-
tions that did not agree well with Boltzmann-equation
predictions' ' as well as a multifractal singularity spec-
trum f (a) with a cusplike structure unlike those previ-
ously characterized for maps and dynamical systems. ' '

(See Fig. 2.)

In this paper we examine the multifractal nature of
two-body isokinetic diQusiue flow for a hard-disk Lorentz
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FIG. 1. Two views of the geometry in the two-body shear-
Aow problem. The two particles interact, in Morriss's calcula-
tions, with a shifted repulsive Lennard-Jones interaction, so that
the potential and its first derivative (but not its second deriva-

tive) are continuous. The motion is periodic in both space and
time. The left view shows a symmetric two-body version in

which the velocity of each particle is represented as a systematic
part (horizontal component of velocity) plus a fluctuating part
with the Auctuating parts summing to zero. The right view

shows an equivalent one-body version in which the velocity of
the filled-circle particle is taken relative to that of the open-
circle particle at the origin.

gas ' (also equivalent to a hundred-year-old one-body
problem, the Galton board). In our isokinetic version of
the Galton-board problem a single particle moves
through a stationary array of fixed hard-disk scatterers
under the inAuence of a constant external field. The
motion occurs at fixed speed, imposed by applying
Gauss's principle of least constraint ' to the motion.
The complication of time periodicity is eliminated be-
cause the boundaries do not move.

The two-body periodic problem indicated in Fig. 1

could be described in an eight-dimensional phase space
Ix,y, P„,P I, but there are five constants of the motion
(center-of-mass location, center-of-mass velocity, and ki-
netic energy). Thus the two-body problem can further be
described in a three-dimensional phase space. The

equivalent one-body problem can likewise be described in
a three-dimensional phase space including two relative
space coordinates and an angle giving the direction of
motion. By tabulating only the geometry of successive
collisions (because the smooth trajectory between col-
lisions can be worked out anlytically) the two problems
can be reduced to two-dimensional ones. It is that ap-
proach which we follow here.

We previously found that the two-dimensional cross
section of the three-dimensional phase-space distribution
is typically multifractal, with a "correlation dimension"
D2 between 1 and 2, but that for selected ranges of the
external driving field the dimensionality drops to zero in
the two-dimensional cross section, representing a stable
one-dimensional limit cycle in three dimensions.

Here we analyze the multifractal phase-space singulari-
ties of this relatively simple Galton-board problem, using
Chhabra and Jensen's very recent extension of the ideas
of Grassberger, and Hentschel and Procaccia.

II. MODEL AND RESULTS

The two-body field-driven isokinetic Lorentz gas pro-
duces the simplest atomistic nonequilibrium stationary
state. The collisional forces are impulsive, corresponding
to hard-disk collisions. Similar dynamics could be gen-
erated with very smooth forces, using functions based on
exp( —llr), but because we view the hard-disk case as
simpler we study it here.

In the coordinate system of Fig. 3 (reproduced from
Ref. 23) with a field of constant strength E parallel to the
x axis, the Gaussian isokinetic equations of motion can be
solved analytically for a particle of mass m with the con-
stant speed P/m. The distance traveled during the inter-
val At separating successive hard-disk collisions is the
vector ( b,x, b,y):

bx = —(P /mE)ln(sinO/sinOo),

Ay = —(P /mE)(O —Oo),

At = —(P/E)in[tan(O/2)/tan(Oo/2)] .

The angle O gives the direction of the motion relative to
the field direction

P =P cosO, P =P sinO .

1.8 2.0 2.2 2.4 2.5 2.8
a

FIG. 2. Spectrum of fractal dimension found by Morriss for
the system of Fig. I by projecting a four-dimensional phase-
space distribution onto a three-dimensional subspace.

FIG. 3. Galton-board problem, showing the definition of the
angles a and /3 which define a hard-disk collision.



PHASE-SPACE SINGULARITIES IN ATOMISTIC PLANAR . . ~ S321

To see that these one-body motion equations are time
reversible, note that reversing a collision corresponds to
replacing 0 by 00—~ and Oo by 0—vr, correctly changing
the signs of bx and Ay without changing At. The motion
described by these equations corresponds to that of a par-
ticle moving, at constant kinetic energy, under the
inAuence of a field E aligned parallel to the x axis. In
Hamiltonian mechanics the energy provided by the field
would cause the mean kinetic energy to rise. By using a
Gaussian thermostat (based on Gauss's principle of least
constraint '

) this energy is extracted at exactly the same
rate as it is produced so that the particle "falls" (or rises)
at constant speed. It has recently been shown that exact-
ly the same (time-reversible) coordinate-space motion re-
sults from purely Hamiltonian mechanics if the field
strength has an exponentiaI dependence on the x coordi-
nate. '4

It is possible to generate 15 million collisions per hour
on a CRAY-1 computer with an accuracy of seven
significant figures. Such calculations provide a time
series of the angles a and f3 which describe the hard-disk
collisions. If these data are accumulated in "bins" corre-
sponding to equal numbers of increments in a and sinf3,
with linear dimensions proportional to the "bin size" 5,
then the fractal spectrum of singularities f(a) can be cal-
culated by working out the limiting bin-size dependence
of the one-parameter family of sums over bins:

Dq = lngpq (ln6q ' ),

where q can be positive, negative, or zero. These sums, in
the limit that 5 becomes suSciently small, approach cor-
responding integrals of singular coarse-grained probabili-
ty densities. The integrated bin probability p for sam-
pling a particular bin centered on (ct, sinp) is normalized,
with the sum over bins, gp =1. Chhabra and Jensen
discuss the singularities of the integrated bin probability.
For sufticiently small bins the singularity is local, with in-
tegrated probability varying as the ath power of the bin
size 6. Chhabra and Jensen showed that "singularity
strength" a (here denoted by a rather than a to avoid
confusion with the angle defined in Fig. 3) and the corre-
sponding singularity spectrum f (a) can both be deter-
mined directly from the family of q-dependent normal-
ized probability measures p =pq/gpq:

f =(ln(p )) /ln6,

a = ( ln(p ) ) /in5 = ( ln(p
~

) )
q

/1n6,

where the angular brackets indicate sums weighted with
the q-dependent measure pq.

The geometric meaning of the singularity spectrum is
intricate. We again refer to the Appendix for more de-
tails of multifractal dimensionality. The main idea is to
consider a stationary phase-space attractor as a family of
superposed or "interwoven" sets of singular fractal ob-
jects. In the neighborhood of any part of the attractor
the integrated (coarse-grained) small-5 probability is typi-
cally singular, varying as the ath power of the bin size 6.
For an attractor (as opposed to repeller) this power is
typically less than the embedding dimension, signifying

the shrinkage associated with dissipation. The set of bins
with the same singular probability dependence has a lim-
iting Hausdorff' bin-counting dimension f (a). This
means that the number of occupied bins of singularity
strength a varies as 6 ",for small 5.

To study the fractal dimension of the singularities f (a)
for a typical nonequilibrium situation we arbitrarily
chose a field strength of F. =3P /m o. for detailed investi-
gation. P/m is the constant speed, and o. is the scatterer
diameter, chosen arbitrarily to give a scatterer density of
four-fifths the close-packed value. Numerical work sug-
gests that the motion is chaotic on a strange attractor
without any regular regions. The dynamical evolution
generates a fractal object. We characterize the multifrac
tal dimension using a range of q from 0 to 10. Outside
this range the results are relatively slow to converge. A
typical multifractal cross section is shown in Fig. 4. The
cross section shown there has an apparent correlation
dimension D2 of about 1.6. This means that the number
of pairs of time-series points within a distance 6 of each
other varies as 6 ' . From the visual standpoint the in-
formation dimension D& is more relevant. For this same
attractor the information dimension D, is approximately
1.8, meaning that the number of time-series points within
a distance 5 of an arbitrary point (not necessarily a point
on the attractor) varies as 5 ' . Cross-section dimen-
sionalities of 1.6 and 1.8 correspond to phase-space-object
dimensionalities of 2.6 and 2.8.

Because the motion between collisions proceeds
smoothly, the analysis of the singularities in the three-
dimensional phase-space probability density reduces to a
two-dimensional analysis normal to that motion. The
motion can be described as a time series of (a, sinP) pairs
describing the position and relative velocity of successive
collisions. The motion normal to the (a, sing) plane cor-

E = 3.00 P2/met

z/2

FIG. 4. Multifractal phase-space probability-density cross
section found for a field strength of 3P /mo. The 10000 dots
shown represent 10000 successive collisions. The calculations
used in the text incorporate 100000000 such collisions.
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FICx. 5. Multifractal phase-space probability-density cross
section of Fig. 4 but with an enhanced resolution using 640000
dots on an 8X8 grid. The original computer-generated picture
is a 1-m square.

responds to the time between successive collisions. This
function is piecewise smooth. The variation in collision
times, from the shortest possible to the longest possible
free paths, is typically a factor of 10. In the equilibrium
case, the relative weight of a di6'erential element of area
in the (a, sinP) plane dad sinP=da cosPdP gives the rel-
ative frequency of collision at (a,P).

To implement the ideas of Morriss, Chhabra, and Jen-
sen we spanned the (a, sinP) space by a 1024X 1024 grid
and accumulated occupation probabilities over a se-
quence of one hundred million hard-disk collisions. To
suggest the improved resolution over that shown in Fig.
4, we show 640000 points on an 8X8 grid in Fig. 5.
With the corresponding bin probabilities we could then
calculate the singularity strength a (q) and its fractal di-
mension f (q) using the Chhabra-Jensen recipe given
above. (See Fig. 6.) We found that convergence is rapid
for q corresponding to the information dimension (q =1)
and the correlation dimension (q =2), as well as for
larger q, up to about 5, which describes the clustering
tendency of triplets, quadruplets, and quintuplets of
phase-space points. Convergence for q =10 is relatively
slow.

Smaller values of q emphasize the less frequently visit-
ed parts of the attractor. Of the corresponding dimen-
sions, Do the capacity or "box-counting" dimension
which approximates the Hausdorft'dimension, has an ap-
parently simple meaning. It gives the dependence of the
number of cells visited on bin size, with the logarithm of
this number varying as —Doln6. Do is relatively more
delicate to compute and slower to converge than D, or
D2. (See again the Appendix. ) For a fixed number of col-

2.Q

f 1.Q-

I

1.5

gas
ty spectrum

3P )trna

G 1024 x)024
0 512 x512

256x256

2.5 3.0

FICx. 6. Spectrum of fractal dimension f(a) found here for
the nonequilibrium system of Figs. 4 and 5 using a field strength
of 3P /mcr and 100000000 collisions. Points shown are la-
beled according to the number of bins spanning (a, sinP) space,
256, 512, and 1024 . The q values, in the range from 0 to 10
are indicated, except for q = ~.

lisions a suSciently refined grid can always lead to a van-
ishing fraction of occupied bins, and hence to a vanishing
Do. We found that for a practicable fixed grid (that is, up
to 1024 X 1024 bins) we could occupy nearly all the bins.

It appears that euery bin mould become occupied pro-
vided that su%ciently many collisions could be generated,
though we were unable actually to fill all bins beyond the
256X256 case. This ergodicity is strongly suggested by
the details shown in Fig. 5, reduced from a large (square-
meter) computer-generated plot of 640000 points. Vari-
ous logarithmic plots of empty bin fraction as a function
of the number of collisions imply that the fraction
definitely vanishes for large, but finite, collision numbers
(of order 10 or so for the 1024 X 1024 case). This con-
clusion that no bin is empty is only conjecture, but we be-
lieve it to be extremely plausible. If, for instance, the
Hausdor6' dimension were 1.99 rather than 2.00, this
would suggest a number of empty bins, out of 256, equal
to 256 [1—( I /256) '], which is greater than 3500.
Thus, because we found no empty bins we believe that
our numerical evidence strongly suggests that the Haus-
dorff dimension of the attractor is equal to the embedding
dimension 2.0 and that the motion is ergodic: All regions
of phase space are accessible in this nonequilibrium
steady state. Because the occupied phase-space volume is
identically zero, these results suggest that the Hausdorff
dimension is not a useful concept for describing dynami-
cal at tractors. At the same time the probability is
sufficiently singular (a greater than 2), so that the occu-
pied phase space, weighted with its probability, has an in-
formation dimension of only D, = 1.8. The Kaplan-
Yorke dimension, which can be estimated from the
Lyapunov spectrum and is thought to be equal to the in-
formation dimension D, , is likewise known to be strictly
less than the equilibrium phase-space dimension in all
deterministic and time-reversible nonequilibrium steady
states.

The functions f (o) for three different bin sizes and
field strength 3P Imo are displayed in Fig. 6. The
curves summarize 10 collisions, collected into 4" bins,
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FICx. 7. Apparent spectrum of fractal dimension for the equi-
librium situation, with no external field, using 100000000 "col-
lisions. " The (analytic) known spectrum is a 5 function with
both averages, f (a) and a equal to the cross-section dimension
2. This result requires infinitesimal bin sizes and an infinitely
long sequence of collisions. These zero-field results were gen-
erated randomly. Comparison for 100000000 collisions shows
that the results closely resemble true collision chains for a field
of 0.001P /ma.

with n =8, 9, and 10. This choice of collision numbers
provides 1% or better estimates for the bin-counting di-
mensions D, with 5 «q «0. The spectra show no shoul-
ders, cusps, or fine structure. These results should be
compared to those of Morriss, which are reproduced in
Fig. 2.

For comparison, and as a check of our numerical work,
we show in Fig. 7 exactly the same calculation but car-
ried out at equilibrium, in the absence of an accelerating
field. (For technical reasons the data were generated at a
field of 0.001P /mo, rather than zero. ) The spectrum
deviates from the 5-function analytic result (a =2 and
f =2) for this system only because the finite-bin popula-
tions have fluctuations around their equilibrium values.
The phase-space "attractor" cross section is mixing and
ergodic at equilibrium with an integrated cross-sectional
bin probability varying as 5 . Thus both a and f should
be exactly 2 in this case. The numerical results suggested
that fluctuations in bin numbers should lead to inaccura-
cies in the dimensionality estimates for Do, D, , and D2
less than 1%.

Kaplan and Yorke connected a fractal dimension
DKz to the spectrum of Lyapunov exponents,

A I (Ai A2A3. . ). The exponent sums, A, X, +A,2, A, ,+k2+ X3, . . . , describe the exponential time rates of
change of 1-, 2-, 3-, . . . , dimensional phase-space objects.
Kaplan and Yorke estimated the dimensionality
DK&=DI by estimating, with linear interpolation, the
dimensionality of a phase-space object in which the ex-
ponential rates of change sum to exactly zero. If the un-
derlying Lyapunov exponents used in the Kap1an-Yorke
estimate vary in an analytic way with the deviation from
equilibrium, then one expects to find that the fractal di-
mension DK~ varies quadratically with field strength. A

TABLE I. Information and correlation dimensions D, and
D& for 100000000 hard-disk collisions using 512X512 bins.
The a value corresponding to the correlation dimension
a&(q =2) is shown also. The "fit" results for these dimensions
all give the result of a quadratic dependence between zero field
and E =P'/mo. . For comparison, the results for E =3P /mcr
are also shown, though these exhibit significant deviation from
the small-field quadratic behavior.

Dimensionless field strength: Em o./P
0.000 0.250 0.500 0.750 1.000 3.000

1.832
1.81'
1.583
1.28
1.656
1.46

1.988
1.988
1.955
1.955
1.966
1.966

1.979
1.979
1.920
1.920
1.940
1.940

1.995
1.995
1.980
1.980
1.985
1.985

Dl 1.998
Fit 1.999
D2 1.994
Fit 1.995
02 1.995
Fit 1.996

'"The extrapolated result for the
an infinite number of bins is also

information dimension D 1 with
1.81.

linear variation is ruled out by symmetry. The numerical
evidence for quadratic dependence, based on the informa-
tion and correlation dimensions, D, and D2 is shown in
Table I. Just as in our "color conductivity" many-body
simulations, ' it appears that the one-body far-from-
equilibrium Galton board studied here does show a quad-
ratic variation of dimensionality for D, and D2.

III. CONCLUSION

The multifractal distributions found here, for the sim-
plest possible mixing and ergodic nonequilibrium atomis-
tic flow, resemble those found in the study of nonlinear
dynamical systems. The main difference is the asym-
metry of the dependence of fractal dimension f (a), on a,
with most of the singularity strength just below the
dimensiona1ity of the phase-space cross section 2. At the
value of a corresponding to a well-behaved smooth prob-
ability density a =2 the corresponding Hausdorff dimen-
sion f (a =2) is about 1.94, significantly less than the
embedding dimension.

Experience with molecular-dynamics time-series mul-
tifractals is limited, but the lack of symmetry most likely
reflects two facts. First, as emphasized by Morriss,
atomistic systems are already chaotic at equilibrium and
become less so, rather than more so, when driven away
from equilibrium. Second, because almost all phase-
space trajectories obey the second law of thermodynam-
ics, the phase-space singularity strengths tend to be at-
tractive, with dimensionality less than that of the embed-
ding space. Nevertheless, for q less than about —,', the
singularity strength is greater than 2, indicating spread-
ing rather than contraction.

The Chhabra-Jensen approach makes accurate calcula-
tions possible. Our results show none of the fine struc-
ture found by Morriss in his shear-flow simulations. %'e
thought that the reason for this difference could possibly
lie in the periodic time dependence of Morriss's shear
flow. ' In that flow the shape of the unit cell passes
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periodically between rectangular and triangular lattices.
This periodic change in symmetry proceeds with a time
period equal to the inverse of the shear rate. Formally,
this means that the phase space acquires an additional di-
mension, as is discussed in Ref. 9, a time variable that
spans one complete period of the motion. Morriss's aver-
age over all values of the time projects his four-
dimensional results onto a three-dimensional subspace
from which the time variable is absent, changing the frac-
tal nature of the underlying distributions.

Our own two-body diffusive flow problem exhibits a
phase-space singularity structure with the familiar
smooth structure leading to a featureless maximum. This
qualitative resemblance strongly suggests that the phase-
space structures for many-body nonequilibrium flows
bear a family resemblance to those found in studies of
nonlinear dynamical systems.

It is extremely interesting that the apparent Hausdorff
dimension of this strange attractor is 3 in the full phase
space (2 in the cross section investigated here), the same
as that of the embedding space, and in fact, even filling
the embedding space. By symmetry, those states corre-
sponding to a time reversal of the attractor, the "repell-
er" (which violates the second law of thermodynamics),
have an exactly similar distribution (obtained by replac-
ing sinP by —sinP). This leads to the perhaps surprising
conclusion: Arbitrarily close to every attractor point
there is a repeller point and vice versa.

The situation is analogous to two nearby lines in three
dimensions, but much more complex because the objects
which are "close" to each other in the three-dimensional
Lorentz-gas phase space have information dimensions
just below that of the space itself, 2.8 in the case of a field
of strength 3I' /mo.

The dynamics of the Lorentz gas is time reversible. We
believe that this feature is fundamental for the phase-
space-filling structure found here. Time reversibility is
nevertheless neither necessary nor sufficient for ergodici-
ty. The randomness of the Langevin equation establishes
that time reversibility is not a necessary condition. The
Kolmogorov-Arnold-Moser theorem further establishes
that time reversibility is not a sufhcient condition for er-
godicity.

Why then, is time reversibility important? Because
time-reversible trajectories can in principle be extended
either forward or backward in time, time reversibility im-

plies that an initial condition exists somewhere in the
finite bounded phase space, which wi11 lead to any desired
state at any desired time in the future or in the past. To
see that this guaranteed accessibility makes it plausible
that any phase-space bin can and will be occupied, sup-
pose a bin were vacant in the steady state, i.e., vacant for
all time. The time-reversed dynamics (going backward in
time) from such a hypothetical vacant bin must eventual-

ly converge to the repeller, a widely dispersed multifrac-
tional object, looking just like and filling just as many
bins as the attractor, and intersecting it along the line
/3=0 which corresponds to head-on collisions. (To con-
struct the Galton-board repeller simply reflect the attrac-
tor shown in Figs. 4 and 5 about the line P=O. )

It seems to us highly implausible that the entire past

history of any bin could be completely empty. Thus we
believe, on the basis of our numerical results, which sug-
gest this conclusion, that the Galton-board motion is er-
godic in the full phase space, coming arbitrarily close to
any point. This ergodic space-filling motion is very
different from Cantor-set examples or the example of
Chhabra and Jensen because here the mapping from one
collision to the next is both stationary and reversible,
shrinking the volume and the information dimension but
not the Hausdorff dimension.

We believe that the reversible dynamics studied here,
obeying the second law of thermodynamics, leads to the
following phase-space properties:

(i) Symmetry breaking in the spectrum of Lyapunov
exponents, with the sum negative.

(ii) Ergodic mixing flow, both forward and backward
in time.

(iii) Hausdorff dimension equal to the equilibrium
embedding dimension.

(iv) Information and correlation dimensions less than
the equilibrium dimension with the information dimen-
sion related to the thermodynamic dissipation through
the Kaplan- Yorke conjecture.

Of these four properties only the first is firmly estab-
lished. It follows directly from the equations of motion.
The remaining three properties are all indicated strongly
by the present simulations, though the utility of the
HausdorfF dimension for uncountable sets is uncertain.
Confirmation for other dynamical systems would be wel-
come.

It still remains to forge a computational link between
the fractal dimensions studied here and the loca1
Lyapunov spectra. Preliminary work in that direction
is very promising, but not yet definitive.

Note added in proof. We have now generated the mul-
tifractal spectrum of the hard-disk analog of Morriss's
soft-disk system. The successive hard-disk trajectories
and collisions can be evaluated analytically. The analysis
takes place in the three-dimensiona1 "Poincare cube"
describing successive collisions as a function of boundary
phase. The resulting spectrum is a featureless curve like
that in Fig. 6, but with a maximum of f =3. We there
fore found no explanation for Morriss's (soft-disk) cusps.
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APPENDIX

Imagine a set of X points, sampled from a multifrac-
tional object located in an "embedding space. " The
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points are representative of the object and are imagined
to be generated by a deterministic process. Mathemati-
cians introduce the notion of covering balls or hyper-
cubes and define the dimensionality of the underlying ob-
ject in terms of the cover in the limits that the number of
the covering objects and the number of points sampled is
large. It is clear that, for a fixed number of points, the
covering objects must be much less numerous than the
number of points. From the operational point of view we
use hypercubes all of the same size, thus introducing
(perhaps) a difference between what we call the bin-
counting dimension (q =0 in the text) and the capacity or
Hausdorff dimension in which a variety of sizes of cover-
ing shapes is used. '

For example, consider an ordinary object in three-
dimensional space. In this intuitive discussion we wish to
avoid wildly wrinkled objects with infinite areas or curves
of unbounded variation [like sin(1/r) near the origin, for
instance]. Then a three-dimensional solid object requires
a number of covering cubes varying as 5 . A two-
dimensional object requires a number of cubes varying as5, and a one-dimensional object (a curve) requires 5
It is natural to extend these integer results to define a
general fractal dimensionality in the same way. The Sier-
pinski sponge shown in Fig. 8, for instance, requires 20
cubes of sidelength ( —,

' )" for cover, so that its capacity or
bin-counting dimensionality Do is ln20/ln3 =2.727.

To generalize this idea of fractal dimension to mul-
tifractals imagine first a fractal set of points in two di-
mensions. The fractal nature of the points means that the
number of points contained in a small bin 5 varies as the
a power of 5. Evidently (Chhabra and Jensen give a
nice example) a can vary from zero (a 5 function) to
infinity. We might expect, on intuitive grounds, a values
between 1 and 2 for the Lorentz-gas problem, but the nu-
merical work shows that larger values are possible.
Chhabra and Jensen show that the fractal dimension
f (a) of the singular set with strength a can be found by
studying the bin-size dependence of the measures defined
in the text (moments of the bin occupation numbers).
The first moment (proportional to the probability of the
bin) gives the information dimension and the second mo-
ment the correlation dimension of the multifractal struc-
ture.

As a practical matter it is important to estimate the
minimum sample size for determining the dimensionali-
ties. Consider, for instance, the numerical characteriza-
tion of Do for a two-dimensional unit square in which all
(x,y) values are weighted equally. Divide the square into
Z =5 equally-likely-to-be-sampled square zones. To
make it likely that, on the average, no cell is empty, the
probability of a cell being empty must be less than 1/Z.
This corresponds to a sampling number given by

r[)t(l
~ r r

rgb ~

FIG. 8. Sierpinski sponge, with fractal dimension 2.727, ob-
tained by repeatedly removing 27 of the remaining material in

an initially homogeneous unit cube.

[(Z —1)/Z] =1/Z .

Thus a characterization of the Hausdorff dimension for
10, 10, or 10 zones requires roughly 5, 9, and 14 times
the number of zones for complete coverage, N =Z lnZ.

The Hausdorff dimension, as usually defined, is zero
for any set of rational numbers because this "countable"
set of 8, elements can be "covered" by lines of length
6/2, 5/4, 6/8, . . . , summing to 6 for 6 aribitrarily
small. On the other hand, all computer data are finite
and rational, but certainly the rationals between 0 and 1

"look like" a set of measure 1 rather than 0. Because the
mathematics of infinite sets is not operational it can cer-
tainly prove useless in some circumstances. It appears to
us that the Hausdorff dimension is such a concept for the
attractors discussed here.

In the determination of Do for the Galton board we
soon found that the apparent dimensionality obtained by
increasing N at fixed 6 would approach the embedding di-
mension. But for substantially larger grids than
256X256 with a field strength of 3I' /mo. , it is difficult
to generate enough collisions to fill every cell at least
once. Statistics for negative values of q, which emphasize
the sparsely occupied cells are accordingly very poor, ex-
cept for relatively coarse bins. We therefore have little
confidence in fractal dimensions D corresponding to
negative values of the moment index q and have
suppressed them in all the results included in this paper.
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