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This paper focuses on a method proposed for determining f(a) (the singularity spectrum of a
multifractal) directly from experimental data, without first calculating the ‘“‘generalized dimensions”
D, and applying the usual Legendre transforms. We describe the method, which is based on
theorems by Shannon, Eggelston, and Billingsley, and apply it to one-dimensional cuts of the dissi-
pation field of fully developed turbulence in laboratory and atmospheric flows. The accuracy of this
method can be understood in terms of computation of conventional thermodynamic quantities in
microcanonical and canonical ensembles. Comparisons with other direct and indirect methods of

computing f () are made.

I. INTRODUCTION

It is now widely accepted that physical systems that ex-
hibit chaotic behavior are generic in Nature. Since these
systems lose information exponentially fast it is possible
to follow and predict their motion in any detail only for
short time scales. To describe their long-term dynamical
behavior, one must resort to suitable statistical descrip-
tions. One such description is the multifractal formal-
ism.! 74

The multifractal formalism relies on the fact that the
highly nonuniform probability distributions arising from
the nonuniformity of the system often possess rich scaling
properties including that of self-similarity. The study of
the long-term dynamical behavior of the physical system
can then be attempted by the characterization of the frac-
tal properties of a measure that can be associated with
the nonuniform distribution. Some examples are the spa-
tial distribution of dissipative regions in a turbulent
flow,>~7 the invariant probability distribution on a
strange attractor,* the distribution of voltage drops
across a random resistor network,? and the distribution of
growth probabilities on the external surface of a
diffusion-limited aggregate.” For general reviews on the
field see Refs. 10 and 11.

The multifractal formalism describes the statistical
properties of these singular measures in terms of their
singularity spectrum,>* or their generalized dimensions.?
In particular, if we cover the support of the measure with
boxes of size / and define P;(/) to be the probability (in-
tegrated measure) in the ith box, then we can define an
exponent (singularity strength) a; by

P(~1% . (1)

If we count the number of boxes N(a) where the proba-
bility P; has singularity strength between o and a+da,
then f (a) can be loosely defined* as the fractal dimension
of the set of boxes with singularity strength a by

N(a)~1]"fla) )
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This formalism leads to the description of a multifractal
measure in terms of interwoven sets of Hausdorff dimen-
sion f(a) possessing singularity strength ab* On the
other hand, the generalized dimensions D,, which corre-
spond to scaling exponents for the gth moments of the
measure, provide an alternative description of the singu-
lar measure."?!? Once again, if we cover the support of
the measure with boxes of size / and define P;(/) to be the
probability in the ith box, then one can define a series of
exponents parametrized by g according to

1D

Span~1""""% (3)

For mathematical reasons one is often interested in the
limit of the box size going to zero leading to the conven-
tional definition

In> PA(1)
1 i

b= =M @

In the literature, the generalized dimensions were in-
troduced earlier than the singularity spectrum and have
been easier to compute than the latter, which accounts
for their wide usage. The generalized dimensions are ex-
ponents that characterize the nonuniformity of the mea-
sure; positive g’s accentuate the denser regions and nega-
tive ¢’s accentuate the rarer ones. In addition, for certain
special values of g one can intuitively recognize D, as the
dimension of a special set, which supports a particular
part of the measure. For example, D, - is the dimension
of the support of the measure, and D, -, is the dimension
of the measure-theoretic support of the measure (also
known as the information dimension). More generally,
the geometric meaning of the other D,’s can be under-
stood as the dimensions of the set, which when used to in-
tersect the measure creates a divergence of moments of
order g or higher."? In contrast to the complicated
geometrical interpretation of the D,’s, the f(«a) singulari-
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ty spectrum®* provides a precise and intuitive description
of the multifractal measure in terms of interwoven sets,
with differing singularity strengths a, whose Hausdorff
dimension is f (a).

When f(a) and D, are smooth functions of a and g,
f(a) is simply related to 7(g)=(g —1)D, by a Legendre
transformation.>* This relationship is a natural conse-
quence of a deep connection of the multifractal formalism
with that of equilibrium statistical mechanics.>~!" In
particular, 7(g) and g are conjugate thermodynamic vari-
ables to f(a) and a. Given one of the smooth functions,
e.g., the D, curve, one can easily transform it to the f(a)
curve. In fact, since the D,’s have, in the past, been
easier to evaluate for measures arising from real or com-
puter experiments, the f(a) curves have usually been
determined by the Legendre transform of the 7(q) curve.
For these reasons, one is led to believe that knowing one
of them is as good as knowing the other. That is correct
in theory but not in practice. There are two reasons:
Firstly, the log-log plots involved in the measurement of
D,’s, rather than showing perfect linear behavior, tend to
be modulated by oscillations (due to lacunarity) and show
scatter (usually because of insufficient data). The ex-
istence of these problems is well known and they are
commonly encountered in the analysis of data from labo-
ratory experiments; for example, in fluid turbulence and
in structures such as the Hénon attractor. The analysis
of such data for its scaling information involves finding
an approximately linear region in a log-log plot of the gth
moment of the measure with respect to the box size.
Each such exponent has its own error bars, dependent
among other things on the value of g. The D, ’s corre-
sponding to large negative g’s may have large error bars,
as they correspond to rarely occurring events of low in-
tensity, and therefore depend on the number of points in
the sample and the relation of the chosen box size to the
underlying dynamics. Legendre transforming such a
curve, which we know only at a finite number of points
with variable precision, makes the error bar estimation in
the new formalism a hazardous task.

The situation gets more complicated when discontinui-
ties exist in the D, curve. This corresponds to a phase
transition in equilibrium statistical mechanics, and it is
now well known that such transitions occur frequently in
nonhyperbolic systems (and in higher-dimensional hyper-
bolic systems). The logistic map X, ., =A4X,(1
—X () at A =4 is one such example.'®!° In such cases,
the smoothing procedure can cause several problems (as
discussed in some detail by Grassberger, Badii, and Poli-
ti.') In addition, the analytic Legendre transform rela-
tion breaks down in such cases, making it more difficult
to extract the f(a) from the D, curve. Therefore one is
motivated to find a way to directly determine f (a) from
experimental data without resorting to the intermediate
Legendre transform.

One might expect that Egs. (1) and (2) provide us with
a straightforward method of computing f(a) directly.
For example, one could cover a given measure with boxes
of size /, and compute the probability in each box. Equa-
tion (1) would then assign an exponent «; to the ith box.
Counting the number of boxes N () that possess a partic-
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ular singularity strength «, and plotting that quantity
against the box size / on a log-log plot would yield — f (a)
as its slope. However, following such a procedure for
finite data yields inaccurate answers due to poor conver-
gence to asymptotic values. For example, Mandelbrot'?
has noted that for the binomial measure (two-scale Can-
tor measure) the entire f(a) curve visibly overshoots are
true value even after using 10'° boxes (or intervals). Simi-
lar overshoots or undershoots are evident in other
methods proposed to directly compute f(a) from
data.’® 2! The reason for the overshoot are the scale-
dependent prefactors in Eq. (2).2%*2 While such
overshoots are not a problem if one first computes and
then Legendre transforms the D, curve, such a method
has several other disadvantages as discussed earlier.

II. THEORY

We will discuss a new method to directly compute
f (a) that was recently proposed in Ref. 23. The idea was
to focus on the fact that f(a) is simply the dimension of
the measure-theoretic support of a particular mea-
sure?>'21%23 (j e, the complement of the set has zero Le-
besgue measure). For a special class of measures that
arise from multiplicative processes one can prescribe a re-
cipe for computing f (a) as follows.

Cover the experimental measure with boxes of size /
and compute the probability in each of these boxes P;(l).
Then construct a one-parameter family of normalized
measures u(q) where the probabilities in the boxes of size
l are

[P(D)*

e 5
S[P(D]* ®
J

:u’i(q’l):

As in the definition of the generalized dimensions, Eq. (4),
the parameter g provides a microscope for exploring
different regions of the singular measure. For g > 1, u(q)
amplifies the more singular regions of the measure, while
for g <1, it accentuates the less singular regions, and for
g =1 the measure u(1) replicates the original measure.
Then the Hausdorff dimension of the measure-theoretic

support of u(q) is given by?* 26
g 1
flq)= Nh.l,nw InN igl,u,-(q,l)lnu,-(q,l)
(g, Dnp;(g,1)
=zhfé In/ ) ©

In addition, the average value of the singularity strength
a;=In(P;)/Inl with respect to u(q) can be computed by
evaluating

— i %
alq) 1\/11_1»110c InN iél,u,-(q,l)lnP,»(l)

S u(q,DInP;(1)

[ L
lh—l»% Inl/ ’ X

Equations (6) and (7) provide a relationship between a
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Hausdorff dimension f and an average singularity
strength a as implicit functions of the parameter gq.
Moreover, it is easy to exploit the relationship of these
definitions of f(g) and a(q) to the definition of the gen-
eralized dimensions in Eq. (3) to show* that f =ga—7
and a=dt/dq, these being the Legendre transform rela-
tions already mentioned. Therefore Egs. (6) and (7) pro-
vide an alternative definition of the singularity spectrum,
which can be used to compute the f(a) curves directly
from experimental data without the intermediate Legen-
dre transform of the 7(g) curve.

In Ref. 23 this method was used to analyze a two-scale
(binomial) Cantor measure. This measure is constructed
by considering a unit interval and dividing it into two
equal parts with unequal probabilities p; and p, on each
part. This process is continued such that at each stage of
refinement, each of the pieces of length / breaks up into
two new pieces of length //2 but unequal probabilities in
the ratio p, and p, to the previous piece. It was shown
that when box sizes were chosen of the form
27" (n=1,2,3,...), thus optimally covering the pieces
to reflect the multiplicative process giving rise to the
measure, the log-log plots from Egs. (6) and (7) were
straight lines and the resultant f(a) curve was in exact
agreement with the theoretical curve. However, if box
sizes were chosen to some other base [e.g., (1.1)7"], then
the log-log plots from Egs. (6) and (7) were straight lines
modulated by oscillations through which least-squares fits
were made, thus giving rise to error bars when calculat-
ing the f(a) curve. Despite these errors, the method
reproduced most of the f (a) curve accurately, including
the peak value which corresponds to the Hausdorff di-
mension of the support of the original measure D, and
the Hausdorff dimension of the measure-theoretic sup-
port of the measure D, (at f =a).

In this paper we will apply this method to determine
the scaling properties of the dissipation field of fully
developed turbulence. In addition, we will discuss the
thermodynamic interpretation of this method and show
that other methods of directly computing f (a) overshoot
or undershoot the values of Dy and D, due to finite-size
corrections arising from logarithmic prefactors in Eq. (2).

III. APPLICATIONS TO FULLY DEVELOPED
TURBULENCE

In turbulent flows, the transfer of kinetic energy from
the large scales of motion to the smaller ones can be
thought of as arising from a multiplicative cascade pro-
cess. The manifestation of this flux of kinetic energy at
the smallest scales is the rate of dissipation €, which is
defined as
2

=X , (8)

8_5_

ou; n du;

Ox; a—x,

where u; is the component of the turbulent velocity in
direction x; and v is the kinematic viscosity. Expecta-
tions of a multiplicative cascading process lead us to be-
lieve that € could have a multifractal distribution in phys-
ical, three-dimensional space. For general literature on
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this subject see Refs. 1 and 27-34.

Analnous to Eq. (1), one can now define a scaling ex-
ponent a in terms of the total dissipation (E;);, which
occurs in a box of size / at a position given by the index i
according to

(Ep;=1"". 9)
In Ref. 33 the f(a) curve of one-dimensional sections
through the three-dimensional distribution was obtained
using the moment exponents (generalized dimensions) D,
and then applying the Legendre transform. Here we wish
to apply the method of obtaining f (a) directly from Egs.
(6) and (7) in order to illustrate the usefulness of the
method and to show that the results are in good agree-
ment with the previous measurements of Ref. 33. We
consider two turbulent flows: a turbulent boundary layer
of moderate Reynolds number (R, ~110) and a high-
Reynolds-number flow (R, ~1500) in the atmospheric
surface layer. (Note that R, is an internal Reynolds
number based on the root-mean-square fluctuation veloci-
ty and the so-called Taylor microscale A defined in Ap-
pendix A. R, is proportional to the square root of the
usual Reynolds number based on the integral length
scale.)
The data are obtained from measurements of time
series of the streamwise velocity component u,(¢) using
hot-wire anemometry. As usual, Taylor’s frozen-flow hy-

(8u/84)% or (Bu/0x)?

| AR LN A AR KU

(0u/811% or (8u/8x)?

FIG. 1. Typical signals intepreted as representative of the
dissipation rate € on a one-dimensional cut through the instan-
taneous three-dimensional field of dissipation using Taylor’s
frozen-flow hypothesis. (a) From a flow in the laboratory
boundary layer at a moderate Reynolds number R; =110 (see
Appendix A). (b) From the atmospheric surface layer at high
Reynolds number R; > 1500 (see Appendix B).
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pothesis is used to justify considering the time series ob-
tained at a single point as a linear cut through the
“frozen” turbulent velocity field in the streamwise direc-
tion. Furthermore, it is assumed that the gradient of only
one velocity component in one direction is representative
of the dissipation (which actually consists of nine terms).

Therefore the dissipation is defined as
e~(du,/dt), (10)

where the derivative was obtained by finite differences.

-4 F (g) 1t (h) R
q=0.0 g=-0.25
-6 ’. 4k 4
s 1k J
9 . (1)
:% q=-0.5
= =
=
O
W= : C J
-4 r (K) ®
9=-1.5 /"J
-6 F /
T 7 3
log(1/7) log,o(1/7)

FIG. 2. (a)-(f) Plots of 3,u;(q,Dlogo(E;); vs log,o(l) for
different positive g values for the laboratory boundary layer
flow. The slopes of these graphs are a(q). The scaling range
(indicated by vertical bars) is about 1.2 decades. (g)—(1) Plots of
(the internal energy) 3 ,u;(qg,0)log,o(E;); vs log(/) for different
negative g values for the laboratory boundary layer flow. The
slopes of these graphs are a(g). The scaling range (indicated by
vertical bars) is about a decade.
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The resulting data sets can be considered as one-
dimensional cuts through a three-dimensional field. De-
tails of the experimental conditions can be found in Ap-
pendixes A and B. Figure 1 shows typical signals of € in
the two flows considered. These distributions can be
thought of as resulting from a multiplicative process,
where the higher Reynolds number corresponds to more
stages of the process.

In order to obtain f(g) and a(gq) we define a normal-
ized measure y; in the ith box in terms of the dissipation
field according to

1
'
w

= wilg, Dlog ol (g, )]
0
o
u
e}

S 3
I
= .l
o
=
3 sr )
W~ -3 : : - =
(K) o
-4 g=-1.5 Hon” F ° 0%
% 1 M
-5 L o b l ] 4
o S R NS Al A
1 ; 3 i z 3
log, (/) log (/7))

FIG. 3. (a)-(f) Plots of 3 ,;u.(q,logo[pi(g,1)] vs log,(!) for
positive values of g for the laboratory boundary-layer flow. The
slopes of these graphs are f(gq). The scaling range (indicated by
vertical bars) is identical to that in Fig. 2. (g)—(1) Plots of (the
entropy) 3 u;(g,1)logo[p:(g,1)] vs log,o(]) for negative values of
g for the laboratory boundary-layer flow. The slopes of these
graphs are f(q). The scaling range (indicated by vertical bars) is
identical to that in Fig. 2.
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where, again, the sum in the denominator is evaluated
over all the boxes j of size I. According to Egs. (6)
and (7), plots of I;u;(q,logo(E;); versus logy(!)
will have slopes equal to a(gq), whereas plots of
>iui(q,Dogolpni(g,1)] versus log,o(!) will yield slopes
equal to f(g).

We first analyze the data from the laboratory boundary
layer at a Reynolds number of about (R, ~110). Figures
2(a)-2(1) show the linear scaling obtained by computing
Siui(g,Dlogo(E;); versus log;o(/). (In all the figures, the
box size / will be normalized by the Kolmogorov scale 7.
Such a normalization only causes a translation of
the abscissa and does not affect the exponents.) Simi-
larly, Figs. 3(a)-3(1) show the scaling behavior of
Siui(g,Dlogo(u; ) versus log,,(7) for various values of q.
The scaling range is a function of the Reynolds number
and at this Reynolds number is not large. The linear
scaling for positive g is shown as solid lines calculated by
least-squares error fits in a range indicated by the vertical
error bars, which for positive g is slightly more than one
decade. One must take note of two aspects for negative g
plots. These are discussed in Refs. 20 and 35 and Appen-
dix A. Briefly, these correspond to regions of low dissipa-
tion and thus the results are more likely to be corrupted
by noise in the data. In addition, there is another source
of error in this region because of occasional nonturbulent
portions of fluid. This has an effect of creating boxes
with spuriously low values of dissipation in them, which
are emphasized when the probability in each box is raised
to a negative g value. These spurious contributions can
degrade the true scaling of the data for ¢ < 1.

In Fig. 4 we compare the f(a) curve generated by this
method with those of previous results’ generated by
Legendre transforming the measured 7(q) curve. There is
good agreement between the two curves. Since the latter

0.0

FIG. 4. Comparison of the f(a) curve of the dissipation field
of one-dimensional sections of the flow in a laboratory boundary
layer, using the (canonical) direct method discussed in Sec. II
(circles) and from Legendre transforming several averaged 7(q)
curves (solid lines). The agreement between the two curves is
quite good.
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curve is the Legendre transformation of an average of
several 7(q) curves, accurate estimation of error bars is
difficult. Nevertheless, it appears that it yields adequate
results in the present instance.

We now analyze data corresponding to the dissipation
field of the atmospheric surface layer. Figures S(a)—
5() show the linear scaling obtained by compu-
ting 3;u;(g,Dlogo(E;); versus log,y(/). Similarly, Figs.
6(a)—6(1) show the linear scaling obtained by computing

rT T . . r - . )
! |
| el - |
al Pl 4
Lo g2 ; o o0 o
WL ta) || (bl |
9=4.0 q=3.0
< gl — . . .
e : - —
= |
:‘; °l / T M’/dﬂ“ i}
’:ﬁ R (c) ] *’M (d) 1
= 472.0 ¢=1.5 |
()~ -8 . . . . O VN SO SO
S f——— o
T ﬂ T P
)W»‘”’”/ (e) e
4L L o
[ J q:l.ﬁ / qzu.r {'
|
B R R E 7 3 3 .
log(l/m) log (/)
: 3 . T : TN ; }‘
=0.0 4=-0.5 o ]
-5 L ar / 1
= ]
]
~ 1 ]
g T ‘mﬂ j
E :
= o ]
= 1
= {
£ 1
Ll _ N

logo(2/77)

logy(l/n)

FIG. 5. (a)-(f) Plots of 3 ;1,(g,1)logo( E;); vs logo(!) for pos-
itive values of g for the atmospheric boundary-layer flow. The
slopes of these graphs are a(gq). The scaling range indicated by
vertical bars is about three decades. Oscillations are visible for
high values of |g|. (g)—() Plots of (the internal energy)
3 .ui(g,Dlogo(E;); vs logo(!) for negative values of g for the at-
mospheric boundary-layer flow. The slopes of these graphs are
a(q). The scaling range indicated by vertical bars is the same as
that in (a)—(f). Oscillations are visible for high values of |g].
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>ini(g,Dlogo{p;) versus logo(l) for various different
values of q. The high Reynolds number (R; ~1500) re-
sults in scaling over almost three decades. In Fig. 7 we
show the f(a) curve computed for the atmospheric sur-
face layer. We note that Dy=1, which tells us, once
again, that there is no undershoot or overshoot of the en-
tire curve. In addition, in Fig. 7 we compare the f(a)
curve generated by this method with those of previous re-

C— T T T T T T T
ooftsm0 M
-2 F 5 fo gonmo b
ol (a) {_ (b} |
q=4.0 q=3.0

(g, 1) og | (g, 1)
&

E
= oo
:: ol (1) o (y) |
= o a=-1.0 q=-1.5
3
L~ -8 L . . .
a T T T D# T o /ﬂ;&;&
o unn Qn o°
2+ o = | P S N
ey Cd ﬂ“
a | (K) | (1)
| T 1
6 ] > 3 [ 5 3 3 3 S
log,o(l/7) logyo(1/7n)

FIG. 6. (a)-(f) Plots of 3 ;u,(q,Dlogo(u;) vs log,o(1) for posi-
tive values of g for the laboratory boundary-layer flow. The
slopes of these graphs are f(gq). The scaling range is identical to
that in Fig. 5. (g)—(1) Plots of the entropy 3 ;u,(q,Dlogo(u;) vs
log,o(!) for negative values of g for the laboratory boundary-
layer flow. The slopes of these graphs are f(gq). The scaling
range is identical to that in Fig. 5.
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sults®® generated by Legendre transforming the (q)
curve. Once again there is good agreement between the
two curves.

Finally, we note that these f(a) curves give us the
Hausdorff dimensions of the various iso-a sets of the dis-
sipation field of turbulence. If the Reynolds number is
sufficiently high, so that one is in the region of fully
developed turbulence, then the various f(a) curves com-
puted from data from various different experiments (i.e.,
an atmospheric surface layer, a laboratory boundary lay-
er, the wake of a cylinder, and a turbulent flow behind a
grid) are identical to within experimental accuracy.>> In
particular, the reader should compare Fig. 4 with Fig. 7.

Such results are consistent with the idea of a universal
distribution of the small scales of turbulence, which does
not depend on the details of the flow. The expectation of
scale similarity at small scales arises from the fact that at
high Reynold numbers viscosity effects are negligible. In
the absence of this term, the Navier-Stokes equations be-
come invariant under scale transformations. In addition,
the randomizing effect of turbulence causes the small-
scale structure to be largely independent of the large-
scale structure, which may depend on the boundary con-
ditions. These considerations are at the heart of the ar-
guments leading to the classic —3 spectral exponent in
Fourier space,?’ and have also been the motivating factor
for the creation of various cascade models used to de-
scribe turbulence. 333134

In Sec. IV we compare this method (hereafter referred
to as the canonical method) with other methods recently
proposed to compute f(a) directly. We present an ex-
planation of why these latter methods overshoot or un-
dershoot the true curve and examine the circumstances
under which these differences are significant.

1.0

fla)

FIG. 7. Comparison of the f(a) curve of the dissipation field
of one-dimensional sections of the flow in the atmosphere using
the (canonical) direct method discussed in Sec. II (circles) and
from Legendre transforming several averaged 7(g) curves (solid
line). The agreement between the two curves is quite good.
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IV. DIRECT DETERMINATION OF f (a)
BY HISTOGRAMS

Recently, several other methods have been proposed to
compute f (a) directly from multifractal measures. The
starting point is the observation that one should be able
to obtain a and f (a) directly from Egs. (1) and (2). How-
ever, by naively taking the logarithms of these equations,
one is usually left with adjustable constants due to the
fact that one does not know the precise numerical prefac-
tors to the power laws. In order to circumvent this
difficulty, Arneodo, Grasseau, and Kostelich®® assumed
that these prefactors were constants independent of a or
g, and determined them by numerical fits based on data
from three different length scales (box sizes). Such a
method presents difficulties when analyzing experimental
or numerical data where cutoffs terminate the power laws
at length scales that may not be known a priori, when
there are oscillations around power laws, or when the
preexponential terms depend on a. It is generally recog-
nized that for the practical determination of scaling ex-
ponents it is usually better to consider several different
length scales and obtain the exponents from regression
plots. This idea was developed in Ref. 20 to obtain a and
f(a) from the scaling properties of histograms.

However, both methods present problems as Eq. (2) is
not exact at finite length scales because the normalization
requirement of the total measure necessitates prefactors
that depend on log,o(1/]) (and its powers). We first ela-
borate on this point, and summarize the method of ob-
taining f(a) directly by histograms? before applying it
to the turbulent dissipation fields described previously.
The purpose is both to illustrate its utility and shortcom-
ings. Before doing so, however, the reader should notice
that the problems of normalization discussed below are
clearly absent in the method described in Sec. II.

Let us focus on how to evaluate the preexponential fac-
tors in Eq. (2). As recognized by van de Water and
Schram,?? the normalization of the total measure requires
that

SPf| = [Cplaxne/@da=1. (12)
1

q=1

Expanding f (a) up to second order around a* [minim-
izing a— f(a)] and evaluating the above integral by
steepest descent gives
172

2m ot = fa*) = (13)

Cpla*) |——2
P (/DL

for any /. Since the power-law dependence of [ is ab-
sorbed in f(a), the dependence of C on / cannot be a
power law. This condition thus implies that

172

m Vin(1/0) . (14)

C =p( t)—l
pre (@)

Therefore the leading correction to Eq. (2) is of the order
VIn(1/1). Following Ref. 22, higher-order corrections in
Eq. (2) can be taken into account by expanding p(a) to
second order and f(a) to the fourth order. This leads to
a normalization constant of the form
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C,(a*)

C=Cyla*)VIn(1/]) /D

1+ , (15)

where the coefficients C, and C, depend on the functions
pla), f(a), and their higher-order derivatives all evalu-
ated at a* =a (g =1).2022

This shows that the proportionality constant in Eq. (2)
has to depend on powers of In(1//) and that Eq. (2)
should be replaced by

N(a)da~ViIn(1/D){1+Cyla,-)[In(1/D)]"
+ - J ()Y (16)

Measuring the slope of the regression plots to deter-
mine f(a) corresponds to taking the derivative of the
logarithm of Eq. (16) with respect to In(1//). After sim-
ple manipulations, one obtains

d{In[N(a)dal}/d[In(])]
=—f(a)—[2In(1/D]!

+Cyla, - )In(1/D] 7>+ - -, 17
which would correspond to the slope of log-log plots.
This shows that these slopes would yield the correct f ()
only up to order [In(1/1)]~}, this being the reason for the
observation!>1929.23 that f(a) obtained along these lines
overshoots considerably its asymptotic values, the error
diminishing very slowly as [In(1/0)]"".

It was shown in Ref. 20 that one can thus correct for
the first term (as was also done by Grassberger, Badii,
and Politi!®). Higher-order corrections cannot be deter-
mined accurately from experimental data.

For purposes of comparison, we now briefly summarize
the method of scaling of histograms of Ref. 20. One
defines a quantity X as the logarithm of the total measure
P;(L) contained in each box

X,(D=log, [P;(D] , (18)

which varies from box to box. For a given box size /, X
will assume values that fluctuate between some limits,
say, X ...(0) and X, (/). It is easy to see that if one plots
the values of X, (/) as a function of log(/), the slope of
the graph will correspond to «a,,;,. Similarly, the slope of
Xmin versus log;(/) corresponds to a,,. In order
to . obtain intermediate values of a, the interval
[ X min(1), X max (1)] is discretized into pieces of equal length
AX, and plots of these intermediate values of X (/) versus
log,o(!) will yield slopes of a that are intermediate be-
tween a,;, and a,,,.

In order to obtain the exponent f(a) one constructs
histograms of the different values of X;(/). Suppose that
one counts N,;(X)AX, which is the number of boxes of
size / such that the variable X takes on a value in some in-
terval AX around X. It was shown in Ref. 20 that in or-
der to absorb the first-order correction in Eq. (14), one
could divide N(X)AX by AX'!72. Therefore if one plots
double logarithmic plots of N(X)AX!/? versus [/, the
slope should be f(a) plus some error of order
logo(1/1)72. Thus the error can be small if the available
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FIG. 8. Comparison of the f(a) curve using the method of
scaling of histograms (diamonds) and the (canonical) method
(circles) for the flow in an atmospheric surface layer. The good
agreement is due to the large scaling range available at high
Reynolds numbers. Terms in the order of [In(1/1)]”? that are
neglected by the histogram method (Ref. 20) are negligible in
this case.

scaling range is large, or substantial if the scaling range is
small.

We now illustrate this method by applying it to the
same turbulence data analyzed in Sec. III. In Fig. 8 we
compare the f(a) curve obtained by the method of scal-
ing of histograms with that of the canonical method for
data from the high-Reynolds-number atmospheric flow.
There is good agreement of the two curves as well as that
obtained from previous results by Legendre transforming
the 7(q) curves. This is because three decades of scaling
makes the second-order correction term [log(1/1)] 2
negligible. However, for the laboratory flow case (Fig. 9)
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FIG. 9. Comparison of the f(a) curve using the methods of
scaling the histograms (diamonds) and the (canonical) method
(circles) for the boundary layer flow. The significant discrepan-
cy is due to the small scaling range available at the moderate
Reynolds numbers in the boundary layer. Terms in the order of
[In(1/1)]7? become important and incorrectly bias the f(a)
values obtained from the histogram method.
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where only about one decade of scaling was available, the
second-order correction term [log,,(1/1)] 2 is rather
large, accounting for the strong undershooting of the his-
togram method from the asymptitic curve. Since we do
not know the exact value of C,(a,~;) in Eq. (17), it is not
possible to obtain the deviation from the correct value,
but the order of magnitude of the undershooting in Fig. 9
is consistent with the magnitude of [log(1/1)]72.

V. THERMODYNAMIC INTERPRETATION

The method discussed in Sec. II can be understood as a
canonical method of computing an entropy f(a).!>?3%7
To understand this statement, consider the thermo-
dynamic formalism of multifractals.!?1316.23.37.38  The
partition function Z (j3) for equal box sizes can be written
as

Z(B)=3 P~ . (19)

Define a variable

E,;=—In(P,) . (20)
Then
Z(B)=exp(—BE;)=explq In(P;)] . 21

Thus one can identify ¢ with a Boltzmann temperature
(B=1/kT), and E,; as the energy of the ith piece. Similar-
ly, since the partition function can be rewritten as an ex-
ponential times a free energy (by convention’’ we absorb
the temperature dependence in the free-energy function
itself), using Eq. (19),

Z(B)=exp[ —nF(B)]=exp[—7In(])] . (22)

This identifies 7 with the free energy. Similarly, one uses
the Legendre transforms of the free energy to identify

fla) as an entropy and arrives at the following
identifications:
g =B (inverse temperature) , (23)
T7=F(B) (free energy) , (24)
f =S (entropy) , (25)
a=U (internal energy) . (26)

The computations of the f (@) curve can be understood
as the computation of the entropy versus internal energy
curve of a statistical-mechanical system. To compute
thermodynamic quantities (defined in the limit of N — o)
from finite samples, one usually considers a canonical en-
semble, i.e., one weights different configurations with
their Boltzmann weights and computes expectation
values. This is precisely what Egs. (6) and (7) do. The
weighting term in those equations, which is given by Eq.
(5) is [using Eqgs. (20) and (23)]

[P} exp[—BE,(D]
S[P;()  Zexp[—BE;(D]
J

uilg, )= (27)

i
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This is precisely a Boltzmann weighting factor. Previous
methods of direct determination of f (a) have attempted
to use Egs. (1) and (2) without incorporating all the
corrections, and are simply computing thermodynamic
averages via microcanonical ensembles. This assumes
that the most probable value is also the average value
[the statistical-mechanical interpretation of assuming
that of a single dominant term approximation in evaluat-
ing the integral in Eq. (12) via steepest descent] and is
correct only in the limit of N — o. The severe finite-size
effects in the form of logarithmic prefactors giving rise to
overshoots or undershoots in the f(a) curve arise pre-
cisely due to this assumption and can be taken care of by
using the canonical method. One should note that in tur-
bulence, the range of scaling is decided by the Reynolds
number, and these finite-size effects are large and cannot
be neglected if one is studying a flow at low or moderate
Reynolds numbers.

Two further comments: Firstly, if one first computes
7(q) and then Legendre transforms, then one can show
that one gets a canonical average of the entropy.?® This
explains why such a procedure does not suffer from the
undershoot or overshoot problems. It, however, suffers
from the problems discussed in Sec. I. Secondly, the
averaged value of a very often has direct physical inter-
pretation; for an example, see Ref. 39.

VI. CONCLUSIONS

We have elaborated on a new method of determining
f(a) directly from multifractal measures based on a
canonical method of computing thermodynamic aver-
ages. We have shown that it is an accurate and simple
method for the direct determination of f (a) from experi-
mental data and eliminates the need to perform Legendre
transforms of the D, curves with the associated approxi-
mations involved in that procedure. We have also re-
viewed other methods recently proposed to measure f ()
directly from scale-invariant histograms. We have shown
that the presence of logarithmic prefactors complicates
the implementation of such methods considerably, and
their neglect results in finite-size effects. Such methods
may, however, be a useful alternative for cases where the
determination of histograms at different scales can pro-
vide insight into the underlying statistical and self-
similarity properties of the measure. If one is interested
in the asymptotic f (a) curve, the canonical method is the
best choice because of its simplicity and the absence of
logarithmic corrections. This is particularly so when the
f(a) curve possesses discontinuities corresponding to
phase transitions.
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APPENDIX A: LABORATORY EXPERIMENTS
IN THE BOUNDARY LAYER

We consider measurements in air in a constant pres-
sure turbulent boundary layer on a flat plate at a
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moderate Reynolds number. The free stream velocity of
the flow is 12 m/s, the boundary-layer thickness § is 4 cm
at the measuring station, and the hot wire is located at a
height above the wall of y/8=0.2. The hot wire is
operated at an overheat ratio of 1.7 and the signal is low-
pass filtered (roll-off rate at 18 dB per octave) with a
DANTEC 55D26 signal conditioner at the noise floor
(12.5 kHz) observed in the on-line power spectra (taken
with an HP 3561 A spectrum analyzer). The signal is di-
gitized with a 12-bit resolution on a MASSCOMP 5500
computer at a sampling rate of 25 kHz. Ten consecutive
data files, each consisting of 10° points, are used for the
analysis. The Kolmogorov microscale 7 is calculated
from the signal according to

1/4
VviU?

=\l , (A1)
K 15¢(du, /3t)?)

where U, is the mean speed at the measuring station
(9m/s), v is the kinematic viscosity of air, and
((du, /3t)?) is the measured average of the square veloci-
ty derivative. The result is y=0.016 cm. The Taylor mi-
croscale A is calculated from the equation
p= i (A2)
((du, /3t))'* °

where u | is the root mean square of the velocity fluctua-
tions. This leads to a value of A=0.3 cm. The Reynolds
number R, based on the Taylor microscale is

ul
R, = 1‘/ =110,

(A3)

which is moderate. The relatively short scaling range
available for this flow will be specially suited as an illus-
trative test case for the various methods of computing
fla).

The rate of turbulent dissipation ¢ [defined in Eq. (8)]
depends on the spatial gradients of the three velocity
components’ three coordinate directions. Now we as-
sume that the square of the velocity gradient of one ve-
locity component in only one direction is representative
of the actual dissipation consisting of nine terms. These
assumptions have been shown to be satisfactory in a
slightly different context in Ref. 6. Also, as has been the
practice, Taylor’s hypothesis is used. This means that the
time series of u, that is measured is considered as a linear
cut through the frozen turbulent velocity field in the
streamwise direction x;. By measuring the f(a) curve
with and without invoking the Taylor hypothesis, it was
shown in Ref. 40 that this is a reasonable procedure in
the context of passive scalar intermittency. Finally,
ou, 2

ot

where the derivative is obtained simply by finite
differences. The total dissipation E; occurring in a box of
size / is normalized according to

_fedx

*fedx’

e~v(1/U?) (A4)

E, (AS)
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where the integral in the numerator is performed within a
segment of size /, and that in the denominator is over the
entire data set of 107 points (approximately 4.10* integral
length scales).

A problem arises due to the entrainment of fluid from
outside the boundary layer when it occasionally reaches
the hot wire in an irrotational state. One then observes
extremely low values of dissipation, which produces very
long tails on the left-hand side of the histograms of E;.%°
This phenomenon has been observed before in two-
dimensional slices of a turbulent jet® and in the wake of a
circular cylinder. The choice to study the boundary layer
was motivated, in part, because it was suspected that
such “laminar” regions occurred much less frequently
near the wall in that flow than on the center line of a
“free shear flow” like the wake.

This ‘“‘outer intermittency” is a dynamically different
process, and (in any case) occurs quite rarely at the mea-
surement station. Therefore it was attempted to elimi-
nate such laminar regions from the data by setting an ap-
propriate threshold and hold time on the dissipation.
(The threshold and hold time were set entirely for pur-
poses of identifying and eliminating the laminar regions,
and were not changed during data processing.) This elim-
ination could bias the results on the low-intensity regions
of the distribution [right-hand side of the f(a) curve],
but it was verified that there was no effect on the rest of
the curve as a result of this procedure. The threshold
that is used is a factor of 0.0054 times the mean dissipa-
tion within the turbulent region. The hold time used is
Al=10n (where Taylor’s hypothesis has been used).
Therefore if the total dissipation in a box size of Al is less
than 0.0054 (&)Al, we simply eliminate from the data set
not only that box but a large segment of size 2007 cen-
tered around the original box. This eliminates a large
fraction of the laminar regions without eliminating the
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very sparse, low-intensity dissipation regions that occur
in the turbulent region. However, since some of the lami-
nar regions will still be present (i.e., those just above the
threshold), we expect the resulting histograms to be
biased on their low-intensity tails, meaning that the f ()
will not be reliable on its rightmost part. A brief discus-
sion of the effects of including the laminar regions has
been given in Ref. 41.

APPENDIX B: EXPERIMENTS
IN THE ATMOSPHERIC SURFACE LAYER

The data sets analyzed are the same as those used in
Ref. 33. We consider measurements of the air speed on a
windy day, at a height 4 of 2 m above the roof of a four
story building. The mean velocity at the hot-wire loca-
tion during the data acquisition is about 6 m/s. The hot
wire is operated at an overheat ratio of 1.7 and the signal
is low-pass filtered (roll-off rate of 18 dB per octave) with
a DANTEC 55D26 signal conditioner at the observed
noise floor of 3 kHz. Five data files, each 9 X 10* points
long, were taken. The root mean square of the fluctuat-
ing velocity is about 42 cm/s +30% and the Kolmogorov
microscale computed according to (Al) is 7=0.7 cm.
The Taylor microscale is about 2.5 cm. The Reynolds
number R; ~1500. Again, € is estimated using (AS5) and
E, using (A6). For this flow we expect the inertial range
to be quite large. Since the conditions of the experiment
are quite uncontrollable, and the data sets are not intrin-
sically large as in the laboratory flows, we do not expect
completely converged statistics. However, as shown in
Ref. 33, the variations between different data sets are not
too large (~10% variability in a,;, and a,,,,). Here we
use all five data sets together and perform the relevant
sums over all 4.5X 10° points.

*Present address: Center for Turbulence Research, Stanford
University, Stanford, CA 94305-3030.
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