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Thermodynamic generalization of the Saha equation for a two-temperature plasma

M. C. M. van de Sanden, P. P. J. M. Schram, A. G. Peeters,
J. A. M. van der Mullen, and G. M. W. Kroesen

Department ofPhysics, Eindhoven University of Technology, P O. B.ox 513, 5600 MB Eindhoven, The Netherlands
(Received 21 March 1989)

A thermodynamic generalization of the Saha equation for the case of a two-temperature plasma is

given on basis of a modification of the free energy. The resulting equation depends in the first ap-
proximation on the electron temperature only. This result has been obtained earlier on basis of ki-
netic arguments.

I. INTRODUCTION

In the past much attention has been paid to nonequili-
brium ionization in plasmas. The distribution of the en-
ergy over the constituents of a plasma, i.e., ions, elec-
trons, and neutral particles, is under these nonequilibri-
um circumstances dificult to determine. However, under
some conditions, if the exchange of energy among
different species of particles is relatively small and each
species has its own temperature, Saha's equation, which
interrelates the number of densities of ions, electrons, and
neutral particles, can be generalized.

Several generalizations for a two-temperature plasma
have appeared in the literature. There is, however, much
confusion about the correct form. On the one hand,
there are derivations which use kinetic arguments, '

i.e., the kinetics of a plasma are dominated by the elec-
trons due to the small mass ratio (m, /mt, « l, m, is the
electron mass and mh the heavy particle mass), and arrive
at the usual Saha equation with the thermodynamic tem-
perature replaced by the electron temperature. On the
other hand, there are derivations which use thermo-
dynamics and arrive at a Saha equation which contains
not only the electron temperature but also the heavy par-
ticle temperature. " Other generalizations using ther-
modynamics of irreversible processes lead in one case to
an equation containing only the electron temperature,
while in another case, by using in principle the same
methods, an equation with both heavy and electron tem-
perature is derived. '

From this review of the literature one can conclude
that there is a problem. It is clear that if basic assump-
tions used to model the plasma are identical then there
should be only one Saha equation. It is therefore impor-
tant to know which one is right in which case, since apart
from being of fundamental importance, Saha's equation is
used in calculating transport phenomena, "' in collision
radiative models, ' and for diagnostic purposes. '

The aim of this paper is to show that a natural exten-
sion of equilibrium thermodynamic principles leads in
good approximation to a Saha equation in which only the
electron temperature appears.

II. PLASMA MC3DEL

We consider here a plasma composed of electrons (e)
and neutral particles (0) and singly ionized ions (+) of the

where n,p and n; are the number densities of particles in
the state p and the ground state of the component i, g p,

and g, are the corresponding degeneracies of these states,
kb is Boltzmann's constant, and Ep —E, is the energy
difference between ground state and excited level p of the
component i. Usually the energy Eo of the neutral
ground state is chosen equal to zero, and thus E+ =I;,„
where I;,„ is the (possibly lowered) ionization potential.
The assumption that the internal state is ruled by the
electron temperature is equivalent to the statement that
the electrons are the dominant species concerning the
(de)excitation of the neutral particles and ions. Due to
the small mass ratio m, /mj, the reaction

Af+e~AP+e, i = {0,+ I, (2)

where A p is a particle in the state p of the component i, is
far more probable than the equivalent reaction where the
electron is replaced by a heavy particle. The existence of
the two-temperature plasma is closely related to this as-
sumption. Radiation processes are not considered.

As already mentioned kinetic arguments lead to a Saha
equation of the form

3/2
g, g~+ 2am, kb T,

g( h
exp[ —(E~+ E$ ) /kb T, ], —

(3)

where h is Planck's constant and g, is the spin degenera-
cy of the electron (g, =2). Equation (3) reduces to the
traditional Saha equation in case the plasma is in thermo-
dynamic equilibrium with T= T, . This can be derived
from the principle of microscopic reversibility and energy
conservation on the microscopic level. A thermodynam-

same element. Both heavy particles and electrons have a
Maxwell distribution with heavy particle temperature Tz
and electron temperature T„respectively. The internal
structure of the heavy particles, neutral particles, and
ions, is ruled by the electron temperature, i.e., the occu-
pation of the internal energy states of the heavy particle
is governed by Boltzmann's law with T= T, :

np gp
exp[ (Et' E—, )/kb—T, ], i = I0, + I,

n; g;
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ic derivation of Eq. (3) has not yet appeared in the litera-
ture, except for the one obtained by Ecker and Kroll
which is based on the principle of minimal entropy pro-
duction. A problem concerning the thermodynamic
derivation is the fact that a two-temperature plasma is
not in thermodynamic equilibrium. Therefore it is neces-
sary to extend minimum principles following from the
second law, e.g. , for the free energy, to situations of par-
tial equilibrium such as the two-temperature plasma.
Such extensions should be justified by an exact treatment
based on nonequilibrium thermodynamics, e.g. , Zu-
barev. ' An attempt will be made in a subsequent paper.

III. THERMODYNAMIC CONSIDERATIONS
FOR A TWO-TEMPERATURE PLASMA

5dS= gdS„~ g
n n n

where we made use of the fact that the total entropy is
additive. From Eq. (7) and the first law for the subsystem
n (the first law expresses energy conservation and is thus
valid for every subsystem n)

5Q„=dU„+5 W'„=d U„+p„dV,
where W„ is the work performed by the subsystem n, p„
the corresponding pressure, and V is the total volume of
the plasma, it follows that

dU, p„dVdS~Q +
T. T.

S= gS„, (4)

U=gU„,

where n runs over the different subsystems. Although we
have a two-temperature plasma in mind, the formulation
exposed here is more general. We consider the ionization
recombination process to be an isothermal process, i.e.,
during the establishment of the ionization equilibrium the
temperatures of the subsystems remain unchanged. In
general, this means that heat must be exchanged with the
surroundings of the subsystem. The second law of ther-
modynamics cannot be applied to the subsystems sepa-
rately since it may very well occur that

5
dS„&

n

5Q
while dSm

m

where 5QI, is the heat supplied to the subsystem k. Equa-
tion (6} stems from the fact that the subsystems are cou-
pled through particle exchange. So the entropy of one
subsystem can decrease while the entropy of the other
subsystem increases. The second law should be general-
ized in such a way that it remains a statement about the
entropy of the total system. The natural generalization is
then expressed by

We are considering a partial equilibrium: the ioniza-
tion equilibrium with different temperatures for electrons
and heavy particles. The plasma here is defined as the to-
tal system composed of two subsystems each character-
ized by its own temperature. These are the translational
degrees of freedom of the neutral particles and ions on
the one hand and the electrons and the internal structure
of the heavy particles on the other hand. The total sys-
tem as a whole is closed, whereas the subsystems are
open. The subsystems are considered to be open because
an ionization recombination reaction takes place, and
thus the particle numbers of each subsystem can change
during the establishment of the ionization equilibrium.
Furthermore, we assume that the energy exchange be-
tween the subsystems with different temperatures is
sufficiently small to treat them as statistically indepen-
dent. As a consequence the energy U and the entropy S
of the total system are additive quantities

or at constant T, and volume V

(dV)r ~~0, (loa)

where

(lob)

5
dS„~

n

(12)

Generally, this inequality does not hold for every subsys-
tem n as noted in the discussion leading to Eq. (6). From
Eq. (12) it would follow that

g T„dS„~g 5Q„=5Q . (13)

It is easily verified that the generalization Eq. (13) is un-

satisfactory even in simple situations. Consider, for ex-
ample, the most elementary multiple-temperature system
consisting of two subsystems each thermally isolated
from each other and the surroundings. The temperatures
of the two subsystems are T, and Tz. From Eqs. (13) and
(4}we obtain

TJ T
dSz, (14)

where dS2 is the entropy change of the subsystem 2. But
Eq. (14) states that, if the sign of dS~ is opposite to
(T, —T2), the entropy of the total system is allowed to
decrease. This obviously violates the requirements
dS, ~0 and dSz ~0. From Eq. (7), on the other hand, it

is the generalized free energy. Note that 7 resembles the
usual free energy but has the dimension of the entropy.

The function 7 determines the thermodynamic state of
the plasma and thus the ionization recombination reac-
tion. Equation (10a) has to be compared with the relation
commonly used in the literature ' '

(dF)r ~—= gdF„~O,
n, T Vn n,

where F„=U, —T„S„ is the free energy for the subsys-
tem n. Equation (11) is derived from the inequality
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dS~ T, —T2 5Q~

Tl T2

follows that dS ~ 0 in the case of the two isolated subsys-
tems since

'

ar„
Pn BX„y

We rewrite Eq. (20) as

(22)

and 5Q2 =0. If, however, 5Q =5Qi+5Q& =0 with

5Qi&0, i.e., only the total system is isolated, Eq. (15) still
holds. As a consequence the total entropy, in case of a
two-temperature system, can decrease if heat Rows from
the cold to the hot subsystem. In principle this is indeed
possible. However, it is a consequence of an inadequate
definition of the total system in a nonequilibrium situa-
tion.

In the reversible case the equality sign in Eq. (7) holds:

5Q„dS= gdS„= g
n n n

(16)

Equation (16} is equivalent to the one proposed by
Boercker and More' for the case that

5
dS„=

n

(17)

IV. DERIVATION OF THE GENERALIZED
SAHA EQUATION

In the ionization equilibrium

(dV)z. i =0, (18)

which means that the total particle numbers N„due to
the ionization recombination reaction

holds for every subsystem. In general, however, Eq. (16)
diA'ers from that of Boercker and More and might lead to
another formulation of the thermodynamics of two-
temperature systems.

In this section we have demonstrated that a return to
the (extended) original principles of equilibrium thermo-
dynamics expressed by Eqs. (7) and (8) leads to the
minimization not of the free energy F but, in case the
plasma has more than one temperature, of its generaliza-
tion X If all the temperatures of the subsystems are
equal, i.e., thermodynamic equilibrium, minimizing 7
yields the same result as minimizing F.

n

(23)

where v„=(dX„/dX) are the stoichiometric coefficients
of the reaction Eq. (19). Relation (23) is the generalized
law of mass action and is in agreement with the one de-
rived by Morro and Romeo. '

Since the subsystems are statistically independent, we
may assume that the expressions derived for a system in
thermodynamic equilibrium hold for each subsystem sep-
arately, thus the expressions'

U„=k„T„ ln[Z„( T„)],2 a

n

(24}

2= —g k&ln[Z„( T„)]= —kbln(Z„, ), (26)

where

Z„,=gZ„(T„) . (27)

This last equation is a consequence of the form of
the nonequilibriurn statistical operator introduced by
Zubarev' in the present situation of partial equilibrium.

Until now all the derived equations are generally appl-
icable to multiple-temperature situations, provided that
the interaction between the subsystems is suKciently
weak. To calculate the Saha equation for a two-
temperature plasma we have to know the partition func-
tions Z„(T„}explicitly. If we regard every component as
an ideal gas (ions, neutral particles, and electrons) then

'N
1 V

ge
e e

(28a)

S„=kbln[Z„(T„)]+kbT„ ln[Z„(T„)],a' "aT.
are valid for each subsystem n Here. Z„(T„)is the parti-
tion function of the subsystem n. Substitution of Eqs.
(24) and (25) into Eq. (18) together with the definition of
7, Eq. (10b), leads to

A++e~A

no longer change, and thus

(19) 1 V

N;! V;

t N.
I

i=tO, +) (28b)

d2
dX

L

gp dX„ =0,B&„d& y- y
(20)

where V, and V,- are the quantum volumes defined as
' 3/2h2

2~me kb Te
V, = (29a)

where N may be identified with any of the N„. The com-
bination of the first law, Eq. (8), and T„dS„=5Q„—p„dN„ leads to the thermodynamic identity for the
subsystem n

and

V, =
3/2

h2 i=[0,+]
2m'm; kb T(,

(29b)

T„dS„—d U„=p„dV —p„dN„,
from which we conclude that

(21)
whereas Z "' (i = [0,+ ] ) is the partition function of the
internal state of ions or neutral particles [see Eq. (1)]
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Z,'"'= ggt'exp( E—flkb T, ), i = I0, + I

JJ

(30)

In Eqs. (28) X„Xo,and X+ are the total number of elec-
trons, neutral particles, and ions. Substitution of Eqs.
(28) and (30) into Eqs. (26) and (20), and the fact that
mo-—m+ leads to

+ g Z+
no V, Zo"'

(31)

where n„no, and n+ are the total number densities of
electrons, neutral particles, and ions. Using Eqs. (1) and
(29a) we finally obtain

3/2
n n+ g g+ 277m kbT

nil gto h' exp[ —(Et+ E( )Ik„—T, ].

(32)

A natural extension of fundamental principles of equi-
librium thermodynamics is used to generalize the law of
mass action for multiple-temperature plasmas. A new
thermodynamic function 7 is defined from which all the
thermodynamic properties can be calculated. Using this
function V the ionization equilibrium of a two-
temperature plasma is studied. A Saha equation is de-
rived in which only the electron temperature appears, in
agreement with the results of Ecker and Kroll and the
results based on kinetic arguments. ' The thermo-
dynamics of Morro and Romeo' seems similar to our
treatment. They derive the same law of mass action.
However, they generalize the standard expression for the
partial chemical potentials in an incorrect way; the elec-
tron temperature is absent from the expressions relating

Equation (32) is the generalized Saha equation which has
also been derived on the basis of kinetic arguments [Eq.
(3)].

V. CONCLUSIONS

to the internal structure of the heavy particles. Therefore
they arrive at an erroneous result.

The multiple-temperature Saha equation (MSE) de-
rived in Refs. 4—8, which contains also the heavy parti-
cle temperature, is a consequence of the commonly used
law of mass action

giM„v„=0 . (33)
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Equation (33) is derived using a generalized second law
which is incorrect for the most elementary multiple-
temperature system [Eq. (14)] and, in case of a multiple-
temperature plasma, has to be replaced by Eq. (23). The
MSE has been compared with a complete kinetic model
by Richley and Tuna. ' The model yields the single-
temperature Saha equation [Eq. (32)] and therefore invali-
dates the MSE. This theoretical result is confIrmed by re-
cent experiments by van der Mullen et al. ' and Bakshi
and Kearney.

So the contradiction in the literature between the Saha
equations for a two-temperature plasma derived from
thermodynamics, on the one hand, and from kinetic ar-
guments or thermodynamics of irreversible processes on
the other hand, vanishes if the usual principles of equilib-
rium thermodynamics are generalized in the proper way.

The result, Eq. (32), is an approximation based on the
smallness of the mass ratio m, /mz, which justifies the
neglect of the kinetic energy exchange between electrons
and heavy particles, and on the assumption that heavy-
particle collisions are unimportant for ionization and
recombination. A generalization of the treatment, to in-
clude these effects, should start from the point of view of
nonequilibrium statistical mechanics. A subsequent pa-
per is devoted to this topic.

IM. Mitchner and C. Kruger, Partially Ionized Gases (Wiley,
New York, 1973).

zL. M. Biberman, V. S. Vorob'ev, and I. T. Yakubov, Kinetics of
Xonequilibrium Plasmas (Consultants Bureau, New York,
1987).

J. A. M. van der Mullen and M. C. M. van de Sanden, in Ninth

European Sectional Conference on the Atomic and Molecular
Physics of Ionized Gases, Lisbon, 1988 (unpublished), p. 239.

4I. Prigogine, Bull. Cl. Sci. Acad. R. Belg. 26, 53 (1940).
5A. V. Potapov, High. Temp. 4, 48 (1966).
6S. Veis, in Czechoslovak Conference on Electronics and Vacuum

Physics, Prague, 1968, edited by L. Paty (Charles University,
Prague, 1968).

7H. G. Thiel, Wiss. Ber. AEG (Allg. Elektricitaets-
Ges. ) —Telefunken 44, 123 (1971).

8K. C. Hsu, Ph. D. thesis, University of Minnesota, 1982.
G. Ecker and W. Kroll, in Proceedings of the Fifth Interna-

tional Conference on Phenomena in Ionized Gases, Paris,
1964 (unpublished), Vol. 2, p. 64.

' A. Morro and M. Romeo, J. Plasma Phys. 39, 41 (1988).

"D.Kannappan and T. K. Bose, Phys. Fluids 20, 1668 (1977).
' M. L. Mittal and G. Paran Gowda, J. Appl. Phys. 59, 1042

(1986).
' J. J. A. M. van der Mullen, B. van der Sijde, and D. C.

Schram, Phys. Lett. 96A, 239 (1983).
i4T. L. Eddy, J. Quant. Spectrosc. Radiat. Transfer. 33, 197

(1985).
'~D. N. Zubarev, Nonequilibrium Statistical Thermodynamics

(Plenum, New York, 1974).
]6D. B. Boercker and R. M. More, Phys. Rev. A 33, 1859 (1986).

L. Landau and E. Liftshitz, Statistical Physics (Pergamon,
London, 1968)~

E. Richley and D. T. Tuna, J. Appl. Phys. 53, 8537 (1982).
J. A. M. van der Mullen, M. C. M. van de Sand en, P.
Brienesse, and A. Peeters, in Proceedings of the Nineteenth
International Conference on Phenomena in Ionized Gases,
Belgrade, 1989 (unpublished), Vol. 1, p. 154.

2oV. Bakshi and R. J. Kearney, J. Quant. Spectrosc. Radiat.
Transfer 41, 369 (1989).


