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Exact integrability of the two-level system: Berry s phase and nonadiabatic corrections
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The general time-dependent quantum two-level system is shown to admit an exact invariant. This
leads to a classical formulation of the problem, which is then solved by standard techniques of Ham-
iltonian mechanics. Berry's phase and nonadiabatic corrections to it emerge as an asymptotic limit
of the exact dynamics. A novel connection between Berry's phase and Hannay's angle is shown to
exist in this case.

I. INTRODUCTION

Holonomy effects in nonrelativistic physics as
exemplified by Berry's phase' ' in quantum mechanics
and its classical counterpart, Hannay's angle, ' are now
well understood theoretically. Such effects manifest
themselves in important modifications of the classical
and quantum adiabatic theorems. Quantally, an eigen-
function corresponding to a simple eigenvalue of a mul-
tiparameter Hamiltonian, when continued adiabatically
in a closed circuit I in the parameter space, picks up a
phase which is in addition to the dynamical phase and de-
pends solely on the geometry of I . In a similar way, an
integrable classical system undergoing such adiabatic ex-
cursion suffers an additional shift of a geometric nature in
its angle variables conjugate to the adiabatically con-
served actions. The original assumptions of Berry re-
garding the instantaneous eigenstates being nondegen-
erate and the adiabatic theorem remaining valid during
the transport in parameter space were subsequently
dropped in two important generalizations. Wilczek and
Zee solved for the evolution of a degenerate subspace
under closed adiabatic cycling and Aharonov and Anan-
dan allowed the evolution to be nonadiabatic provided
the system returns exactly to its initial state (apart from a
phase, of course).

For nonadiabatic transports corrections to the geo-
metric phase have been calculated by Berry' in an itera-
tive scheme. The method proposed consists in applying a
succession of unitary transformations to define a se-
quence of representations of the evolving state and a cor-
responding sequence of Hamiltonians responsible for
their time development. Thus at each step one could
make the adiabatic approximation and define a geometric
phase. The total phase acquired by the wave function
over and above the phase calculated on the basis of in-
stantaneous dynamics comes out to be a sum of the
above-mentioned geometric phases and a residual dynam-
ical part. Since each term of the series, thus defined, con-
tains the adiabatic parameter (characterizing the rate at
which the Hamiltonian is cycled) to infinitely high order,
the expansion is nonperturbative. Rather Berry regards
the iterations as successive superadiabatic transforma-

tions to moving frames (in Hilbert space) attempting to
cling ever more closely to the evolving state. It is further
shown that since the departure from adiabaticity causes
transitions, the wave function cannot continue to change
in its phase part only and this fact is rejected in the ulti-
mate divergence of the sequence of approximants ob-
tained through the iterative procedure. As an example,
Berry calculated the first few corrections to the geometric
phase for a spin- —,

' system coupled to a magnetic field

varying along a parallel of latitude on the unit sphere.
In this paper we have defined for the two-level spin sys-

tern a single transformation to a frame where the evolu-
tion is entirely dynamical. This is facilitated by the fact
that this system, although explicitly time dependent, ad-
mits an exact invariant and the quantal equations of
motion appear formally to have an underlying classical
Hamiltonian structure similar to the one that has recent-
ly been studied by us. " We exploit this particular feature
to construct a "canonical transformation" to "action-
angle" variables, the "action" variable being chosen to be
the above-mentioned invariant. As early as 1960,
Dykhne' noticed that the replacement x ~g and t ~x
reduces Newton's equation with a time-dependent linear
restoring force to the time-independent Schrodinger
equation, which he then analyzed. This procedure could
be inverted and Hannay ' ' suggested that the Berry
phase for one degree of freedom systems could be calcu-
lated by reducing the Schrodinger equation to one corre-
sponding to a "classical" quadratic Hamiltonian. An
unexpected relationship between Hannay's angle for the
associated classical system and Berry's phase for the
two-level system emerges. This is somewhat different
from the connection that is known to exist at the semi-
classical level and that becomes exact for Hamiltonians
which are linear in the action variables. ' For the spin- —,

'

system Berry's phase is exactly related to Hannay's angle
for a Hamiltonian in Grassmann variables. ' ' Ours is a
new result in that Berry's phase for the spin- —,

' system
emerges from Hannay's angle for a complex, albeit for-
mal, oscillator Hamiltonian. Furthermore, we could look
upon the single transformation proposed by us as the
product of all the transformations in the iterative scheme
discussed earlier and we display, for a latitude variation
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of the parameters, an expression of the geometric phase
which is identical to the one obtained by Berry.

Section II contains the main body of our result:
"Hamiltonian formulation, " reduction to action-angle
variables, exact solution for the phase and its adiabatic
limit, i.e., Berry's phase. We then present an expansion of
the phase in the adiabaticity parameter and derive a few
nonadiabatic corrections. In the concluding section we
discuss the nature of the invariant and construct it explic-
itly for the Rabi problem of spin resonance.

II. TWO-LEVEL SPIN SYSTEM

Consider then the Hermitian Hamiltonian defined in a
two-dimensional Hilbert space spanned by the basis states

I
1 & and I2 &. Without loss of generality we can write

H=ell &&1I —eI2&&21+y 1&&2I+y*l2&&1I, (1)

where c and y are, for the moment, arbitrary functions of
time. Later we will require their derivatives to vanish as

tI ~ ~ and for that it would be sufficient to require H (t)
analytic in a strip including the real t axis. At any time t,
the instantaneous normalized eigenstates of the Hamil-
tonian defined in (1) are

I+&=
[Iy Iz+(s+ irico)z]'"

[ I y I'+(e+ A'~)z]'" (2)

belonging, respectively, to the eigenvalues +%co where
r =("+IyI')'"

An arbitrary normalized state I1(j& (=C,
I

1 &+CzI2&)
will develop in time according to the Schrodinger equa-
tion which in terms of the coefficients C, and C2 will
yield first-order equations that can be uncoupled in the
usual way. The equation for Cz, for example, is given by

L =(1/2y*)(Cz —ieCz Ifi) y—Cz/(2iri ),
BL

p = . =(1/y*)(Cz —iezCz/fi),
BC 2

(4)

I= —,'(Cz/r + [r[p+ieCzl(fiy')] —r'Czly*] ) .

The constancy of I [easily checked by direct
differentiation and use of the following equation, viz. ,
Eq. (8)] thus expresses a relationship between the wave
function and its first derivative. The auxiliary function
y( t) can be chosen to be any particular solution of the
differential equation

d * d—(r'ly') —(irlfi) ( ley*) +sr l(6 y*)—y*/r
dt df

+yr/A =0 . (8)

The existence of the invariant I implies that, in princi-
ple, through a time-dependent canonical transformation
we can choose I to be the new "momentum" variable P.
This, in fact, is achieved with the help of a "generating
function" Fz(Cz, P) (the subscript indicating its position
in the standard Goldstein classification) in the following
way:

F2{C~, P)

(Cz,p ) = (Q, P),

H=(1/2)(y*p +2iepCzlfi+yCzlfi ) .

The Hamiltonian, as deduced above, describes a corn-
plex extension of the generalized harmonic oscillator
(GHO) which may be obtained from the usual oscillator
Hamiltonian through a time-dependent scaling and rota-
tion in phase space. Now it is known that the GHO ad-
mits an exact invariant which is a generalization of the
Lewis invariant ' for the usual oscillator with time-
dependent frequency. This holds true even in the com-
plex extension and we have for the invariant

Cz — Cz+ [co —(i /A)(e cy */y—*)]Cz=0,
'V

BFq

BC2
'

BF2Q=
aP

where an overdot indicates time differentiation. The cor-
responding equation for C, is obtained by the replace-
ment y*~y, c~ —c.

These equations have the formal appearance of the
classical Newton's equations of motion of an oscillator
with a time-dependent frequency and a velocity-
dependent interaction term. We have to look for com-
plex solutions of these equations if they are to exhibit
Berry's phase. If the coe%cients of these equations were
real we could have applied the usual techniques of classi-
cal mechanics to solve them. We will show that the solu-
tions thus arrived at can be explicitly checked to be valid
even when the coefficients are complex.

Thus treating C2 as a coordinate one can write down a
forrnal "Lagrangian, " define a "canonical momentum"
and thereby a "Hamiltonian" from which the equations
of motion of C, and Cz are obtainable as "Hamilton's
equations. " Thus, for example, with C2 treated as a
coordinate we have the expressions

In our case, a generating function given by

Fz(Cz, P)= —(n +1/2)trP+P sin 'Cz/(2Pr )'

+( Cz /2r)(2P —Cz /r )'

+ [Cz /(2y'* ) ][(r'Ir )
—i e If&]

yields the desired "canonically conjugate" variables

P=I,
Q = —tan 'I (r'IC, )[p+i eCzl(fiy*)] —rr'Iy* ],
and the new "Hamiltonian"

BF2
K =H+ =y*P/r

Bt

(10)

K being a function of P only, the pair (P, Q) may be re-
garded as action-angle variables and the dynamical prob-
lem considered as essentially solved.
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The solution Q(t) as obtained from Hamilton's equa-
tion Q = BK /r)P is

Q(t)= f (y*lr')dt+5 (12)

(where 6 is an arbitrary constant of integration) and in-
volves the auxiliary variable r(t) Tr.eating e and y as
slowly changing functions of time one can obtain solu-
tions for r in adiabatic perturbation theory. The first two
terms of this expansion when inserted in Eq. (12) yield

change occurring in addition to the time integral of the
instantaneous "frequency. " When converted to a surface
integral in the parameter space spanned by c., Rey and
Imy, this term can be easily shown to equal (0/2 —rr)

where Q is the solid angle subtended by a surface span-
ning the circuit at the origin.

The exact solution for Cz as obtained from Eqs. (10),
(12), and (7) is

Cz =(2P)' r cos f (y*/r )dt+f')

Q ( oo ) = f co( t )dt —(i /2)rt )

x f (y" l~) (c/y*)dt+5 . (13)

The second term is to be regarded as Hannay's angle
for the Hamiltonian (6) since it represents the "angle"

By direct diA'erentiation one obtains expressions for C2
and C2 which upon substitution reduce the left-hand side
of Eq. (3) to zero, when use is made of the auxiliary equa-
tion (8).

The desired adiabatic solution for C2 is now obtained
by substituting Eq. (12) in Eq. (10) and then approximat-
ing y*/r:

2Py'
co —[iy*l(2fico))(d Idt)(E/y*)

1 I'2

sin f' cu —[i y*l(2A'co)] (E/y*) dt
d
dt

(14)

where the boundary condition Cz (t = —~)=0 has been imposed. Under closed adiabatic cycling, the factor y*'i un-

dergoes a phase change of )r and hence the two instantaneous components that make up Eq. (14) acquire geometric
phases:

y =)r+(6/2 —)r)=+Sl/2 .

Higher-order corrections in the adiabaticity parameter (A, ) can be systematically obtained by writing dldt =A.d/dr
and the solution of Eq. (8) as r(t)=ro(t)+Ar)(t)+k rz(t) . Up to order A. , the expansion for y*/r reads

y*/r' =y*/ro —2ly*r,-Iro —A. (2y*r, Iro —3y*r, Iro )
—)(, (2y*r& Iro —6y*r, rz/ro+4y*r3) /rz~)

where

ro=(y*l~)' ',
r, =-[iy*r()l(4''A)] (e/y*),d

d7
2

dro
r, = —[5ro/(32)ri co )] (E/y*) —[ro/(4')] (1/y*)

d7 d7
3d, , d

r, = —[15iy*ro/(128fi'co )] (e/y*) —[y*l(4co )] (1/y*)
d7 d7 d7

(15)

(16)

(18)

drp—[iy*'/(4~ &) (E/y*) (1/y*)
d7 d7 d7

(19)

Thus d, d 'doy*/r-'=co —[i *y (/2' ))r)] (E/y*)+(ro/2) (1/y")
dt dt dt

+[y* /(8' & )] (E/y*)d
dt

2

3d, , d, d, dro+ [i y
*' (1/cd' '))ti] (E/y*) +[iy*r„/(8))ice )] (e/y*) (1/y *)

dt dt dt dt

dry+ ( ro/2) (1/y* )
dt dt

(2Oj
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For a latitude variation of the parameters

E=B cos8, y=B sin8exp[ —iP(t)],
one obtains, keeping terms up to order X, for the
geometric phase / *=( /4 — /A'+ )

' =p (22)

tained in certain special cases. An example that comes to
mind is the Rabi problem of spin resonance' where
E=const and y= ~y~exp(icoot) H. ere the equation for
r (t) can be explicitly solved to yield

bP=+[sr(1 —cos6)+[%sin 8/(SB)]I (t dt

+[Pi sin 8 cos6/(16B )]I P dt, (21)

and therefore

I =[f3'~~/(2y")][C2+(I/P)(C2+icooC2/2) ] .

where we have imposed the analyticity requirements
mentioned at the beginning. The corrections obtained in
this way are, of course, the same (but for numerical fac-
tors) as that obtained by Berry in his iterative scheme.
The dift'erence arises because the Hamiltonian considered
by us may be written as B o' (the components of tT being
the Pauli spin matrices) which is twice the one considered
by Berry.

III. DISCUSSION

Before concluding let us make a few remarks about the
nature of the invariant. In the adiabatic limit, it reduces
to H/co, that is, the action (I/2') fp dCz. Thus the in-
variant I may be considered to grow out of the adiabatic
invariant action when the time dependence becomes
arbtirary. Also, closed-form expressions for I may be ob-

The adiabatic expansion in this case reduces to a power-
series expansion of the exact solution in the small param-
eter coo/co, as can be easily checked.

Our analysis has worked so nicely because the underly-
ing classical Hamiltonian turned out to be quadratic. We
may observe that the Heisenberg equation of motion
o. ~ o- X B provides a set of coupled time-dependent oscil-
lator equations for the components of the spin operator,
and therefore a similar analysis can, in principle, be car-
ried out in the Heisenberg picture as well.
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