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Many-electron effects on dynamical correlations in dense helium are studied by means of self-
consistent-field molecular dynamics, a computational method that combines a Hartree-Fock solu-
tion of the electronic structure of an arbitrary collection of atoms with molecular dynamics. Pair
correlation functions, velocity autocorrelation functions, and coefficients of self-diffusion are calcu-
lated for helium at densities between 0.1 and 1.5 g/cm? and at temperatures of 1 and 5 eV. Compar-
isons are made to results computed with semiempirical pair potentials derived from low- and high-
density experimental data. With increasing density, the self-consistent-field molecular-dynamics re-
sults progressively diverge from the results of molecular-dynamics simulations using Hartree-Fock
pair potentials, reflecting the onset of many-atom screening effects within local clusters of atoms.
This dynamic screening results in a 30% increase in the diffusion coefficient over that obtained in a
molecular-dynamics simulation employing pair interaction potentials.

I. INTRODUCTION

The study of the structure and dynamics of matter at
high density is interesting at both a fundamental and an
applied level. At the fundamental level, there is the fas-
cinating problem of a strongly coupled disordered system
in which collective effects can be large and for which
traditional theories of energy balance and transport can
break down.! How do large ensembles of atoms interact
when the mean internuclear distance is small enough that
several atomic wave functions overlap one another at any
given time? What constitutes “‘scattering’ in systems for
which the asymptotic boundary is a disordered state?
Dense matter represents an interface between atomic,
plasma, and solid-state physics, requiring the language
and methods of all three to solve for the properties of
matter under extreme conditions.

At the applied level, very high densities and tempera-
tures occur in stellar interiors and in the atmospheres of
gas giant planets. In the laboratory, high densities can be
produced by experimental techniques using diamond-
anvil cells, gas guns, shock tubes, and intense lasers.?
These methods are beginning to produce and diagnose
matter at densities for which significant many-body
effects are expected.

In this paper we present the first results of kinetics cal-
culations of dense matter which take explicit account of
many-electron effects occurring during microscopic fluc-
tuations. These calculations are based on a time-
dependent self-consistent-field approximation in which
the interatomic potential is determined from a Hartree-
Fock solution of the electronic structure of a large cluster
of atoms. Using this technique we have computed veloci-
ty autocorrelation functions, coefficients of diffusion, and
other dynamical quantities.

We have chosen to model helium for several reasons.
Atomic helium has a 1s?!S closed-shell ground-state
wave function which can be compactly represented by a
relatively simple basis set containing only s-type orbitals.
A high binding energy of 24.6 eV means that orbital po-
larization effects in helium are much smaller than in oth-
er atoms, such as those which experience covalent bond-
ing. Interatomic interactions can therefore be represent-
ed to a good approximation using very simple methods.
Due to the large energy gap between the ground state and
the first excited state, we can consider reasonably high
temperatures with less worry about the effects of elec-
tronic excitations. The present calculations were per-
formed for densities from 0.1 to 1.5 g/cm3 i.e., from a
low-density regime where binary collisions dominate the
kinetics to a high-density regime where significant many-
electron effects are expected to occur. The relatively high
ion temperatures chosen for this work (1 and 5 eV) ensure
that the dominant momentum changing collisions reflect
short-range interactions among the atoms which can be
computed using simple quantum approximations.

Several years ago a two-stage gas gun measurement of
the shock Hugoniot of helium achieved a final density of
0.68 g/cm? at an estimated temperature of 2 eV.} Statist-
ical modeling of this and other similar experiments indi-
cated that helium atom interaction potentials derived
from scattering experiments or from accurate theoretical
calculations of the He-He interaction energy are too stiff
to match the observations, i.e., the potentials are too
repulsive at short range. The softening of the interatomic
potential was attributed to screening of the interatomic
interaction by neighbor atoms. Approximate expressions
for the interaction potential deduced from band-structure
calculations of solid helium have been able to model the
observed shock Hugoniot data.* Band-structure calcula-

5256 ©1989 The American Physical Society



40 MANY-ELECTRON EFFECTS ON TRANSPORT PROCESSES IN . . .

tions produce a potential curve which depends on the de-
tailed structure of the solid lattice, however, and at high
temperatures the atoms do not occupy regular lattice po-
sitions. The interactions between atoms which are im-
portant for determining kinetic processes depend on the
instantaneous microscopic configuration within the ma-
terial, and in particular on the propagation of local fluc-
tuations in density and velocity.

Most current theories of dense matter are based on one
of two complementary approaches: discrete particle
techniques using approximate interaction potentials, and
cellular methods which treat the average properties of
compressed atoms. The discrete particle class of theories
includes molecular dynamics, which tracks the motion of
a large number of particles obeying classical equations of
motion and interacting via a predetermined set of pair in-
teraction potentials. In an alternate formulation, Monte
Carlo methods have been devised which sample from
among a large number of accessible configurations to
yield predictions for the most probable structure of the
medium.® Cellular methods study the properties of a sin-
gle atom immersed in a background potential designed to
simulate the local environment. They provide informa-
tion on the average properties of the material and cannot
address issues relating to dynamic correlations between
atoms.

Both the molecular-dynamics and Monte Carlo ap-
proaches usually assume that the interactions between
particles are pairwise additive, i.e., that the total force on
a particle is equal to the sum of forces acting on it due to
each of the other particles. To the extent that this as-
sumption is valid and the interatomic forces are known,
discrete particle approximations can yield accurate re-
sults. Molecular dynamics has been successful in com-
puting a number of properties of the rare gases and other
materials and has shed light on the nature of phase tran-
sitions. Many-body effects will be addressed if a
sufficiently large number of particles is included in the
simulation to eliminate surface and other finite size
effects.

Atomic pair interaction potentials can be derived ei-
ther from collision experiments or from first-principles
calculations. A variety of expressions for the interaction
of two helium atoms exists in the literature. Aziz et al.®
studied available low-density data on helium to derive the
expression for the interaction potential
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A =544 850.4, a=13.353 384, ce=1.3732412,
cg=0.4253785, ¢,,=0.1781, D=1.241314, and
£=3.42X 107" hartrees. Experimental data were used to
determine the parameters describing the long-range po-
tential and Hartree-Fock calculations were used to
represent the short-range interaction.

In an alternate approach, Ceperley and Partridge’ ap-
plied the quantum Monte Carlo (QMC) technique to ob-
tain accurate results for the short-range interaction, ob-
taining values about one-third lower than Aziz et al. at a
separation of 2a,. Their expression for the potential at
internuclear distances less than 3q is

Vomc(r)=exp | —Br 3 a,r* (3)

In a revised paper Aziz et al.® replaced their Hartree-
Fock short-range interaction approximation with the
more accurate expression of Ceperley and Partridge to
yield

VAMc(x)‘: A *Ee -—a*x-FB*xz
—(cg/x8+cg/x¥4c o /x°)F(x) 4)
with A*=184431.01, a*=10.43329537, B*

=—2.27965105, c¢,=1.36745214, c¢3=0.42123807,
€10=0.174733 18, D =1.4826, ¢ =3.467 X 10~ ° hartrees,
and x =(r/5.601a,).

Young, McMahan, and Ross* (YMR) derived a pair
potential based on a semiempirical “exponential-six” ap-
proximation for long ranges with a smoothed transition
to the results of a linear-muffin-tin orbital (LMTO) ap-
proximation for short ranges which models many-
electron effects at high density. Their expression is

Vymr(r)= A+B(r—r1)+C(r——r1)(r—-r2)+D(r—~r1)Z(r-—rz), r<r=<r, (5)
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and r,=2.97a,, r,=3.72a,, A=0.0090234 hartrees,
B=—0.009 7856 hartrees/a,, C=0.010461 hartrees/
a3, D=—0.004 285 hartrees/a, e=3.42X 10~ hartrees,
X=F/Fp> ¥m=5.6073ay, and a =13.1.

The LMTO calculations which form V,;, the short-
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range part of Vyyg, were derived from total energies
computed for solid helium. They approximately model
the very-high-density, low-temperature behavior of heli-
um, but are expected to fail when applied to high-
temperature, low-density conditions. This is because the
short-range part of the LMTO potential assumes the
presence of nearest-neighbor interactions which contrib-
ute to electron screening between a given pair of atoms.
At high temperatures atoms can penetrate to short inter-
nuclear distances by means of their higher kinetic ener-
gies, but at low density there may be no nearby neighbor
atoms to contribute to screening.

In Fig. 1, the pair interaction potentials of Aziz
et al.®% and Young et al.* are compared for internuclear
distances d =0.5-4 a,, i.e., the repulsive part of the
short-range potential. The Hartree-Fock version of the
Aziz potential is the hardest in that it is most limiting in
the closest approach allowed atoms of a given kinetic en-
ergy. The LMTO calculation which forms the short-
range part of the potential due to Young et al. is the
softest in that it allows the closest approach. Also shown
in Fig. 1 are the results of our own Hartree-Fock pair po-
tential calculations which employ the same basis set used
in our larger calculations to be described below. Our ap-
proximate Hartree-Fock results fall between the Aziz
Hartree-Fock potential (constructed using a more accu-
rate basis set than ours) and the quantum Monte Carlo
results of Ceperley and Partridge.

At high density, the discrete atom approximation is ex-
pected to break down, since the interaction of the atoms
can no longer be represented as a sum of pairwise interac-
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FIG. 1. Pair interaction potentials for helium. . . . ., Aziz
et al. with a short-range potential derived from Hartree-Fock
calculations; — — —, Aziz et al. with a short-range potential
derived from quantum Monte Carlo calculations; -—-—-—,
Hartree-Fock pair potential computed with a 3G basis set;
+e—++—+-—+-, Young et al. with a short-range pair potential
based on a linear-muffin-tin approximation for solid helium.
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tions. This was demonstrated by Ree and Bender® for the
case of three interacting hydrogen molecules. They
found that the simultaneous overlap of several atomic
wave functions results in screening of the interatomic in-
teractions. The electronic probability density in a cluster
of atoms is distributed according to the instantaneous
molecular configuration and this will in turn affect the
motion of the nuclei. Indeed, the classical picture of
effective screening begins to break down when a detailed
description of the electron distribution is sought. Static
screening potential calculations give only an average pic-
ture of interatomic interactions while transport processes
are governed by the self-consistent time evolution of the
electronic and nuclear configurations. Momentum
transfer between atoms is greatest during close collisions
where the electronic wave function is most perturbed
from its single atom state. Hence the most important re-
gime for dynamic processes is the very one where an
effective interaction approximation is poorest.

Recently, several techniques have been developed to
treat time-dependent phenomena in many-atom systems.
Of particular note are the ‘“‘simulated annealing” calcula-
tions of Car and Parrinello'® which are based on a local-
density approximation for the electronic charge. Their
technique is an extension of methods employed in solid-
state calculations which employ plane-wave expansions.
Such methods may encounter difficulty when extended to
very low densities where plane-wave expansions have
difficulty in representing localized charge distributions
around widely separated nuclei. Pederson et al.!! have
recently developed a related methodology employing
floating Gaussians as basis functions. Floating Gaussians
offer the advantages of flexibility and a possible reduction
in the number of Coulomb matrix elements required for
the electronic structure calculation. The simulated an-
nealing technique has been successfully applied to the
study of the temperature dependence of the structure of
small clusters of atoms but has not as yet been applied to
dynamic processes in dense matter. Singer and Smith!?
have developed a simpler method based on semiclassical
Gaussian wave packets and have applied it to the study
of dynamic correlations in the liquid rare gases. Their re-
sults are somewhat disappointing, however, reflecting the
inability of simple Gaussian wave packets to represent
the charge distribution in atoms.

Two techniques based on molecular-orbital theory
have been applied to the study of the structure of dense
matter. Collins and Merts'® employed a modified extend-
ed Hiickel approximation to describe the structure of
clusters containing on the order of 100 atoms. They re-
lated spectral linewidths to compression, and found that
a significant part of line broadening is due to the static
bandwidth and is completely independent of ion motion.
They performed dynamic calculations at temperatures
below 500 K using classical equations of motion for the
atomic nuclei. Fujima, Watanabe, and Adachi'* used a
more sophisticated molecular structure algorithm based
on the Hartree-Fock-Slater approximation to study
compressed neon. For clusters of eight and 13 atoms,
they found that the competition between electron screen-
ing and the attractive potentials of neighboring nuclei led
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to a nonmonotonic density dependence of the orbital en-
ergies. Contour plots of the electronic charge density re-
vealed the presence of multicenter effects in which the
charge density of a single molecular orbital was distribut-
ed among several neighboring atoms. Fujima et al.'’ ex-
tended these calculations to silicon clusters, including the
effects of nonzero electron temperature. Younger
et al.'® used Fujima’s code to study compressed clusters
of nine helium atoms with fixed nuclear positions, again
allowing for finite electron temperature. The results of
these calculations demonstrated that at high densities
many-atom, molecular-type effects are important in
determining orbital energies and electron distributions.

The present work extends the study of compressed
matter to take explicit account of the motion of the nu-
clei under forces determined by the quantum-mechanical
electronic charge distribution. Our goal is to construct a
methodology which allows the study of dynamical pro-
cesses in matter from very low densities, where individual
atoms interact via binary collisions, to very high densi-
ties, where significant many-electron effects are expected
to occur. The method which we have developed, called
self-consistent-field molecular dynamics (SCFMD), in-
cludes many-electron effects on kinetic processes to first
order by describing the electronic configuration of an ex-
tended sample of atoms in a Hartree-Fock molecular-
orbital approximation. Interatomic forces within the
sample cluster are computed from the self-consistent elec-
tronic wave function and used in a molecular-dynamics
simulation to study dynamical quantities.

Unless otherwise noted we employ atomic units
(e=m=#=1) throughout this work.!” Lengths are
given in units of the Bohr radius, a;=0.529 X 1078 cm,
energies in hartrees, 1 hartree=27.2 eV, and time in
atomic units of 1 a.u.=2.42X 10" "5,

Section II describes the methods used in the kinetics
calculations. Section III presents the results of SCFMD
calculations on dense helium with emphasis on the strong
coupling regime. Comparisons are made to molecular-
dynamics calculations performed using the pair poten-
tials described above. Section IV discusses the implica-
tions of the calculations for energy transport processes in
dense matter and suggests lines of further research.

II. SELF-CONSISTENT-FIELD
MOLECULAR DYNAMICS

Self-consistent-field molecular dynamics is a synergism
of methods derived from quantum chemistry, which de-
scribes the electronic charge distribution of a complicat-
ed configuration of atoms, and molecular dynamics,
which describes the time evolution of the configuration.
The application of SCFMD to a particular problem con-
sists of the repetition of three major steps: (1) the calcu-
lation of the electronic wave function of the system, (2)
the use of the computed charge density along with the
nuclear potentials to calculate the approximate forces
acting on each of the nuclei, and (3) the movement of the
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nuclei under the influence of these computed forces to
effect the time evolution of the system. We will describe
each of these steps in turn.

A. Electronic structure calculations

The electronic structure of a configuration of atoms is
computed using a modified version of the HONDO Gauss-
ian orbital Hartree-Fock computer code of Dupuis, Rys,
and King.!®!” The molecular wave function describing
the ensemble of atoms, ¥, is written as a Slater deter-
minant of molecular orbitals, ¥, which are themselves
constructed from linear combinations of predetermined
Gaussian orbitals, ¢:

V=19l der > (7)
V=3 cij; » ®
J
n_. n. n_. —a.rz
¢;=N;x ¥y ¥zHe . 9)

The integer exponents n,;, n,;, n,; are related to the or-
bital angular momentum of the orbital and the exponents
a; describe its radial structure. N; is a normalization
constant. The coefficients c;; are determined by minimiz-
ing the energy of the system according to the variational
principle applied to the electronic Hamiltonian corre-
sponding to N; nuclei and N, electrons:

N, N; zZ N,
H=ST.—-S 4 1
37-3 2+ 3 L (10
<.

i=1 ji=1 i,j
i#

-~

where T is the kinetic energy operator, Z is the nuclear
charge, r is the radius, and r= 7, —rj|4 A detailed
description of the operation of the HONDO algorithms can
be found in papers by King and Dupuis.'® !

The quality of the wave function ¥ obtained by this
procedure is a function of both the adequacy of the
Gaussian basis set to describe the electronic probability
distribution within the Hartree-Fock approximation and
the validity of the Hartree-Fock approximation itself. In
the calculations to be described below we used simple
basis sets consisting of two (2G) or three (3G) Gaussians
attached to each of the nuclei in the simulation. Thus for
a 23-atom simulation using a 3G basis set a total of 69
Gaussians is employed. The Gaussian exponents a were
taken from the tabulations of Poirier et a/.?° The 2G set
had exponents (4.098 394, 0.532 198) and the 3G had ex-
ponents (13.626 736, 1.999349, 0.382993). No orbital
contraction was employed in our calculations so that the
full flexibility of the primitive basis set was utilized. Fig-
ure 2 compares the radial orbital of the ground state of
helium derived from these basis sets with a numerical
solution obtained using the Hartree-Fock code of Fisch-
er.?! Even simple basis sets reasonably describe the
overall shape of the orbital. The largest deviations occur
at small radii, where the Gaussians have difficulty in
representing the cusp in the ground-state wave function,
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FIG. 2. Hartree-Fock radial wave function P(r)=r¢, (r) for
the 1s orbital of helium computed with . . . ., 2G basis;
— — —, 3G basis; ——, with the numerical Hartree-Fock
code of Fischer (Ref. 21).

and at large distances, where the exp(—ar?) form of the
Gaussian orbitals incorrectly models the actual
exp(—const X r) fall off of the orbital. In general, more
Gaussian orbitals are required to achieve a given degree
of numerical accuracy in the wave function than for nu-
merical or Slater-type-orbital basis functions. The chief
advantage of using a Gaussian basis set is one of compu-
tational efficiency. Integrals involving Gaussian orbitals
can be evaluated much faster than the three-dimensional
integrals required for numerical orbitals or the more
complex analytic forms associated with Slater-type orbit-
als. Even though the number of integrals required in a
single SCF calculation scales as roughly the third power
of the number of basis functions, Gaussian orbitals are
often more efficient than other types of basis functions.

The ground state of atomic helium is spherically sym-
metric, requiring only s-type basis functions to describe
it. For many-atom systems, however, this symmetry is
broken and basis functions of nonzero angular momen-
tum are required to model the orbital polarization associ-
ated with the formation of bonding and antibonding
states familiar from quantum chemistry. Thus an issue to
be addressed in our calculations is how well simple basis
sets can describe the net forces between atoms. This issue
will be discussed in Sec. II B and Sec. III.

The other concern associated with the electronic struc-
ture calculation is the adequacy of the Hartree-Fock ap-
proximation itself. The Hartree-Fock approximation
represents the optimum single-electron description of the
electronic wave function, but additional many-electron
components may remain in the total wave function which
cannot be represented by single-electron Slater deter-
minants. In quantum chemistry it is common to
represent the wave functions of complex molecules by su-
perpositions of many configurations which model the
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many-electron interactions in the system. Millions of
such configurations may be required to achieve very high
accuracy even for simple molecules such as carbon
monoxide. Helium should be much less affected by
configuration interaction since the high binding energy of
the ground state makes orbital polarization relatively
weak even at small internuclear separations. He-He pair
interaction forces derived from quantum Monte Carlo
calculations which include electron correlation effects are
weaker than those computed from Hartree-Fock calcula-
tions by about one third. In comparison, the many-
electron effects included in the linear-muffin-tin orbital
calculations result in forces that are smaller than the
Hartree-Fock results by about a factor of 2.5 at a nuclear
separation of 2 a.u. Thus the effect of adding neighbor
atom interactions in the LMTO calculations is much
greater than the omission of correlation effects in the
He-He calculation. It is not known at present what addi-
tional correlation effects will occur at high density where
many atomic wave functions can simultaneously overlap.
Even though the electronic overlap will be greater, so too
will be the electron-nuclear interactions and the internu-
clear repulsion.

The Hartree-Fock approximation represents a reason-
able starting point for describing interatomics forces. It
is a computationally tractable method which can be ap-
plied to a large enough number of atoms to yield statisti-
cally significant results for calculations of dynamic pro-
cesses. It includes to first order the effects of dynamic
screening wherein the electronic charge density is redis-
tributed among several nearby nuclei. Traditional ap-
proaches to modeling the kinetics of dense matter based
on the superposition of pair potentials cannot account for
dynamic screening at all. Hence even with the stated lim-
itations of basis set completeness and the single
configuration approximation, the Hartree-Fock method
for representing the charge distribution within a many-
atom ensemble is considerably superior to other available
methods, based on the superposition of atomic pair po-
tentials, which do not allow any freedom in the electron
field.

B. Interatomic forces
The force on a nucleus in the ensemble is given by
F=—dE/dr; (11)

where E is the molecular total energy and r; is the posi-
tion coordinate of the ith nucleus. The molecular total
energy is defined as the sum of the electron kinetic and
potential energies and the internuclear potential energy.
Although this expression is straightforward to evaluate
for diatomic molecules by moving the nuclei a small
amount and evaluating the derivative numerically, it be-
comes prohibitively expensive when forces are required
for a large number N of atoms since it would require 6N
electronic structure calculations. Although exact analyt-
ic expressions exist?? for the forces they typically require
several times more effort to evaluate than the total ener-
gy. For a large number of atoms, it is essential to have a
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rapid method for approximating the force on the atomic
nuclei. Indeed, given the necessity of repeating the
Hartree-Fock calculation for each time step in the calcu-
lation, it is essential that the calculation of the forces not
add a substantial amount of time to the total calculation.

The Hellmann-Feynman theorem gives an expression
for the force on a nucleus:?*

o= (2 o) (| 2L ) (| [ 22)

This expression may be rewritten as

=82

+<\l’ g Z(r,—R;) Y 7,z (R, —R,) >
j=1 |1’j"Ri|3 =1 IR R
k=i

+<\I/ ‘H1§—l\:> (13)

demonstrating that the quantum-mechanical force on the
nucleus is similar to that which would be computed from
classical electrostatics using the charge distribution |¥|?

lw2r—R;,) M Z,z,(R,—R))
r—R;[? = IR —R, P

F,=2, [dr (14)

The quantum and classical expressions are equivalent if
d¥ /0R =0, i.e., if the electronic wave function is station-
ary with respect to small changes in the nuclear positions.
This condition is satisfied for exact wave functions, but
for approximate wave functions there will be corrections
to F. These corrections arise from the polarization of
the electronic charge cloud and are greatest for highly co-
valent bonds. Basis sets centered on nuclei have a
difficult time accounting for this polarization. For heli-
um, which has a small polarizability, the corrections to
the classical expression are quite small. Figure 3 com-
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FIG. 3. Comparison of the force between two helium atoms
computed with the Hellmann-Feynman theorem (— — —) and
by the derivative of the total energy ( ).
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pares the forces between two helium atoms using the ex-
act, energy derivative, method and the approximate form
of the Hellmann-Feynman theorem [Eq. (14)]. Over the
range of internuclear distances most important for our
high-density kinetics calculations there is good agreement
between the two forms and we have employed F, in all of
the calculations described below since it significantly
reduces computation time. We note that the adequacy of
the classical expression is strongly dependent on the
structure of the atom chosen, and would require reexam-
ination for atoms which form covalent bonds.

Although the approximate Hellmann-Feynman expres-
sion for the force on the nuclei is a reasonable approxi-
mation for two atoms, one must also consider its accura-
cy in describing the internuclear forces in a more com-
plex configuration where screening involving neighbor
atoms is important. To address this issue we computed
the force on an atom B due to another atom A4 when
atom B is flanked by two neighbors C and D, as is shown
in Fig. 4. Figure 4 plots the ratio of the force on atom B

(a) &c

(b)

1.0

0.8 -

0.6 |-

04 |

Fg (with CD)/F g (without CD)

0 L I 1 ! I
0 1 2 3 4 5 6

dcp (units of a )

FIG. 4. The effect of nearby neighbor atoms on the force be-
tween two helium atoms. (a) The atomic configuration. (b) The
ratio of the force on atom B due to atom A with the neighbor
atoms C and D to the force due to atom A4 alone. The solid
curves are for forces computed with the Hellmann-Feynman ap-
proximation. The crosses are from exact energy derivative cal-
culations.
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computed with the neighbor atoms to that between atoms
A and B alone. Note that since the neighbor atoms are
symmetric about B, they do not directly contribute to the
force on that atom.

Figure 4 is instructive in that it shows that the effect of
screening is to reduce interatomic forces at high density.
For short internuclear distances where there is substan-
tial overlap between the atomic wave functions of the
neighbors and atom B, the interatomic force is substan-
tially modified from that which would be obtained in the
absence of the perturbing atoms. The mechanism for this
modification is the self-consistent redistribution of the
electronic charge density within the four-atom cluster.
The superposition of the nuclear potentials of atoms B, C,
and D results in a concentration of electronic charge den-
sity in the region of atom B, the deepest part of the at-
tractive potential. This additional charge density near B
screens that atom from the repulsive force due to atom
A. Note that the force on atom B computed from a sum
of pair potentials such as those given in Egs. (1)—(5) will
be the same with and without neighbor atoms C and D.
The modification of the force is solely a result of changes
in the interatomic forces themselves rather than the su-
perposition of forces from several atoms, i.e., it is a
many-electron effect. This simple calculation suggests
that there may be significant modifications to transport
properties when the density is high enough for the wave
functions of several atoms to overlap. The formation of
such clusters is a function of both temperature and densi-
ty. Temperature is a determinant of the distance of
closest approach while density determines the likelihood
that several atoms will be near one another at any given
time.

Calculations of the forces on the four-atom
configuration were also done using the derivative of the
total energy, an exact expression within the limitations of
the basis set employed. These results are shown by
crosses in Fig. 4. For internuclear distances of 1-3 a,
the exact forces were less than those computed using
the Hellmann-Feynman method, especially when d 5
>dcp /2. This is not surprising, since it is here that the
effects of screening are most severe. When d 45 <dcp /2,
the errors are of order 10-20 %. Note, however, that a
molecular-dynamics calculation using forces computed
from the energy derivative would exhibit somewhat
greater effective screening than one with Hellmann-
Feynman forces. This issue will be discussed further in
Sec. IV.

C. Molecular dynamics

Molecular-dynamics calculations using pair interaction
potentials have been extensively reported in the litera-
ture.’® We give here a brief overview of our own im-
plementation of the method, concentrating on features
specific to our application. The large amount of labor in-
volved in the Hartree-Fock calculation of the electronic
wave function for a large number of atoms limits the
number of atoms which can be treated with currently
available computers. In our calculations' we consider
samples containing 23 atoms for a 3G basis set and 30
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atoms for a 2G basis set.

The calculations of the atomic kinematics proceed in
the following fashion. An initial configuration of atoms
is set up by randomly distributing them in a cubic box
with dimensions chosen to match the desired density.
The choice of the initial configuration is influenced by
considerations which avoid placing atoms too close to-
gether for the temperature being modeled. A Maxwellian
velocity distribution is established at the beginning of the
calculation such that the total momentum of the sample
is zero.

At each time step the electronic structure of the system
and the Hellmann-Feynman forces on all of the nuclei are
computed. The nuclei are then moved a small amount in
response to these forces. The time step for the movement
is chosen so that the largest relative change in any inter-
nuclear distance is 20%. This Courant-like condition en-
sures that the calculation proceeds slowly enough for the
electronic structure to respond to the motion of the nu-
clei yet fast enough to allow a significant time period to
be covered in a calculation consisting of 1000—-2000 time
steps, the length of a typical simulation. The nuclei are
moved according to classical equations of motion. The
nuclear positions, velocities, and accelerations are written
out to a file to allow postprocessing of the kinetics infor-
mation. At this point the code begins a new time step
with the new atomic configuration.

We impose periodic boundary conditions on the sam-
ple to reduce surface or boundary effects in the calcula-
tion. The cubic volume containing the real cluster is sur-
rounded by 26 identical images of itself. Each atom in
the cluster interacts only with the nearest image of each
of the other atoms in the sample. A sketch of this algo-
rithm for a two-dimensional sample is shown in Fig. 5.
The nearest image approximation corresponds to an
effective range approximation for the interatomic interac-
tion.

When an atom passes through a boundary, it is made
to reappear on the opposite side of the sample with the
same velocity vector. The nearest image approximation
ensures a smooth transition since as the atom approaches
the boundary it is already feeling the forces of the image
atoms, which are in the same configuration as the real
atoms that it will encounter when it enters the opposite
side of the box. The use of periodic boundary conditions
significantly reduces the number of atoms which are re-
quired in a simulation. It is necessary, however, to have
enough atoms in the sample that the mean free path is
less than the size of the box. Also, the box size must be
large compared to the extent of the atomic wave func-
tion. The dimensions of our simulation boxes are ade-
quate to ensure that both of these conditions are satisfied.
One or more collisions take place during an atom’s tran-
sit across the sample and most of the atomic wave func-
tions are fully contained within the sample volume.

The ion temperature is defined in our calculations as

N,
M
T=— _2’
3N'_ki:§lv, (15)

where M is the atomic mass and k is Boltzmann’s con-
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FIG. 5. Schematic of periodic boundary conditions in two di-
mensions. The ‘“real” atoms are contained in the central cell.
The neighbor cells contain exact images of the central cell.
When an atom passes through a cell boundary it reappears at
the opposite edge with the same velocity vector. Atoms within
the central cell interact only with the nearest image of each of
the other atoms.

stant. There are small errors introduced into the atomic
velocities due to finite time steps and the use of the
nearest image technique. When accumulated over many
hundreds of time steps, these small errors effect a notice-
able change in the temperature. This effect is particularly
serious at high densities where the size of the simulation
box is less than ten times an atomic radius. To stablize
the temperature over the course of the run we instituted a
stabilization procedure based on an exponentially weight-
ed average of the temperature over 50 cycles:

T,==_ (16)

where a was chosen as 0.1. At each time step the veloci-
ties of all of the atoms were multiplied by a damping fac-
tor

View ‘/ Tav /Tn Void a”

where T,, is the desired average temperature. In this
way the average temperature of the sample over many
time steps was maintained without restricting fluctua-
tions. Typical damping factors are less than 1% for the
20% time step described above, so only very small per-
turbations are applied to the sample at any single time
step. Some calculations were repeated using a smaller
time step where the maximum change in any internuclear
distance during a single time step was limited to 4%.
The results, which will be described in Sec. III, were vir-
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FIG. 6. Temperature vs time for a 23-atom cluster of helium
at 1 g/cm?® and 5 eV. The fluctuations are due primarily to the
large time step which allows a 20% change in the minimum in-
teratomic distance in the configuration.

tually identical to those of the 20% time step calculation.
Figure 6 shows the temperature history of a typical cal-
culation of 30 atoms at 5 eV and 1 g/cm?.

The classical treatment of the ion motion means that
SCFMD is only an approximation to a true time-
dependent Hartree-Fock theory as has been developed by
Schafer et al.?* and Tiszauer and Kulander.?> SCFMD
does, however, include a much more sophisticated treat-
ment of the electron distribution than either the semiclas-
sical Gaussian wave-packet theory of Singer and Smith'?
or the extended Hiickel method of Collins and Merts.'?
Formally, SCFMD corresponds to a repeated application
of the Born-Oppenheimer approximation in which the
nuclear and electronic motions are decoupled. The elec-
tronic charge distribution is computed in a quantum-
mechanical approximation and the forces on the nuclei
are computed from the classical electrostatic force law.
Kwong?® has discussed the error associated with a Born-
Oppenheimer approach to atomic scattering. In all of the
calculations reported here the atomic velocities are high
enough that quantum lattice vibrations can be ignored
and low enough that there should be little coupling be-
tween electronic and ionic wave functions.

III. RESULTS

In the theory of dense plasma it is convenient to refer
to the plasma coupling constant I'=2Z2/(akT), where Z
is the nuclear charge, T is the temperature, and k is
Boltzman’s constant. The ion sphere radius a is given by
a=(3%/47N;)'”?, where V is the volume of the cluster
and N, is the number of atoms. I is the ratio of the inter-
nuclear potential energy to the ion kinetic energy. For
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' <1 the system is ‘“weakly coupled” with the thermal
energy dominating the kinetics, while for I' > 1 the sys-
tem is “‘strongly coupled” in that the potential energy of
atomic interactions is most important.

A. The pair correlation function
and the velocity autocorrelation function

Among the most fundamental measures of the struc-
ture and dynamics of a many-atom system are the pair
correlation function and the velocity autocorrelation
function. The pair correlation function g(r) is defined as

g(r)= n(r)

=— (18)
47riArng

and is a measure of spatial structure in the medium. It is
proportional to n (r), the expected number of nuclei at a
distance between r and » +Ar from a given nucleus in a
medium with average number density no=N,/V. High-
ly ordered materials such as crystals or molecules have
sharply peaked pair correlation functions. More-
disordered media such as liquids show less structure, but
may still contain pronounced peaks due to most probable
nearest-neighbor packing.” In a high-temperature ma-
terial we expect to see little structure in the pair correla-
tion function. Figure 7 shows a representative g(r) for 30
atoms at 1 g/cm® and 5 eV. Here g (7) was computed as a
time average over the 2000 time steps in the simulation.
A 2G basis was used to describe the atomic wave func-
tion. All of the pair correlation functions which we com-
puted had similar shapes, indicating little structure in the
sample. The only significant difference between calcula-
tions employing different pair potentials was the position
of the small radius cutoff of g () which indicates the dis-
tance of closest approach of the atoms. Harder potentials

a(r)

0 1 L |
2.0 4.0 6.0 8.0
Radius (units of ay)

FIG. 7. Pair correlation function for helium at 1 g/cm? and 5
eV. The function begins to rise at the distance of closest ap-
proach of the atoms. There is little structure in g(r) owing to
the stochastic motion of the atoms.
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produced larger distances of closest approach and softer
potentials yielded smaller ones. The lack of structure in
g (r) was expected, since helium at these extreme condi-
tions lacks any regular crystalline structure and has the
character of a dense liquid.

The velocity autocorrelation function

_ (v(1)-v(t =0))
Z(1) {(v(t=0)-v(t=0))

is an indicator of the decay time of dynamic correlations
in the sample. It is a single particle quantity since the
average involves only one atom at a time, in contrast to
other quantities such as the coefficient of viscosity which
involve correlations between the motions of two or more
atoms. The angle brackets in Eq. (19) indicate that a time
average over the initial time chosen for the decay is per-
formed to improve the sampling statistics. Each of our
SCFMD runs contains 1000-2500 configurations. These
initial configurations are not independent, however, being
linked by the atomic kinetics, so the sampling is not as
good as these numbers might suggest. Zwanzig and
Ailawadi?’ have estimated the error in the velocity auto-
correlation function as

(19)

172

T |Z(t)—1] (20)

AZ(t)==x DN

(tmax -

where ¢, is the maximum time to which the calculation
is run and 7 is the characteristic relaxation time of Z (¢).
In our calculations ¢,,,/7=5-10 and N =23, so that
[AZ(1)] <0.09|Z(t)—1|(1—1t/t,,, )" '/%. That our re-
sults for the velocity autocorrelation function have stabi-
lized versus the number of time steps in the calculation
can be seen by examining a single point on the velocity
autocorrelation function versus the stoptime of the calcu-
lation. In a calculation which has converged to its equi-
librium distribution the position of this point should not
vary with the number of time steps. Figure 8 shows the

800 T T
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200 H

Time when Z(t) = 0.4 (a.u.)

1 -
% 1 2
Time (10* a.u.)

FIG. 8. Average time at which the velocity autocorrelation
function Z(?) crosses 0.4 from above vs the maximum time of
the simulation. At late times Z(?) stablizes with respect to the
number of time steps included in the calculations.
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running average T, of the time t,, at which Z(¢)
crosses 0.4 for p=1g/cm’® and T=1¢eV,

T0.4=%f0tt0'4(1-)d7- : @1

Beyond ¢ =10* a.u., fluctuations in T, are of the order
of a few percent.

Velocity autocorrelation functions for helium at an ion
temperature of 1 eV and densities of 0.2—1 g/cm? are
shown in Fig. 9. Similar curves for 5 eV and 0.1-1.5
g/cm? are shown in Fig. 10. Each frame is labeled by the
temperature, density, plasma parameter I', and the ion
sphere radius a. Note that although the time scales of
Figs. 9 and 10 extend only up to pt =3000, the calcula-
tions were actually run much longer to improve the
statistics. Each calculation typically contains 2000 time
steps with a stoptime roughly 5-10 times the decay time
of the velocity autocorrelation function. All of the calcu-
lations shown in these two figures were performed for
23-atom samples using 3G basis sets. Also shown in Figs.
9 and 10 are the results of molecular-dynamics calcula-
tions using forces derived from sums of the pair interac-
tion potentials described in Sec. I. These curves were
generated using the same kinematics algorithm as the
SCFMD runs. The comparison of the SCFMD results
with those computed with the Hartree-Fock pair poten-
tial derived from the same atomic basis set used in the
SCFMD work is of particular interest as a direct indica-
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FIG. 9. Velocity autocorrelation functions for helium at 1 eV.
-, Aziz et al. pair potential based on a Hartree-Fock short-range interaction;

same atomic basis set as the SCFMD calculations; - - -
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tor of the effect of many-electron interactions on the
atomic dynamics.

At low density, the atomic kinetics are dominated by
binary collisions involving simple pair interactions. As
expected, the SCFMD results agree with those computed
with our Hartree-Fock pair potential (HFPP) employing
the same basis set and the earlier results of Aziz et al.®
who employed an accurate Hartree-Fock pair potential to
describe short-range interactions (AHF). The more re-
cent results of Aziz et al.® which contain quantum
Monte Carlo short-range forces” (AMC) are also similar.
The velocity autocorrelation function computed with the
pair potential of Young et al.®, however, differs from all
of these. It employs a short-range interaction which in-
cludes high-density effects derived from a band-structure
calculation of solid helium, a poor approximation in the
low-density binary collision regime. Figure 11 shows the
time-averaged distance of closest approach Ar;, and the
time-averaged, atom-averaged nearest-neighbor distance
Ar as a function of density for ion temperatures of 1 and
5 eV. At low density, the average interparticle distance is
large but close encounters occur which are responsible
for large momentum transfers between atoms. As the
density increases, Ar;, and Ar become comparable. The
YMR potential includes the effect of neighbor atom in-
teractions whenever two atoms approach one another
closely. This is justified at high density but not at low
density and high temperature where the atom’s kinetic
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— — —, Aziz et al. pair potential based on a quantum Monte Carlo calculation for short-range interactions; —+-—-+—-- -, Young
et al. pair potential based on linear-muffin-tin approximation for solid helium. As the density increases the SCFMD results depart
from those derived from Hartree-Fock pair potentials, reflecting the redistribution of electronic charge density during atomic col-

lisions.
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— — —, Aziz et al. pair potential based on a quantum Monte Carlo calculation for short-range interactions; —--—--—+-—, Young
et al. pair potential based on linear-muffin-tin approximation for solid helium. As the density increase the SCFMD results depart
from those derived from Hartree-Fock pair potentials, reflecting the redistribution of electronic charge density during atomic col-

lisions.

energy can overcome the repulsive core of the atomic in-
teraction but where there are no nearest neighbors to
provide screening. It is thus expected that the YMR po-
tential produces a velocity autocorrelation function that

Ary (units of ag)

0

L 1 ul 1 L 1 ! 1
0 02 04 06 08 1.0 1.2 1.4 16 1.8
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FIG. 11. Upper curves: average (over atoms) of nearest-
neighbor distance. Lower curves: minimum distance between
any two atoms in the simulation. In each case the triangles
represent data at 1 eV and the circles data at 5 eV. High tem-
peratures allow close approaches. High densities provide
nearest neighbors which contribute to screening.

decays more slowly than those from the other potentials
at low density.

As the density increases, the SCFMD velocity auto-
correlation function begins to differ from those computed
using the low-density pair potentials. This divergence
first becomes statistically significant at 1 g/cm® and be-
comes progressively more pronounced as the density in-
creases. The departure of [Z (t)]scpmp from [Z (1) ]yppp
is an indication of the importance of many-electron in-
teractions in the sample which effectively soften the
repulsive force between helium atoms at short distances.
A physical picture for this phenomenon is as follows. As
two atoms approach one another, their nuclear potentials
combine to form a deep potential well. This well attracts
not only the electrons of the atoms involved in the col-
lision but also part of the electron density of neighboring
atoms.!® The additional electron density in the internu-
clear region of the colliding atoms results in increased
screening and hence a softer interaction. If many-
electron effects were not present in the calculation then
we would expect the HFPP and SCFMD results to be
identical at all densities, reflecting binary collisions with
nearest-neighbor pair interactions.

Note that the formation of such many-center electronic
states is, at least in helium at the conditions studied here,
transient in nature, and follows from the stochastic
motion of the atoms in the sample. In atoms which form
covalent bonds true molecular bonds can occur, which
should be manifested by sharp peaks in the pair correla-
tion function. We have observed such features in calcula-
tions on hydrogen at high density; these results will be re-
ported separately. Even in helium there is the possibility
of forming excimer states. Although we have some pre-
liminary evidence based on small structure in the pair
correlation function that this is occurring, further work is
required to improve the statistical accuracy of the calcu-
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lations in order to make a firm statement.

A numerical measure of interatomic screening can be
obtained from a Mulliken population analysis,”® which
computes the effective number of electrons n.4 on an in-

dividual atom in terms of the orbital expansion
coefficients c;;:
neg= 23, Cijckl(d’jl‘.bl) . (22)
i k1

The sum is restricted to orbitals centered on the atom un-
der study. At low densities n.4 is most often 2, reflecting
the two-electron ground state of helium. Fluctuations in
n.e occur during collisions. At higher densities n.
shows frequent and significant ( = 0.5) departures from 2,
reflecting both a higher collision frequency and intera-
tomic screening effects.

A classical interpretation of the increased decay time
of the velocity autocorrelation function at higher densi-
ties (relative to pair potential simulations) might suggest
a reduction in the atomic cross section with increasing
density. Smaller atoms collide less frequently and have
longer trajectories between collisions than larger atoms.
Many-electron effects do not fit this analogy, however,
since the sharing of electron density between neighbor
atoms in effect makes the atoms larger rather than small-
er. The longer trajectory between collisions is the result
of additional screening of the repulsive nuclear interac-
tions which also reduces the momentum transfer which
occurs during a collision with a given impact parameter.

It is interesting that even though many-atom screening
effects are responsible for the softening of the effective in-
teratomic potential, the lowest molecular eigenvalues of
orbitals associated with a collision event are more nega-
tive (more tightly bound) than the ground state of the
neutral atom. The reason for this is that such electrons
are affected by the combined potentials of two or more
nuclei, resulting in an effective potential well which is
much deeper than that of a single nucleus. The electron
density attracted to the collision region does not modify
the net potential enough to reverse the deepening due to
the overlap of nuclear potentials.'® A similar phe-
nomenon is observed for two-atom collisions. This result
is in contrast to ‘“‘average-atom’ models of dense matter
which predict a monotonic increase in orbital energies
with increasing density.

It is important to distinguish between two types of
many-body effects on the velocity autocorrelation func-
tion. Many-atom interactions occur due to the mutual in-
teraction of a large number of atoms and are included in
all molecular-dynamics calculations. Many-electron in-
teractions are due to the redistribution of electronic prob-
ability density within a local configuration of atoms.
Such many-electron effects can only be modeled by a
self-consistent calculation of the electron density, since
the configuration of the nuclei is strongly influenced by
the electronic charge distribution, and vice versa.

The number of atoms included in our calculation is
limited by the computational labor associated with the
self-consistent-field calculation of the electronic wave
function. For some of the 5-eV calculations we have ex-
amined the dependence of our results on N; by repeating
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the calculations of the velocity autocorrelation function
for 30 atoms using a 2G basis set and comparing the re-
sults to calculations employing 23 atoms and a 3G basis
set. Figure 12 shows a representative comparison. At
low density, we find the results to be identical within sta-
tistical uncertainties. At high density, the 23-atom calcu-
lation performed with a 3G basis set indicates a slightly
softer interaction than the 2G set, but this effect is quite
small. We have also performed a calculation with a basis
set consisting of two s-type Gaussian functions augment-
ed with a single p-type function. The p-type polarization
function allows nonspherically symmetric components to
be included in the wave function. The results of a
SCFMD simulation run at 1 g/cm® and 5 eV with this
basis set were almost identical to those performed with
the 3G basis. The relative insensitivity to the number of
atoms and the details of the basis set suggests that even a
simple basis set is capable of describing the most impor-
tant effects of the redistribution of the electronic charge
density occurring at higher densities.

To examine the sensitivity of the results to the size of
the time step we repeated the 1-eV calculations at 0.6 and
1 g/cm? with a maximum allowed time step reduced by a
factor of 5 from that described above. Thus the max-
imum relative change in the smallest internuclear dis-
tance was limited to 4% during a single time step. The
use of a smaller time step resulted in a reduction in the
noise in the ionic temperature, but had virtually no effect
on the pair distribution function or the velocity auto-
correlation function. A succession of small time steps
prevents an unphysical close approach of two or more
atoms due to a large position increment near the steep
part of the potential curve. Such close approaches result
in large accelerations and velocities in the next time step
as the atoms repel one another. These fluctuations are
reflected in the temperature. Such events are rare, how-
ever, so that over many collisions and for many atoms
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FIG. 12. Comparison of velocity autocorrelation functions
for helium at 0.6 g/cm® and 5 eV computed with 23 atoms using
a three Gaussian basis set (solid curve) and for 30 atoms using a
two Gaussian basis set (circles).
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they exercise relatively little influence on averaged quan-
tities such as the velocity autocorrelation function.

B. Coefficient of self-diffusion

The coefficient of self-diffusion D can be written as the
time integral of the velocity autocorrelation function

— KT =
D=7 [ zwar . (23)

This integral is difficult to evaluate in practice owing to
statistical uncertainties in the velocity autocorrelation
function when it is computed with the relatively small
number of atoms employed in our simulations. Small er-
rors at late times can have a significant effect on the
diffusion coefficient. Figure 13 shows the product of the
density and the coefficient of self-diffusion pD plotted as a
function of density for helium at 5 eV. The HFPP
molecular-dynamics calculation predicts that pD is only a
weak function of density. The SCFMD results, however,
show a pronounced density dependence. At low density,
Dgcpmp agrees with Dyppp, and hence with D ,yp and
D ppc, since the velocity autocorrelation functions are
very similar. As the density increases the SCFMD curve
rises, and by 1.5 g/cm? it is about 30% above the HFPP
point. Linear dependence in the atomic basis sets
prevented us from extending our study to densities
beyond 1.5 g/cm? for a 3G basis set and 3 g/cm? for a 2G
basis set. The 2G calculation at 3 g/cm?® and 5 eV gave
pD =0.027 g/(cms), suggesting that the effects of many-
atom dynamic screening may saturate for densities in the
few g/cm® range. Further work is required to confirm
this hypothesis.
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FIG. 13. Coefficient of self-diffusion for helium at 5 eV com-
puted from the time integral of the velocity autocorrelation
function. The Hartree-Fock pair potential results show only a
weak density dependence whereas the SCFMD curve increases
significantly when the density is high enough for several atomic
wave functions to overlap. The error bars correspond to +10%,
the approximate statistical accuracy of the present calculations.
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That our high-density SCFMD calculations of the ve-
locity autocorrelation function do not blend smoothly
into the results computed with the solid helium pair po-
tential of Young et al. may be due to our use of the sim-
ple Hellmann-Feynman force routine rather than the true
Hartree-Fock forces computed as derivatives of the total
molecular energy. Preliminary calculations made with
forces computed as energy derivatives indicate softer in-
teratomic forces which will result in longer decay times
for Z(t) and hence a larger diffusion coefficient at high
densities. This issue will be discussed further in Sec. IV.

C. Model calculation of a shock wave

In addition to understanding kinetic processes in dense
homogeneous matter we are also interested in examining
many-electron effects on local dynamic processes. Shock
waves are density discontinuities propagating through
matter. The width of the shock front is comparable to
the mean free path of the atoms, and at high densities
this is comparable to the interatomic spacing. In order to
illustrate the effects of dynamic screening on shock
waves, we have performed a preliminary model calcula-
tion of a two-dimensional ‘“‘shock tube” containing 14
atoms. In this simple calculation we imposed reflecting
boundary conditions on the nuclei but not the electrons.
The nuclei were constrained to move in the x-y plane
with x >0 and —1 <y <1. The electronic structure cal-
culation was, of course, three dimensional. Initially the
atoms were localized in the region 0 <x <1la,. Scaling
the two-dimensional density by the 2 power results in an
effective volume density of 23 g/cm? comparable to a
high-density inertial fusion implosion. All of the atoms
were initially at rest except for three at the left boundary
representing the shock front, which were given a velocity
of 2.2X 107 cm/s to the right. Figure 14 shows several
snapshots of the electronic charge density as the shock
moves to the right. The interatomic interactions at this
high compression are intermediate between atomic
scattering, where bound orbital charge densities dominate
the interaction, and ion-ion scattering in a plasma. On
the average only 85% of the electrons occupy negative
eigenstates. The highest eigenvalues are associated with
diffuse probability density. These orbitals are composed
of contributions from a large number of basis functions,
mocking the behavior of a true continuum function
within the confines of a finite basis set. The lowest eigen-
value of the configuration at t =54.5 a.u. is —6.87 har-
trees, more than six times the eigenvalue for the 1s elec-
tron in an isolated helium atom. Such a tightly bound
orbital results from electrons experiencing the combined
potentials of several very closely spaced nuclei during a
multiatom collision. A temporary quasimolecule is
formed. This result is in qualitative agreement with a
previous study of static compressed helium clusters at
high electron temperature'® and is in marked contrast to
most existing theories of dense plasma which predict a
monotonic increase in energy levels with density due to
screening effects. Only when the electronic structure is
computed in a many-center potential is the energy level
lowering found. Although 14 atoms are certainly inade-
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quate to draw any conclusions regarding the hydro-
dynamic motion of the shock wave, Fig. 14 shows that in
the course of shock propagation extended electronic
states are formed which may affect both ion and electron
transport across and along the shock front. Since a shock
wave is propagated by close collisions producing high
momentum transfer, we expect quasimolecular states to
be formed at the shock front. These tightly bound states
may impede electron transport across the shock front,
but may allow higher electron conductivity along the
shock front, following the extended states that are part of
the quasimolecular structures. Even for shock fronts
many atomic diameters thick, the formation of quasi-
molecular states may affect electron conduction as the
electrons “percolate” through the structures.
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FIG. 14. Electron charge density contour plots for four
“snapshots” of a model shock wave moving down a two-
"dimensional column of 14 helium atoms. The boundaries,
shown by dashed lines, are rigid for the nuclei and do not affect
the electron distribution. In the initial configuration all of the
atoms are at rest save the three at the left boundary, which have
a velocity of 2.2X 107 cm/s to the right. Time is given in atomic
units. Note that as time progresses, complex many-center elec-
tronic configurations are formed. Electron conduction is ex-
pected to be enhanced along these extended features and
suppressed perpendicular to them.
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IV. DISCUSSION

Our results suggest that the behavior of dense matter
can be categorized by four regimes, parametrized in Fig.
15 by the ratio of the average internuclear spacing to the
characteristic wavelength of the electrons.!® At low den-
sity, where the internuclear spacing is much larger than
the spatial extent of the bound state orbitals, the electron
density is concentrated in widely separated potential
wells. Except for weak van der Waals interactions, the
atoms interact only during collision events. As the densi-
ty is increased to the point where the tails of the atomic
wave functions begin to overlap, screening of individual
atomic potentials results. This screening is described in
the simple Debye model. Atomic eigenvalues increase
due to this screening.

At higher densities, where the internuclear distance is
comparable to the electron wavelength, quasimolecular
behavior can occur where the attractive potentials of two
or more atoms sum to create a potential well which is
wider and deeper than those associated with any of the
individual atoms. In terms of the atomic wave functions,
near the location where an atomic orbital is expected to
reach a maximum there exists another attractive center
of force, significantly perturbing the structure of the or-
bital. The eigenvalues associated with these multicenter
orbitals can be considerably lower (more tightly bound)
than the eigenvalues of isolated atoms. Quasimolecular
structures are the analogs of covalent bonds familiar from
elementary chemistry or the Mott transition between an
insulator and a metal. In dense matter quasimolecular
orbitals will occur during the normal stochastic motion
of atoms. Temperature fluctuations will allow atoms to
experience occasional close approaches. Thus, even
without any long-lived chemical bonds, many-center in-
teractions should be important when the internuclear
spacing is comparable to the spatial extent of an atomic
wave function. Significant changes to electron transport
properties are expected to be associated with the forma-
tion of these extended states.

Density Low Moderate High Very high
Regime Atomic  Screened Quasi- Homogeneous
regime atomic molecular regime
regime regime
Atoms © ®
Potential Y-/ Y- Yo K7
Nuclear spacing (d) d>>A d>A d=z d<<A
vs

Electron wavelength (1)

FIG. 15. Four regimes in high-density matter. At low densi-
ty the atoms are far apart compared to their mean radii and do
not interact. As the density is increased neighboring atomic po-
tentials overlap, resulting in at first screening and then a co-
valent sharing of electronic charge density among two or more
atoms. In the quasimolecular regime several atomic potentials
combine to form a potential well deep and wide enough to tight-
ly bind electrons. At very high densities the potential wells are
too closely spaced to support bound states, and a homogeneous
electron gas is obtained.
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At very high densities, where the internuclear distance
is small compared to the characteristic wavelength of the
ground state of an atom, none of the potential wells asso-
ciated with local nuclear configurations are wide and
deep enough to support a bound state. In this limit all of
the electrons are free, forming a homogeneous electron
gas.

It is possible to interpret the same phenomena in terms
of the energy density in the electron and ion fields in the
sample. SCFMD allows for the continuous readjustment
of the energy balance between the electrons and nuclei in
an evolving simulation. The total energy remains con-
stant, but the distribution between the kinetic energy of
the nuclei, their Coulomb interaction energy, and the
electronic energy changes with the configuration of the
sample. During a close atomic collision ion kinetic ener-
gy is partially absorbed by internuclear potential energy
and partially by an adjustment in the electronic charge
distribution. When the nuclei rebound, this energy is
recovered. Note, however, that at very high densities the
redistribution of electronic charge density may involve
several atoms, so that depending on the relative velocities
of the atoms in the transient cluster, the electron distribu-
tion may give its energy back to the nuclei in a different
manner than it was initially transferred. Energy initially
corresponding to one nucleus can be transferred to anoth-
er using the electrons as intermediate storage. The
relevant transfer paths are then ion-ion, electron-ion, and
electron-electron. Electron-ion interactions transfer en-
ergy from the ion field to the electron field where it can
be rapidly redistributed by electron-electron interactions
before it is returned to the ions. This mechanism corre-
sponds to a chemical reaction for ordinary molecules.
The attractive chemical bonds which bind molecules are
replaced in our case by high material pressures which
maintain internuclear distances comparable to the mean
radius of the atomic electrons. Quasimolecular struc-
tures can form and can influence the development of the
nuclear configuration.

In addition to the calculations on helium reported
here, we have also applied SCFMD to a variety of other
atoms as well as to problems in atomic scattering in solids
and from surfaces. In modeling hydrogen, by increasing
the temperature of a sample configuration we are able to
model the transition from the molecular phase, charac-
terized by a pair correlation function sharply peaked at
the molecular bond length, to the dissociated atomic
phase, which has a pair correlation function with very lit-
tle structure. Details of these calculations will be report-
ed separately.

SCFMD is an adiabatic approximation based on the
Born-Oppenheimer approximation. In the present calcu-
lation we have chosen ion temperatures far away from
the regimes in which either nuclear lattice vibrations or
electron-nucleus coupling terms are important. Includ-
ing such coupling terms would allow a more accurate
time-dependent trajectory to be generated, especially for
very low and very high ion velocities. Using perturbative
methods, this might be accomplished without an unac-
ceptable increase in the computation time.

Even though our calculations were performed at tem-
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peratures much lower than the ionization energy of heli-
um, 24.6 eV, there is still some probability for the forma-
tion of excited electronic states. This is significant for the
kinematics since the interaction potential between two
atoms in excited states is larger at short ranges than for
atoms in their ground states. The diffuse electron density
in an excited orbital is less able to screen the strong inter-
nuclear repulsion at short ranges. In dense matter, how-
ever, the decrease in screening may be less severe, since in
an electrically neutral ensemble the electrons must be
somewhere, and those that are excited from one atom
enter the atomic sphere of another atom. The effect of
nonzero electron temperature on the electronic configura-
tion of static many-atom configurations has been studied
by Fujima er al.'® and by Younger et al.'® Their calcu-
lations use a numerical Hartree-Fock-Slater molecular
structure approach which allocates the excited state pop-
ulation according to a Fermi distribution. At a tempera-
ture where the isolated atoms were calculated to be main-
ly ionized, the formation of quasimolecular orbitals with
ionization energies greater than those of isolated atoms
resulted in an increase in the bound population with in-
creasing density. This increase was not due to three-body
or other recombination processes which occur in dense
plasma, but rather reflected the change in the bound state
spectrum with decreasing internuclear separation.

The extension of our Gaussian-orbital-based Hartree-
Fock approach to nonzero electron temperatures is com-
plicated by the necessity of employing basis sets large
enough to describe the excited states themselves as well
as additional orbital polarization effects which will be im-
portant for such diffuse weakly bound states. Some gui-
dance may be obtained from model calculations which
employ modest basis sets in order to assess the effects of
excited states on kinetic processes.

A fundamental issue arises when one attempts to in-
clude electron-ion coupling in the simulation along with
finite electron temperature. Atomic collisions will result
in local excitations which can decay by radiation or by
other means. How is the electron temperature, a macro-
scopic quantity entering into the Fermi distribution of
the electronic population over excited states, to be related
to individual, local collisions which transfer energy from
the ion field to the electron field and back again? Anoth-
er difficult question is how to incorporate inelastic elec-
tron scattering in dense matter. Standard atomic physics
formulations of the scattering problem assume asymptot-
ic boundary conditions in order to normalize the incident
and scattered waves. In a disordered medium the form of
the boundary conditions and their effect on the cross sec-
tion is unclear. Certainly all of these effects will
be included in a complete time-dependent quantum-
mechanical treatment of the system. We are currently
working on approximate techniques which will allow in-
clusion of these effects in a perturbative fashion.

In our work we have concentrated on identifying the
importance of many-electron effects on single atom
dynamical quantities. Similar methods may be applied to
calculate other transport properties. Calculations of
viscosity and thermal conductivity are much more
demanding in terms of the number of atoms required for
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reasonable statistical accuracy since they involve correla-
tions among two or more atoms. The effects of many-
center correlations could be critical in such collective
phenomena. We expect that quasimolecular electronic
states will have significant effects on electron transport
processes as well. This was apparent from our model cal-
culation of a microscopic shock wave. The propagation
of the shock wave occurs by close collisions which in-
volve large momentum transfer. The existence of a well-
defined shock front results in the preferential formation
of extended states along the shock front rather than
across it, suggesting an increase in the electron heat con-
ductivity along the shock front and a decrease in conduc-
tivity normal to it. Classically, an electron attempting to
cross the front from the hot region behind the shock will
have some probability of falling into the deep potential
well created by the close collisions which propagate the
shock wave.

We are examining several extensions to our work in or-
der to improve the accuracy of the calculations and to ex-
amine the effect of dynamic screening on other transport
processes. In order to improve statistical accuracy, we
are exploring methods which will allow a larger number
of atoms to be included in the ensemble. Although in
principle the computational labor associated with a
molecular-orbital calculation goes as the cube of the
number of basis functions, in extended samples the in-
teraction of distant atoms can be eliminated from the cal-
culation, reducing the computational labor considerably.
Modifications that we are examining include the use of
larger, more flexible basis sets, the inclusion of polariza-
tion functions, and the use of parametrized basis sets
which can be reoptimized during the course of the calcu-
lation. Some of these functions can have variable ex-
ponents which can be adjusted during the course of the
calculation to optimize the description of the time-
dependent electronic wave function. We are also experi-
menting with adding some floating Gaussian basis func-
tions, which are not attached to any of the nuclei and
which are dynamically repositioned to better describe or-
bital polarization during close collisions. The use of such
internuclear basis functions considerably improves the
accuracy of the Hellmann-Feynman forces for small mol-
ecules, yielding molecular bond distances in reasonable
agreement with observation.

Two improvements to the algorithm for computing
forces are being considered. First, the use of an analytic

5271

energy derivative method will allow full use of the accu-
racy of the Hartree-Fock electronic wave function. The
illustrative calculation of neighbor atom screening shown
in Fig. 4 suggests that the more accurate energy deriva-
tive method for computing forces will result in softer
effective interaction forces, leading to a further increase
in the diffusion coefficient over that computed from our
current electrostatic model. This effect will be most im-
portant at high densities and is expected to bring the
SCFMD data into better agreement with results comput-
ed using the solid helium pair potential. At low densities,
where the electrostatic forces are already a good approxi-
mation to the binary collision regime, the SCFMD
diffusion coefficient should be almost unchanged and
should continue to be in good agreement with results de-
rived from accurate theoretical or experimental pair in-
teraction potentials.

The second improvement to the electronic structure
part of the calculation being considered is the replace-
ment of the Hartree-Fock approximation by an in-line
superposition-of-configuration (SOC) method. Using
such a technique we could include some electron correla-
tion effects on the forces with a relatively small impact on
the length of the electronic structure calculation.

Although expensive in terms of current computer
resources, our calculations suggest that with anticipated
increases in computer speed and memory, conventional
techniques from quantum chemistry can be applied to the
study of dynamic phenomena in many-atom ensembles.
The use of proven computational methods has the advan-
tage that the rich repertoire of methods that have been
developed for the improvement of bound state electronic
wave functions by the inclusion of correlation effects, re-
lativity, etc. can also be applied to the study of dynamic
phenomena. The retention of an orbital representation
allows a correlation between many-atom calculations and
methods based on perturbations of isolated atoms.
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