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Dynamics of water droplets on a window pane
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We performed experiments and computer simulations in order to investigate whether the rain
drops on a window pane are in a "self-organized critical state, " as proposed by Bak, Tang, and
Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988); J. Stat. Phys. 51, 797
(1988)];and Tang and Bak [Phys. Rev. Lett. 60, 2347 (1988)]. In contrast to the expected behavior,
we found that the coverage fluctuations exhibit an f power spectrum, and the characteristic dis-
tribution functions of the elementary events have no power-law dependence.

I. INTRODUCTION

Recently Bak, Tang and Wiesenfeld' (BTW) intro-
duced the idea of "self-organized criticality" in terms of a
model of how they expected some dynamical systems to
behave. These extended dissipative dynamical systems
evolve into structures with long-range fractal spatial
correlations ' and/or long-range temporal correlations
with I lf power spectrum. They have suggested that
this behavior may be caused by the self-organization of
the systems into a critical state. Systems that exhibit spa-
tial or temporal power-law correlations naturally evolve
into this critical state. Tang and Bak have pointed out
the analogy with traditional critical phenomena by
defining several critical exponents and deriving scaling
relations between them. Hwa and Kardar have per-
formed a dynamic renormalization-group calculation to
determine various critical exponents in d 4 dimensions.
They have found slightly different noise exponent values
for the energy dissipation function defined by BTW in
Ref. 1, and they have pointed out an important principle,
namely that the dynamics should satisfy a conservation
law to ensure the self-similarity of the steady-state
configurations.

Several real systems have been suggested as possible
candidates for this behavior, for example, the sand flow
in an hour glass, properties of earthquakes, raindrops
running down a window pane, the flows of rivers such as
the Nile, motion of dislocations in a resistor, or even in-
teractive economical systems. ' Jaeger, Liu, and Nagel'
have performed experiments to describe the nature of
sand flow along the free surface of sandpiles. In contra-
diction to the above-mentioned model proposed also for
the dynamics of granular systems, they did not observe
power-law distributions of elementary events, and they
found a simple model to explain their results.

Motivated by the above developments we have investi-
gated another possible system: water droplets running
down a window pane. It is an everyday observation that
droplets and streams of rain on window panes tend to
evolve into a stationary state. This means that the aver-

age covering of the glass is seemingly almost independent
of the "rain-power. " When a little drop falls onto the dry
pane, it may stick to the glass. If the mass of the droplet
is larger than some critical value, or joining to another
drop the mass exceeds the critical value, a stream runs
down. This stream or "water avalanche" may stop when
the window is dry enough because there remains a thin
water film behind the running drop, so the mass of the
stream continually decreases. More often the flow meets
other droplets and "eats" them, so the running continues
across the full pane.

Our aim was to collect some quantitative information
about the dynamical behavior of this system, therefore we
have performed experiments and numerical simulations.
Section II will be concerned with the experiments, the re-
sults will be presented in Sec. III. In Sec. IV we give a
simple model for the dynamical behavior of rain droplets.
Finally, in Sec. V, we give a short discussion of our re-
sults. We use the notations of BTW (Ref. 1-4) in this pa-
per.

II. EXPERIMENTS

Our experimental arrangement consisted of an optical-
ly smooth silicate glass plate which was 70 crn wide and
100 cm long. The slope of the pane was adjustable be-
tween 40 and 90 . We have sprayed destilled water drop-
lets onto the glass from =1 m distance on a ballistic or-
bit. The discharge of the water was pulsed with a fre-
quency of 1 —2 Hz, so the system had enough time to re-
lax between the successive charges. Behind the "win-
dow" a videocamera was used to record the events. Dark
background and light sources were applied at the edge of
the glass pane, so the droplets gave sharp contrasts on
the screen. To evaluate the recorded result the vITAL-'
image processing system was used. A typical digitalized
output is shown in Fig. 1.

Figure 2 shows the distribution of the droplet size. We
probed "rains" with different average size of droplets. If
the mean value was essentially smaller than = 1 mm (Fig.
2), the image processing became difficult because of the

5232 1989 The American Physical Society



40 DYNAMICS OF WATER DROPLETS ON A WINDOW PANE 5233

F
ik~+O'-Q I.~.:

d' W. -

e ~ ~ R'

~ 'Xi ~ i

—~elk lrf.~ ~-.g, ~ -m-

t
~' -~a~~aP &~+~ I

a I~NB r L a!P~m(

'"&&I'T~
K LLJm

!!

!m M~I~ I"-
:=& ) ~i~~~

' 0l
r

' aJ

!g~".% I ~&I f. J
~ .

!

sk~l M '

gl' tel Qg ~

I
8

E a

. ~

iri)l

' ~ tKii:t

. ,V, j
t&

S ~
' Ph

'~~1 ~ l I.. .t~

FICr. 1. Typical digitalized output from the image-processing
system. The double frame indicates the area, which was the
basis of the coverage calculation.

limited resolution of the video camera. Using much
bigger droplets, almost all of them immediately ran
down. The density of the spray was fixed about 1

drop/cm .
Sticking, spreading, and Aowing of liquid droplets on

solid surfaces often appears to be a complicated process,
where many (not necessarily known) parameters play a
role. " During the spreading or moving of a droplet even
traces of impurities in the phases may drastically change
the observed phenomena. The roughness of the solid sur-
face is also of importance. The interaction between the
liquid and solid is characterized by the contact angle 0 of
the drop" resting on the horizontal plate.

Different qualities of glass panes were probed during
the experiments. Finally, a silicate glass was used that
could be characterized by the contact angle 0=75'—85 .

In this case the remaining water film behind the running
drop splitted up into small drops in a very short time, so
there was no macroscopically visible wet between the in-
dividual drops. With other type of glasses (with charac-
teristic contact angle 8=40 —45 ), the behavior of the
streams considerably changed. The lifetime of the
meandering water films were much longer (up to I —2
min) because of the good wetting, so any small droplet
ran down if falling onto this route.

At the next step we examined the effect of the pane
slope on the dynamics. We fixed the angle of incidence of
droplets nearly perpendicular to the surface of the glass.
The critical size of the sticking droplets and the coverage
of the glass slightly changed, nevertheless, the main
features of the dynamics were found independent of the
slope, at least between 40' and 90'. For example, the
average velocity of the running droplets seemed to be in-
dependent of the inclination angle. So this angle was
fixed at 70'.

A dry and clean surface was carefully prepared for
each experiment. We recorded several experiments, each
lasted about 15 min. After the recording we evaluated
the results by the computer-aided image-processing sys-
tem.

III. EXPERIMENTAL RESULTS

The idea of self-organized criticality rests upon the as-
sumption that the coverage of the surface has a critical
value. If the coverage is increased continuously (e.g. , by
adding more water droplets to the window pane), the
system will organize itself in such a way that its average
coverage will be the critical value by unloading excess
water through streams. The theory of BTW predicts a
self-organized state at this critical coverage characterized
by long-range spatial and temporal correlations and giv-
ing rise to a typical I/f power spectrum of the fiuctua-
tions around the steady-state coverage value.

We evaluated the coverage of the window pane at the
steady state in every —,', sec. Figure 3 shows the typical
time trace of the fluctuations. The corresponding power
spectrum (Fig. 4) was obtained by Fourier transforma-
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FICx. 2. Distribution of the droplet size. The x axis shows
the diameters of the contact area of the droplets resting on the
horizontal glass pane (in mm).

FICx. 3. Characteristic time trace of the coverage Auctuations
around an average value. MD=0. 8123. The time is measured in
—sec units.1
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quantities are not independent of each other, however, an
exact functional interdependence is not known. It is be-
cause of the existence of the contact angle hysteresis'
and the absence of self-similarity of the different size
droplets. However, an approximate relation may be valid
for small m:
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FIG. 4. Calculated power spectrum of the noise plotted in

Fig. 3.

tion. ' The small-frequency part of the power spectrum
in the 1og-log plot has the free surface of sandpiles. In
contradiction to the slope 4= —2. 15+0.09, which
significantly diff'ers from the expected nearly 1/f behav-
ior. The narrow peak at the higher-frequency part of the
spectrum is trivially caused by the experimental setup,
namely by the pulsed water discharge with 1 —2-Hz fre-
quency. The highest observable frequency component
was 5 Hz as follows from the, p sec time resolution of the
video camera and from the Debye condition. ' The
lowest observable frequency is determined by the record-
ing time. Considering the log-log scale of Fig. 4, we have
concluded that the overall shape of the power spectrum is
nearly f, at least in the 10 —10 Hz frequency range.
Changing the slope of the window pane, the mean cover-
age of the glass changed between 65—80 %, but the power
spectrum of the fluctuations remained f in all cases.
We would like to point out that the Fourier spectrum of a
random walker is A (f) ~f ' where 0=

—,
' for ordi-

nary Brownian motion. The power spectrum of this dis-
tribution is same as the power spectrum of the coverage
fluctuations described above. Nevertheless, the time
average of the last one must be less than 1. It follows
from Parseval's theorem that this is possible only if the
power spectrum is normalizable. It means that a charac-
teristic corner frequency must exist for all f power
spectra, where a ~ 1. Below this frequency the spectrum
must turn over to a regime with an exponent less than
one. Since the recording time determines the lowest ob-
servable frequency, we must observe this crossover when
the recording time is longer than the system relaxation
time. We can estimate this time using the discrete Par-
seval formula applied to our data and we And that the
crossover time is approximately 39 hours.

The question naturally arises why we have chosen the
coverage instead of the mass. It is clear that the sticking
and the motion of a droplet is determined by two main
factors: gravity and the interaction between the liquid
and the surface of the solid. The gravitational force is
proportional to the droplet mass m, the cohesion is pro-
portional to the area of the interface layer F. These two

m ~F
where 1 (a ~ —', ( a = 1 is the "flat" droplet limit, while
a= —,

' gives the hemisphere shape). We can estimate sim-

ply the mass fluctuations from the measured contact area
fluctuations. When we rescaled the measured contact
area fluctuations according to (1), there was a slight slope
change in the small-frequency part of the power spec-
trum, but the value of the exponent remains very close to
4= —2.

From another point of view, BTW claimed that the
main fluctuating quantity that would exhibit 1/f power
spectrum is the so-called energy dissipation function.
During flow of a stream energy dissipation occurs at the
border of the drop and the air, in the bulk of the droplets
because of the viscosity, but the dominant part comes
from the contact surface between the drop and the glass
caused by the friction. Consequently, the energy dissipa-
tion is directly related to the changes of coverage. A
good estimation of the last one is the time derivative of
the coverage. For the random-walk regime we have ob-
tained a spectrum corresponding to f, with good agree-
ment with the expected behavior.

IV. MGDELING

mi j~m; j+ 1 (3)

If the mass of the (i,j)th resting "droplet" exceeds the
static critical value m,', a "stream" runs down.

It is a well-known fact that streams of rain on window
panes tend to meander even on seemingly smooth and
clean surfaces. The causes of meandering may be some
microscopical impurities on the surface or in the liquid,
and instabilities in the stream. ' If the window is densely
covered with droplets, the effect of instabilities is negligi-
ble because of the short "mean-free path" between the in-
dividual droplets. I this case the meandering occurs
mostly because of the meetings of the stream with the
standing droplets. If the "collision" is noncentral, which
means that the direction of the low is not identical with
the vertical symmetry axis of the standing drop, the

In order to simulate the f power spectrum behavior
we have constructed a simple, discrete model. The algo-
rithm of our model is as follows. An n X n square lattice
is erst established and lattice sites are allowed to be occu-
pied by "drops" of different size,

0 m] j m~

where i,j denotes the position of the site, m, is some
characteristic quantity of the drop (mass or contact sur-
face area), and m, is the static critical value depending
on the "slope." At each step one position is randomly
chosen and a unit mass is added to the existing drop,
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steam will deviate from the vertical Aowing direction to-
ward the droplet. However, the dynamics of this joining
and bending may be dificult, so the meandering behavior
can be built into the model in a much simpler way.

The stream algorithm is the following. If the
avalanche reaches the (i,j)th position, the mass of the
stream will increase with the mass of the droplet, but a
little amount of water will remain on the site modeling
the wetting phenomenon,

m, - . mo,

M~M+m; —mo,

(4a)

(4b)

~ fJ ~J:m]- j
m; '=max(m, &, m, , m, +, ) .

When the masses of the bottom droplets are equal, the
vertical direction is preferred. These steps are repeated
until the stream reaches the bottom of the window pane,
or the mass of the avalanche becomes smaller than the
"dynamical critical value" m,". In the latter case the run-
ning of the drop can be stopped by the co11ective effects
of the friction and the decrease of the moving mass. The
dynamical critical value is much smaller than the static
one, but we could not find any well-established estimation
of this quantity. The overall e6'ect of this event is negligi-
ble because of the relatively dense coverage as it can be
checked easily by looking at a rainy windom pane.

We performed simulations on n =20,30„50,100 size
square 1attices. The boundary condition was cyclic in the
horizontal direction. %'e found that the results were not

where M denotes the mass of the avalanche and mo is the
remaining mass. At the next step the y coordinate (or the
column index) will decrease modeling the vertical motion,
but the x coordinate (the row index) may change due to
the meandering phenomenon. This deviation depends on
the size of the bottom drop1ets, the stream will bend to-
ward the largest drop,
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FIG. 6. Distribution of the stream masses. n =20, m, =10,
the number of the MC steps is 1 500000.

sensitive to the size of the system or to the value of the
m,' critical mass. ' Figure 5 shows the power spectrum
of the simulated coverage fluctuations around the average
value. The slope of the straight line in the log-log plot is
s=1.91+0.006, which approximates well the measured
behavior. The peak in the high-frequency range is trivial-
ly absent because the discharge of "water" was continu-
ous in the model.

We evaluated the characteristic distribution functions
of the elementary events. Figure 6 shows the stream
mass distribution, which exhibits a peaked shape around
an average value. This curve is similar to the sand
avalanche mass distribution measured by Jaeger, Liu, and
Nagel. ' The reason for the asymmetry can be under-
stood on the basis of the running time distribution (Fig.
8) and will be explained later.

In contrast to the sand Row case, ' the distribution of
the waiting time between the successive events exhibits
an exponential behavior (Fig. 7),
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FIG. 5. Calculated power spectrum of a simulated coverage
fluctuation. n =30, m, =10, the number of the Monte Carlo
(MC) steps is 1 500000 (in arbitrary units).

FIG. 7. Distribution of the waiting time between the succes-
sive streams. n =30, m, =10, the number of MC steps is
1000000. The y axis has a logarithmic scale, t is in MC step
unit. The slope of the straight line is a =0.0012+0.0002.
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from the 0&k ~l sites the water flows down along the
stream route. But the form of the distribution is unusual.
It is certain that no real distribution has this form as fol-
lows, for example, from the normalization condition. We
plan large-scale simulations and analytical calculations to
clear the origin of this behavior. '

In terms of this distribution we can explain the mass
distribution of the streams (Fig. 6). Since the probabili-
ties of the longer flows are larger, the average mass shifts
toward the maximal possible value. The steep cutoff of
the right-hand side of the peaked curve is a boundary
effect, and it occurs in all finite-size systems.

V. DISCUSSION

FIG. 8. Inverse frequency of the stream life time. n =30,
m, =10, the number of MC steps is 1500000. The x axis is in
~,„unit, c =0.0062 (see text).

D(t) ~ exp( at ), — (6)

where the value of the coefticient is a =0.0012+0.0003
on an n =30 lattice. Simple considerations give
a = I /n, i.e., the time constant of this exponential distri-
bution is equal to the probability per unit time for a drop-
let to arrive at a critical site. This behavior is related to
the full independence of the individual events.

A very interesting result was obtained for the distribu-
tion of the "cluster lifetime, " that is, for the running time
of the streams. We supposed in the model that the aver-
age velocity of the running droplets is constant and does
not depend strongly on the slope of the window. During
the flow the discharge of the water was interrupted, let-
ting the system relax. Figure 8 shows the singular distri-
bution of the lifetime

max

where ~,„ is the largest possible lifetime in the finite-size
system and c is a slightly size-dependent constant. The
transformed form of this distribution shows that this ap-
proximation is valid even in the small w range. This be-
havior is only qualitatively understandable. Because of
the constant velocity assumption the probability of the ~1
running time is proportional to the height of the onginat-
ing place of the stream. The nature of the flow assures
that the higher origins have larger probabilities because

We performed experiments and computer simulations
to investigate the dynamics of raindrops running down a
window pane. From the experiments we can conclude
that the coverage fluctuates with f power spectrum.
We found a very simple model to simulate this behavior,
and the results approximate well the observed behavior.
The distribution of the stream size has an asymmetrical
peaked shape. The waiting time between the successive
events has an exponential form, which shows the absence
of correlations. The avalanche lifetime distribution may
be approximated by an unusual singular functional form
whose explanation requires further investigations. The
stream mass and the stream lifetime distributions cannot
be approximated by a power law, consequently, no scal-
ing relations are valid in this case. In contrast to the case
of the sand pile, the kinetic friction is rather large in this
model (the droplets do not accelerate, and the velocities
are quite small). So in this case, the deviation from the
power-law dependence cannot be explained by the small-
ness of kinetic friction.

In conclusion, the f power spectrum of the coverage
fluctuations we obtained shows that the dynamics of our
system is different from that proposed by BTW. In order
to find a real physical system in a self-organized critical
state, it is primordial to verify the power-law dependence
of the distribution of the elementary events rather than
the resulting fractal structure or the I /f noise.
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